
Inner Product Spaces: Part 2

Let V be an inner product space. We let K = R or C according as V is real or complex. A
sequence of vectors u1, u2, u3, ... is said to be orthogonal if < ui, uj >= 0 for i 6= j. If, in addition,
we have ||ui|| = 1 for all i then the sequence is said to be orthonormal.

If u1, u2, u3, ..., un is an orthogonal sequence of non-zero vectors of V then u1, u2, ..., un is linearly
independent. Indeed, if a1u1 + a2u2 + · · ·+ anun = 0, we have

0 =< a1u1 + a2u2 + · · ·+ anun, ui >= ai < ui, ui >

which implies that ai = 0 since < ui, u, >= ||ui||2 6= 0. If u1, u2, ..., un is a basis of V then

v = a1u1 + a2u2 + · · ·+ anun =⇒ < v, ui >= ai < ui, ui >

so that ai = <v,ui>
<ui,ui>

. If u1, u2, ..., un is an orthonormal basis of V then

v = a1u1 + a2u2 + · · ·+ anun =⇒ ai =< v, ui > .

Let u1, u2, ..., un be an orthogonal sequence of non-zero vectors of V and let v ∈ V . If

w =
< v, u1 >

< u1, u1 >
u1 +

< v, u2 >

< u2, u2 >
u2 + · · ·+ < v, un >

< un, un >
un

then v − w is orthogonal to each vector ui. If u is any vector in the subspace W of V spanned by
u1, u2, ..., un, we have v − u = v − w + w − u with v − w orthogonal to w − u and so

||v − u||2 = ||v − w||2 + ||w − u||2 ≥ ||v − w||2

with equality iff u = w. It follows that w is the unique vector of W which minimizes ||v − w||.
The vector PW (v) = w is called the orthogonal projection of v on W . The mappping PW is a
linear operator on V with image W and kernel the set W⊥ of vectors of V which are orthogonal to
every vector of W . The subspace W⊥ is called the orthogonal complement of W in V . We have
V = W ⊕W⊥.

Theorem 1. Every finite-dimensional inner product space has an orthonormal basis.

Proof. Let u1, u2, ..., un be a basis of the inner product space V . Define v1, v2, ..., vn inductively by

v1 = u1, vi+1 = ui+1 − (
< ui+1, v1 >

< v1, v1 >
+

< ui+1, v2 >

< v2, v2 >
+ · · ·+ < ui+1, vi >

< vi, vi >
).

This process is well-defined since one proves inductively that

Span(v1, ..., vi) = Span(u1, ..., ui)

so that, in particular, vi 6= 0 for all i. By construction, v1, ..., vn is orthogonal and so can be
normalized to give an orthonormal basis of V . The above process is known as the Gram-Schmidt
Process.

Corollary 2. An n-dimensional inner product space V is isomorphic to Kn with the ususal inner
product.
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Proof. Let u1, ..., un be an orthonormal basis of V and let x, y be the coordinate vectors of u, v ∈ V
with respect to this basis. Then

< u, v > =< x1u1 + x2u2 + · · ·+ xnun, y1u1 + y2u2 + · · ·+ xynun

=
n∑

i,j=1

xiyj < ui, uj >

= x1y1 + x2y2 + · · ·+ xnyn.

Example 1. If W = Span(1, 1, 1, 1, 1) in R4 then, to find an orthonormal basis for W⊥, we first
find a basis of W⊥. The following vectors

u1 = (1,−1, 0, 0), u2 = (1, 0,−1, 0), u3 = (1, 0, 0,−1)

are such a basis. Then

v1 = u1 = (1,−1, 0, 0),

v2 = u2 − < u2, v1 >

< v1, v1 >
v1 = (1, 0,−1, 0)− 1

2
(1,−1, 0, 0) =

1
2
(1, 1,−2, 0),

v3 = u3 − < u3, v1 >

< v1, v1 >
v1 − < u3, v2 >

< v2, v2 >
v2

= (1, 0, 0,−1)− 1
2
(1,−1, 0, 0)− 1

3
(1/2, 1/2,−1, 0) =

1
3
(1, 1, 1,−3).

form an orthogonal basis of W⊥. Normalizing these vectors, we get

(1/
√

2)(1,−1, 0, 0), (1/
√

6)(1, 1,−2, 0), (1/2
√

3)(1, 1, 1,−3)

as an orthonormal basis for W⊥.

If X,Y ∈ Kn×1 are the coordinate matrices of the vectors u, v with respect an orthonormal basis
of the inner product space V , we have

< u, v >= XtY .

