Inner Product Spaces: Part 2

Let V be an inner product space. We let $K=\mathbb{R}$ or \mathbb{C} according as V is real or complex. A sequence of vectors $u_{1}, u_{2}, u_{3}, \ldots$ is said to be orthogonal if $\left.<u_{i}, u_{j}\right\rangle=0$ for $i \neq j$. If, in addition, we have $\left\|u_{i}\right\|=1$ for all i then the sequence is said to be orthonormal.

If $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ is an orthogonal sequence of non-zero vectors of V then $u_{1}, u_{2}, \ldots, u_{n}$ is linearly independent. Indeed, if $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}=0$, we have

$$
0=<a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}, u_{i}>=a_{i}<u_{i}, u_{i}>
$$

which implies that $a_{i}=0$ since $<u_{i}, u,>=\left\|u_{i}\right\|^{2} \neq 0$. If $u_{1}, u_{2}, \ldots, u_{n}$ is a basis of V then

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n} \Longrightarrow<v, u_{i}>=a_{i}<u_{i}, u_{i}>
$$

so that $a_{i}=\frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}$. If $u_{1}, u_{2}, \ldots, u_{n}$ is an orthonormal basis of V then

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n} \Longrightarrow a_{i}=<v, u_{i}>.
$$

Let $u_{1}, u_{2}, \ldots, u_{n}$ be an orthogonal sequence of non-zero vectors of V and let $v \in V$. If

$$
w=\frac{<v, u_{1}>}{<u_{1}, u_{1}>} u_{1}+\frac{<v, u_{2}>}{<u_{2}, u_{2}>} u_{2}+\cdots+\frac{<v, u_{n}>}{\left.<u_{n}, u_{n}\right\rangle} u_{n}
$$

then $v-w$ is orthogonal to each vector u_{i}. If u is any vector in the subspace W of V spanned by $u_{1}, u_{2}, \ldots, u_{n}$, we have $v-u=v-w+w-u$ with $v-w$ orthogonal to $w-u$ and so

$$
\|v-u\|^{2}=\|v-w\|^{2}+\|w-u\|^{2} \geq\|v-w\|^{2}
$$

with equality iff $u=w$. It follows that w is the unique vector of W which minimizes $\|v-w\|$. The vector $P_{W}(v)=w$ is called the orthogonal projection of v on W. The mappping P_{W} is a linear operator on V with image W and kernel the set W^{\perp} of vectors of V which are orthogonal to every vector of W. The subspace W^{\perp} is called the orthogonal complement of W in V. We have $V=W \oplus W^{\perp}$.

Theorem 1. Every finite-dimensional inner product space has an orthonormal basis.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be a basis of the inner product space V. Define $v_{1}, v_{2}, \ldots, v_{n}$ inductively by

$$
v_{1}=u_{1}, v_{i+1}=u_{i+1}-\left(\frac{<u_{i+1}, v_{1}>}{<v_{1}, v_{1}>}+\frac{\left.<u_{i+1}, v_{2}\right\rangle}{<v_{2}, v_{2}>}+\cdots+\frac{\left.<u_{i+1}, v_{i}\right\rangle}{<v_{i}, v_{i}>}\right) .
$$

This process is well-defined since one proves inductively that

$$
\operatorname{Span}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}\right)=\operatorname{Span}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{i}}\right)
$$

so that, in particular, $v_{i} \neq 0$ for all i. By construction, v_{1}, \ldots, v_{n} is orthogonal and so can be normalized to give an orthonormal basis of V. The above process is known as the Gram-Schmidt Process.

Corollary 2. An n-dimensional inner product space V is isomorphic to K^{n} with the ususal inner product.

Proof. Let u_{1}, \ldots, u_{n} be an orthonormal basis of V and let x, y be the coordinate vectors of $u, v \in V$ with respect to this basis. Then

$$
\begin{aligned}
<u, v> & =<x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{n} u_{n}, y_{1} u_{1}+y_{2} u_{2}+\cdots+x y_{n} u_{n} \\
& =\sum_{i, j=1}^{n} x_{i} y_{j}<u_{i}, u_{j}> \\
& =x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\cdots+x_{n} \bar{y}_{n}
\end{aligned}
$$

