Inner Product Spaces: Part 2

Let V be an inner product space. We let K = R or C according as V is real or complex. A
sequence of vectors up, ua, us, ... is said to be orthogonal if < u;,u; >= 0 for i # j. If, in addition,
we have ||u;|| = 1 for all ¢ then the sequence is said to be orthonormal.

If wy, uo, us, ..., up is an orthogonal sequence of non-zero vectors of V' then uy, ug, ..., u, is linearly
independent. Indeed, if aju; 4+ asus + - - - + apu, = 0, we have

0 =< ajuy + agus + -+ + antyn, u; >= a; < u;, u; >
which implies that a; = 0 since < w;,u, >= ||u;||> # 0. If uy, ug, ..., u, is a basis of V then

UV =a1u] + aguz + -+ aptty, = <V, U >=a; < Uj, Ui >

so that a; = % If uy,us, ..., uy, is an orthonormal basis of V' then

V= a1U] + aU + -+ aplly, — a; =< v, U; > .

Let w1, usg, ..., u, be an orthogonal sequence of non-zero vectors of V and let v € V. If

< v,u; > < v,Uuz > <V, Up >
w = ur + U+ ————————Up
<ui,u; > < Ug,Up > < Up, Up >

then v — w is orthogonal to each vector u;. If u is any vector in the subspace W of V' spanned by
UL, U,y ...y Up, We have v —u = v — w + w — u with v — w orthogonal to w — u and so

o —ull® = [Jv = w[* + [Jw — ul|* > [[v — w|?

with equality iff v = w. It follows that w is the unique vector of W which minimizes |[v — w||.
The vector Py (v) = w is called the orthogonal projection of v on W. The mappping Py is a
linear operator on V with image W and kernel the set W= of vectors of V which are orthogonal to
every vector of W. The subspace W+ is called the orthogonal complement of W in V. We have
V=WaoWwk

Theorem 1. FEvery finite-dimensional inner product space has an orthonormal basis.
Proof. Let uy,us, ..., u, be a basis of the inner product space V. Define vy, vs, ..., v, inductively by

< Uj41,V1 > <ui+17U2>+“.+<Ui+1>Ui>
<wp,v1 > < U2,V > < V;, U; >

).

V1 = U1, Vi41 = Ui4+1 — (
This process is well-defined since one proves inductively that
Span(vy, ..., v;) = Span(uy, ..., ;)

so that, in particular, v; # 0 for all i. By construction, vy, ...,v, is orthogonal and so can be
normalized to give an orthonormal basis of V. The above process is known as the Gram-Schmidt
Process. O

Corollary 2. An n-dimensional inner product space V' is isomorphic to K™ with the ususal inner
product.



Proof. Let uq, ..., u, be an orthonormal basis of V' and let x,y be the coordinate vectors of u,v € V
with respect to this basis. Then

< U, v > =< XU + TaUz + -+ Tplin, Y1U1 + YoUz + -+ + TYnUn

n
= E TiY; < Ui, Uj >
1,j=1

=21y + T2Yy + o Tl
O

Example 1. If W = Span(1,1,1,1,1) in R* then, to find an orthonormal basis for W=, we first
find a basis of W. The following vectors

Uy = (1’ _17070)a U2 = (1a0a _170)a uz = (1a0a07_1)
are such a basis. Then

V1 =uUr = (15 _170a0)7

< Ug,v1 > 1 1
=uy — ——v; = (1,0,-1,0) — =(1,—-1,0,0) = =(1,1,—2,0
V2 U2 <’Ul,’l}1>v1 (7 ) ) ) 2(7 y Uy ) 2(7 ) 9 )7
_<U3,’Ul> _<U3,U2>

U3 = U3z U1 U2
< V1,01 > < V2,V >

1 1 1
= (170707 _1) - i(L _17070) - 5(1/27 1/27 _1a O) = g(la 17 17 _3)
form an orthogonal basis of W+. Normalizing these vectors, we get
(1/\/5)(1a _17 07 O)a (1/\/6)(15 17 _2a O)a (1/2\/5)(17 17 17 _3)
as an orthonormal basis for W=,

If X, Y € K™*! are the coordinate matrices of the vectors u, v with respect an orthonormal basis
of the inner product space V', we have

<u,v>= X'Y.