Example 1. If $W=\operatorname{Span}(1,1,1,1,1)$ in \mathbb{R}^{4} then, to find an orthonormal basis for W^{\perp}, we first find a basis of W^{\perp}. The following vectors

$$
u_{1}=(1,-1,0,0), u_{2}=(1,0,-1,0), u_{3}=(1,0,0,-1)
$$

are such a basis. Then

$$
\begin{aligned}
v_{1} & =u_{1}=(1,-1,0,0) \\
v_{2} & =u_{2}-\frac{\left.<u_{2}, v_{1}\right\rangle}{\left.<v_{1}, v_{1}\right\rangle} v_{1}=(1,0,-1,0)-\frac{1}{2}(1,-1,0,0)=\frac{1}{2}(1,1,-2,0), \\
v_{3} & =u_{3}-\frac{\left.<u_{3}, v_{1}\right\rangle}{\left.<v_{1}, v_{1}\right\rangle} v_{1}-\frac{<u_{3}, v_{2}>}{<v_{2}, v_{2}>} v_{2} \\
& =(1,0,0,-1)-\frac{1}{2}(1,-1,0,0)-\frac{1}{3}(1 / 2,1 / 2,-1,0)=\frac{1}{3}(1,1,1,-3)
\end{aligned}
$$

form an orthogonal basis of W^{\perp}. Normalizing these vectors, we get

$$
(1 / \sqrt{2})(1,-1,0,0),(1 / \sqrt{6})(1,1,-2,0),(1 / 2 \sqrt{3})(1,1,1,-3)
$$

as an orthonormal basis for W^{\perp}.
If $X, Y \in K^{n \times 1}$ are the coordinate matrices of the vectors u, v with respect an orthonormal basis of the inner product space V, we have

$$
<u, v>=X^{t} \bar{Y}
$$

If $f=\left(f_{1}, \ldots, f_{n}\right)$ is an orthonormal basis of V and $P=\left[p_{i j}\right]$ is the transition matrix to another basis $g=\left(g_{1}, \ldots, g_{n}\right)$, the j-th column of P is $P_{j}=\left[g_{j}\right]_{f}$. It follows that the $i j$-th entry of $P^{t} \bar{P}$ is equal to

$$
P_{i}^{t} \bar{P}_{j}=<g_{i}, g_{j}>
$$

Hence, g is an orthonormal basis iff $P^{t} \bar{P}=I$ or, equivalently,

$$
P^{-1}=\bar{P}^{t}
$$

Such a matrix P is called an orthogonal matrix if $K=\mathbb{R}$ and a unitary matrix if $K=\mathbb{C}$.
The adjoint of a complex matrix A is the matrix $A^{*}=\bar{A}^{t}$. We have

$$
(a A+b B)^{*}=\bar{a} A^{*}+\bar{b} B^{*}, \quad(A B)^{*}=B^{*} A^{*}
$$

A complex matrix is said to be normal if it commutes with its adjoint, i.e., $A A^{*}=A^{*} A$. Such a matrix is necessarily square. If $A=A^{*}$ then A is said to be self-adjoint or Hermitian.

Theorem 3. The eigenvalues of a Hermitian matrix are real.
Proof. If $A X=\lambda X$ with $X \neq 0$ then

$$
\lambda<X, X>=<A X, X>=(A X)^{t} \bar{X}=X^{t} A^{t} \bar{X}=X^{t} \overline{A X}=X^{t} \overline{A X}=<X, A X>=\bar{\lambda}<X, X>
$$

which implies that $\bar{\lambda}=\lambda$.
Theorem 4. Let A be a normal complex matrix. Then there is a unitary matrix U such that $U^{-1} A U$ is a diagonal matrix.

Proof. Let P be an invertible matrix such that $P^{-1} A P$ is upper triangular. Let U be the unitary matrix obtained by applying the Gram-Schmidt Process to the columns of P and normalizing the resulting column matrices. Then, if P_{j} and U_{j} are the j-th columns of P and U, we have for $1 \leq j \leq n$

$$
\operatorname{Span}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{j}}\right)=\operatorname{Span}\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}\right)
$$

and so

$$
\begin{aligned}
A U_{j} & =A\left(c_{1 j} P_{1}+c_{2 j} P_{2}+\cdots+c_{j j} P_{j}\right) \\
& =c_{1 j} A P_{1}+c_{2 j} A P_{2}+\cdots+c_{j j} A P_{j} \\
& =b_{1 j} U_{1}+b_{2 j} U_{2}+\cdots+b_{j j} U_{j}
\end{aligned}
$$

since $A P_{j} \in \operatorname{Span}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{j}}\right)=\operatorname{Span}\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{j}}\right)$. Hence $B=U^{-1} A U$ is upper triangular, i.e., $b_{i j}=0$ for $j<i$. Now

$$
B B^{*}=U^{*} A U(U * A U)^{*}=U^{*} A U U^{*} A^{*} U=U^{*} A A^{*} U=U^{*} A^{*} A U=U^{*} A^{*} U U^{*} A U=B^{*} B
$$

and so $B=\left[b_{i j}\right]$ is also normal. Comparing the i-th diagonal entries of $B B^{*}$ and $B^{*} B$, we get for $1 \leq i \leq n$

$$
\sum_{j \geq i}\left|b_{i j}\right|^{2}=\sum_{j \leq i}\left|b_{j i}\right|^{2}
$$

which implies by induction on i that $b_{i j}=0$ for $j>i$. Hence B is a diagonal matrix.
Corollary 5. Two eigenvectors of a normal matrix with distinct eigenvalues are orthogonal.
Corollary 6. A real symmetric matrix is diagonalizable.
Corollary 7. If A is a real symmetric matrix, there is an orthogonal matrix P with $P^{-1} A P a$ diagonal matrix.