If f = (f1,., fn) is an orthonormal basis of V' and P = [p;;] is the transition matrix to another
basis ¢ = (g1, ..., gn), the j-th column of P is P; = [g;];. It follows that the ij-th entry of P'P is
equal to -

P;Pj =<gi, 95 > -
Hence, g is an orthonormal basis iff PYP = I or, equivalently,

p=7.
Such a matrix P is called an orthogonal matrix if X = R and a unitary matrix if K = C.
The adjoint of a complex matrix A is the matrix A* = A'. We have

(aA +bB)* =aA* +bB*, (AB)* = B*A*.

A complex matrix is said to be normal if it commutes with its adjoint, i.e., AA* = A*A. Such a
matrix is necessarily square. If A = A* then A is said to be self-adjoint or Hermitian.



Theorem 3. The eigenvalues of a Hermitian matriz are real.

Proof. If AX = AX with X # 0 then
A< X, X >=< AX, X >= (AX)'X = X'A'X = X"AX = X'AX =< X, AX >= ) < X, X >
which implies that A = \. O

Theorem 4. Let A be a normal complex matriz. Then there is a unitary matriz U such that U=t AU
s a diagonal matriz.

Proof. Let P be an invertible matrix such that P~' AP is upper triangular. Let U be the unitary
matrix obtained by applying the Gram-Schmidt Process to the columns of P and normalizing the
resulting column matrices. Then, if P; and U; are the j-th columns of P and U, we have for
1<j<n

Span(Py, ..., P;j) = Span(Uy, ..., Uy)

and so
AUj = A(Cljpl + CQjP2 —+ -4 ijPj)
ZClepl +02jAP2 —|— '--+ijAPj
=by;Uy +bo;Us + - - + b;;U;

since AP; € Span(P1, ...,P;) = Span(Uy, ..., Uj). Hence B = U~ AU is upper triangular, i.e., b;; =0
for j < i. Now

BB* = U*AU(U * AU)* = U*AUU*A*U = U*AA*U = U*A* AU = U*A*UU*AU = B*B

and so B = [b;;] is also normal. Comparing the i-th diagonal entries of BB* and B*B, we get for

1<i<n
> bl =" bl
Jj2i Jj<i
which implies by induction on ¢ that b;; = 0 for j > i. Hence B is a diagonal matrix. O

Corollary 5. Two eigenvectors of a normal matrix with distinct eigenvalues are orthogonal.
Corollary 6. A real symmetric matriz is diagonalizable.

Corollary 7. If A is a real symmetric matriz, there is an orthogonal matriz P with P~'AP a
diagonal matriz.

Let A be a normal complex matrix n x n matrix and suppose that U is a unitary matrix which
diagonalizes A. Then, if U; is the j-column of U, we have AU; = \;U;. Let R; = U;U;, an n X n
matrix of rank 1. The matrices R; have the following properties:

AR; = \R;, R;=R;, R}=R;, RiR;=0(i#j), I=) R;

j=1

To prove the last identity it suffices to prove that X = > j U;Ur X for any column matrix X. But
this identity follows from the fact that U7 X =< X,U; > . Multiplying the last identity on the left
by A, we get

A= MR+ Ry+ -+ A\ R,



If T4 is the linear operator on C™ with matrix A with respect to the standard basis, the matrix
R; is the matrix (with respect to the standard basis) of the orthogonal projection of C™ on the
one-dimensional subspace spanned by the eigenvector of T4 having coordinate matrix U;.

If ¢1,..,¢m are the distinct eigenvalues of A, let @; be the sum of the R; with A\; = ¢;. The
matrices Q; with 1 < i < m have the following properties:

Q=Qn @=Qn QQ=0G#), =30
j=1

A=c1Q1+c2Q2+ -+ + Q-

This decomposition of the normal matrix A is called the spectral resolution of A and the matrices
Q; are called the projection matrices of the resolution. The adjective spectral comes from the
fact that in functional analysis the set of eigenvalues of a matrix is called the spectrum of 7. The
matrix @; is the matrix (with respect to the standard basis) of the orthogonal projection of C™ on
the eigenspace of T4 corresponding to the eigenvalue c;.