Let A be a normal complex matrix $n \times n$ matrix and suppose that U is a unitary matrix which diagonalizes A. Then, if U_{j} is the j-column of U, we have $A U_{j}=\lambda_{j} U_{j}$. Let $R_{j}=U_{j} U_{j}^{*}$, an $n \times n$ matrix of rank 1 . The matrices R_{j} have the following properties:

$$
A R_{j}=\lambda_{j} R_{j}, \quad R_{j}^{*}=R_{j}, \quad R_{j}^{2}=R_{j}, \quad R_{i} R_{j}=0(i \neq j), \quad I=\sum_{j=1}^{n} R_{j}
$$

To prove the last identity it suffices to prove that $X=\sum_{j} U_{j} U_{j}^{*} X$ for any column matrix X. But this identity follows from the fact that $U_{j}^{*} X=<X, U_{j}>$. Multiplying the last identity on the left by A, we get

$$
A=\lambda_{1} R_{1}+\lambda_{2} R_{2}+\cdots+\lambda_{n} R_{n}
$$

If T_{A} is the linear operator on \mathbb{C}^{n} with matrix A with respect to the standard basis, the matrix R_{i} is the matrix (with respect to the standard basis) of the orthogonal projection of \mathbb{C}^{n} on the one-dimensional subspace spanned by the eigenvector of T_{A} having coordinate matrix U_{i}.

If $c_{1}, . ., c_{m}$ are the distinct eigenvalues of A, let Q_{i} be the sum of the R_{j} with $\lambda_{j}=c_{i}$. The matrices Q_{i} with $1 \leq i \leq m$ have the following properties:

$$
\begin{gathered}
Q_{j}^{*}=Q_{j}, \quad Q_{j}^{2}=Q_{j}, \quad Q_{i} Q_{j}=0(i \neq j), \quad I=\sum_{j=1}^{m} Q_{j} \\
A=c_{1} Q_{1}+c_{2} Q_{2}+\cdots+c_{m} Q_{m}
\end{gathered}
$$

This decomposition of the normal matrix A is called the spectral resolution of A and the matrices Q_{i} are called the projection matrices of the resolution. The adjective spectral comes from the fact that in functional analysis the set of eigenvalues of a matrix is called the spectrum of T. The matrix Q_{i} is the matrix (with respect to the standard basis) of the orthogonal projection of \mathbb{C}^{n} on the eigenspace of T_{A} corresponding to the eigenvalue c_{i}.

From the spectral resolution of A we get

$$
A^{n}=c_{1}^{n} Q_{1}+c_{2}^{n} Q_{2}+\cdots+c_{m}^{n} Q_{m}
$$

for any natural number n and hence, for any polynomial $p(\lambda)$,

$$
p(A)=p\left(c_{1}\right) Q_{1}+p\left(c_{2}\right) Q_{2}+\cdots+p\left(c_{m}\right) Q_{m}
$$

If $p\left(c_{i}\right) \neq 0$ for all i, then $p(A)$ is invertible with

$$
p(A)^{-1}=p\left(c_{1}\right)^{-1} Q_{1}+p\left(c_{2}\right)^{-1} Q_{2}+\cdots+p\left(c_{m}\right)^{-1} Q_{m}
$$

If $p_{i}(\lambda)=\prod_{j \neq i} \frac{\lambda-c_{i}}{c_{j}-c_{i}}$, we have $p_{i}\left(c_{i}\right)=1$ and $p_{j}\left(c_{i}\right)=0$ for $j \neq i$. Hence $Q_{i}=p_{i}(A)$.
If f is any complex valued function whose domain is a subset of \mathbb{C} and contains the set of eigenvalues of T, we define

$$
f(A)=f\left(c_{1}\right) Q_{1}+f\left(c_{2}\right) Q_{2}+\cdots+f\left(c_{m}\right) Q_{m}
$$

For example, if $f(z)=e^{z}=\sum_{n \geq 0} z^{n} / n$! then

$$
e^{A}=e^{c_{1}} E_{1}+e^{c_{2}} E_{2}+\cdots+e^{c_{m}} E_{m}
$$

A Hermitian matrix is said to be positive if the eigenvalues are ≥ 0 and positive definite if the eigenvalues are >0. If A is a positive Hermitian matrix, then there is a positive Hermitian matrix B with $B^{2}=A$, namely

$$
B=\sqrt{A}=\sqrt{c_{1}} Q_{1}+\sqrt{c_{2}} Q_{2}+\cdots+\sqrt{c_{m}} Q_{m}
$$

We shall see later that B is in fact unique.
If A is a real symmetric matrix, the projection matrices of its spectral resolution are real since the eigenvalues of A are real. Indeed, if

$$
A=\lambda_{1} R_{1}+\lambda_{2} R_{2}+\cdots+\lambda_{n} R_{n}
$$

with $R_{i}=P_{i} P_{i}^{t}$, where P_{i} is the i-th column of a real orthogonal matrix P with $P^{-1} A P$ equal to a diagonal matrix with i-th diagonal entry equal to λ_{i}, the matrix Q_{i} is the sum of the R_{j} with $\lambda_{j}=c_{i}$. The matrix Q_{i} is the matrix (with respect to the standard basis) of the orthogonal projection of \mathbb{R}^{n} on the eigenspace of T_{A} corresponding to the eigenvalue c_{i}.

Example 2. . If A is the real symmetric matrix $\left[\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right]$, we have $(A-1)^{2}=4(A-1)$ and so $(A-1)(A-5)=0$. The eigenspace for the eigenvalue 1 is the subspace W^{\perp} of example 1 and so has as orthonormal basis $f_{1}=(1 / \sqrt{2})(1,-1,0,0), f_{2}=(1 / \sqrt{6})(1,1,-2,0), f_{3}=(1 / 2 \sqrt{3})(1,1,1,-3)$. The eigenspace for the eigenvalue 5 is one-dimensional with basis the unit vector $f_{4}=(1 / 2)(1,1,1,1)$. The matrix

$$
P=\left[1_{\mathbb{R}^{4}}\right]_{f, e}=\left[\begin{array}{cccc}
1 / \sqrt{2} & 1 / \sqrt{6} & \sqrt{3} / 2 & 1 / 2 \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / 2 \sqrt{3} & 1 / 2 \\
0 & -2 / \sqrt{6} & 1 / 2 \sqrt{3} & 1 / 2 \\
0 & 0 & -3 / 2 \sqrt{3} & 1 / 2
\end{array}\right]
$$

is an orthogonal matrix with

$$
P^{-1} A P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

If P_{i} is the i-th column of P and $R_{i}=P_{i} P_{i}^{t}$, we have

$$
\begin{aligned}
& R_{1}=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad R_{2}=\frac{1}{6}\left[\begin{array}{cccc}
1 & 1 & -2 & 0 \\
1 & 1 & -2 & 0 \\
-2 & -2 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& R_{3}=\frac{1}{12}\left[\begin{array}{cccc}
1 & 1 & 1 & -3 \\
1 & 1 & 1 & -3 \\
1 & 1 & 1 & -3 \\
-3 & -3 & -3 & 9
\end{array}\right], \quad R_{4}=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

We have $A=R_{1}+R_{2}+R_{3}+5 R_{4}=Q_{1}+5 Q_{2}$, where

$$
Q_{1}=R_{1}+R_{2}+R_{3}=\frac{1}{4}\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right], \quad Q_{2}=R_{4}=\frac{1}{4}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

We thus have $A^{n}=Q_{1}+5^{n} Q_{2}$ for all $n \in \mathbb{Z}$ and, if $B=\sqrt{A}=Q_{1}+\sqrt{5} Q_{2}$, we have $B^{2}=A$.
As another application of this consider $e^{t A}=e^{t} Q_{1}+e^{5 t} Q_{2}$ with $t \in \mathbb{R}$. Then $e^{t A}$ is a matrix $C=\left[c_{i j}(t)\right]$ whose entries are differentiable real valued functions $c_{i j}(t)$ of t. If we define the derivative of $C=C(t)$ to be $\frac{d C}{d t}=C^{\prime}(t)=\left[c_{i j}^{\prime}(t)\right]$, we have $\frac{d}{d t} e^{t A}=e^{t} Q_{1}+5 e^{5 t} Q_{2}=A e^{t A}$. This can be used to solve the system of differential equations

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=2 x_{1}+x_{2}+x_{3}+x_{4} \\
& \frac{d x_{2}}{d t}=x_{1}+2 x_{2}+x_{3}+x_{4} \\
& \frac{d x_{3}}{d t}=x_{1}+x_{2}+2 x_{3}+x_{4} \\
& \frac{d x_{4}}{d t}=x_{1}+x_{2}+x_{3}+2 x_{4}
\end{aligned}
$$

Indeed, writing this system in the form $\frac{d X}{d t}=A X$, it is an easy exercise to prove that

$$
X=e^{t A}\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

is the unique solution with $X(0)=[a, b, c, d]^{t}$.