From the spectral resolution of A we get

A" = Q1+ cQr+ -+ Qm
for any natural number n and hence, for any polynomial p(}),

p(A) = p(cl)Ql —|—p(62)Q2 + - +p(cm)Qm
If p(c;) # 0 for all 4, then p(A) is invertible with

p(A)~t =pler)'Q1 +ple) 'Qa + - + pem) Q.

If pi(A) = [, %, we have p;(¢;) =1 and p;(¢;) = 0 for j # i. Hence Q; = p;(A4).
If f is any complex valued function whose domain is a subset of C and contains the set of
eigenvalues of T', we define

f(A) = fle)@Q1 + fle2)Qa + -+ + flem)Qm.
For example, if f(z) =e* =>_ -, 2"/n! then

e =eE + e Ey+ -+ e Ey,.
A Hermitian matrix is said to be positive if the eigenvalues are > 0 and positive definite if the
eigenvalues are > 0. If A is a positive Hermitian matrix, then there is a positive Hermitian matrix
B with B? = A, namely

B:\/Z:\/EQ1+\/6Q2++@Q77L

We shall see later that B is in fact unique.
If A is a real symmetric matrix, the projection matrices of its spectral resolution are real since
the eigenvalues of A are real. Indeed, if

A= MR+ XRo+ -+ MR,

with R; = Pl-Pf, where P; is the i-th column of a real orthogonal matrix P with P~ AP equal to a
diagonal matrix with i-th diagonal entry equal to A;, the matrix @; is the sum of the R; with A\; = ¢;.
The matrix @; is the matrix (with respect to the standard basis) of the orthogonal projection of R™
on the eigenspace of Ty corresponding to the eigenvalue ¢;.



1

— = N
— N =
N = =

} , we have (A—1)? = 4(A—1) and so
1 1 2

(A—1)(A—5) = 0. The eigenspace for the eigenvalue 1 is the subspace W of example 1 and so has as

orthonormal basis f1 = (1/v/2)(1,—1,0,0), fo = (1/v6)(1,1,-2,0), f3 = (1/2v/3)(1,1,1,-3). The

eigenspace for the eigenvalue 5 is one-dimensional with basis the unit vector fy = (1/2)(1,1,1,1).

The matrix

1/vV2  1/V/6 V3/2  1/2
—1/v/2 1/vV6  1/2/3  1/2
0 —2/v6  1/2v3  1/2
0 0 -3/2V/3 1/2

Example 2. . If A is the real symmetric matrix

—_

P =[lpa]fe =

is an orthogonal matriz with

1 0 0 O
1 |01 0 0
prAP = 0 010
0 00 5
If P; is the i-th column of P and R; = P;P}, we have
1 -1 0 O 1 1 -2 0
1{-1 1 0 0 111 1 -2 0
B = 0 0 oo ™T5l2 —2 4 of’
0 0 0 O 0 0 0 O
1 1 1 -3 1 1 1 1
1 1 1 1 -3 111 1 1 1
Be=111 1 1 =30 =111 11|
-3 -3 -3 9 11 1 1
We have A = R1 + Ro + R3 + 5Ry = Q1 + 5Q4, where
3 -1 -1 -1 1 1 1 1
11-1 3 -1 -1 111 1 1 1
Q1—R1+Rz+R3—Z 1 -1 3 _1|° QQ—R4—Z 111 1
-1 -1 -1 3 1 1 1 1

We thus have A" = Q1 + 5"Qq for all n € Z and, if B = VA = Q1 + v/5Q2, we have B = A.

As another application of this consider e!4 = etQ; + €°*Qy with t € R. Then e/ is a matrix
C' = [¢;5(t)] whose entries are differentiable real valued functions ¢;;(t) of t. If we define the derivative
of C = C(t) to be &< = C'(t) = [¢;(t)], we have Lett = ¢'Qy + 5e°'Qy = Ae'. This can be used
to solve the system of differential equations

W gy by s+
— = 4 X x x
dt 1 2 3 4
i J S
— =X X x x
dt 1 2 3 4
d

S =@ as 2t
d

S = @@y s+ 20



Indeed, writing this system in the form % = AX, it is an easy exercise to prove that
a
X =¢4 b
c
d

is the unique solution with X (0) = [a, b, ¢, d].