If f = (f1, ..., fn) is an orthonormal basis of V and P = [pij ] is the transition matrix to another
basis g = (g1, ..., gn), the j-th column of P is Pj = [gj ]f . It follows that the ij-th entry of P tP is
equal to

P t
i P j =< gi, gj > .

Hence, g is an orthonormal basis iff P tP = I or, equivalently,

P−1 = P
t
.

Such a matrix P is called an orthogonal matrix if K = R and a unitary matrix if K = C.
The adjoint of a complex matrix A is the matrix A∗ = A

t
. We have

(aA + bB)∗ = aA∗ + bB∗, (AB)∗ = B∗A∗.

A complex matrix is said to be normal if it commutes with its adjoint, i.e., AA∗ = A∗A. Such a
matrix is necessarily square. If A = A∗ then A is said to be self-adjoint or Hermitian.
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Theorem 3. The eigenvalues of a Hermitian matrix are real.

Proof. If AX = λX with X 6= 0 then

λ < X, X >=< AX, X >= (AX)tX = XtAtX = XtAX = XtAX =< X, AX >= λ < X, X >

which implies that λ = λ.

Theorem 4. Let A be a normal complex matrix. Then there is a unitary matrix U such that U−1AU
is a diagonal matrix.

Proof. Let P be an invertible matrix such that P−1AP is upper triangular. Let U be the unitary
matrix obtained by applying the Gram-Schmidt Process to the columns of P and normalizing the
resulting column matrices. Then, if Pj and Uj are the j-th columns of P and U , we have for
1 ≤ j ≤ n

Span(P1, ..., Pj) = Span(U1, ..., Un)

and so

AUj = A(c1jP1 + c2jP2 + · · ·+ cjjPj)
= c1jAP1 + c2jAP2 + · · ·+ cjjAPj

= b1jU1 + b2jU2 + · · ·+ bjjUj

since APj ∈ Span(P1, ..., Pj) = Span(U1, ..., Uj). Hence B = U−1AU is upper triangular, i.e., bij = 0
for j < i. Now

BB∗ = U∗AU(U ∗AU)∗ = U∗AUU∗A∗U = U∗AA∗U = U∗A∗AU = U∗A∗UU∗AU = B∗B

and so B = [bij ] is also normal. Comparing the i-th diagonal entries of BB∗ and B∗B, we get for
1 ≤ i ≤ n ∑

j≥i

|bij |2 =
∑

j≤i

|bji|2

which implies by induction on i that bij = 0 for j > i. Hence B is a diagonal matrix.

Corollary 5. Two eigenvectors of a normal matrix with distinct eigenvalues are orthogonal.

Corollary 6. A real symmetric matrix is diagonalizable.

Corollary 7. If A is a real symmetric matrix, there is an orthogonal matrix P with P−1AP a
diagonal matrix.

Let A be a normal complex matrix n× n matrix and suppose that U is a unitary matrix which
diagonalizes A. Then, if Uj is the j-column of U , we have AUj = λjUj . Let Rj = UjU

∗
j , an n × n

matrix of rank 1. The matrices Rj have the following properties:

ARj = λjRj , R∗j = Rj , R2
j = Rj , RiRj = 0 (i 6= j), I =

n∑

j=1

Rj .

To prove the last identity it suffices to prove that X =
∑

j UjU
∗
j X for any column matrix X. But

this identity follows from the fact that U∗
j X =< X, Uj > . Multiplying the last identity on the left

by A, we get
A = λ1R1 + λ2R2 + · · ·+ λnRn.
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If TA is the linear operator on Cn with matrix A with respect to the standard basis, the matrix
Ri is the matrix (with respect to the standard basis) of the orthogonal projection of Cn on the
one-dimensional subspace spanned by the eigenvector of TA having coordinate matrix Ui.

If c1, .., cm are the distinct eigenvalues of A, let Qi be the sum of the Rj with λj = ci. The
matrices Qi with 1 ≤ i ≤ m have the following properties:

Q∗j = Qj , Q2
j = Qj , QiQj = 0 (i 6= j), I =

m∑

j=1

Qj ,

A = c1Q1 + c2Q2 + · · ·+ cmQm.

This decomposition of the normal matrix A is called the spectral resolution of A and the matrices
Qi are called the projection matrices of the resolution. The adjective spectral comes from the
fact that in functional analysis the set of eigenvalues of a matrix is called the spectrum of T . The
matrix Qi is the matrix (with respect to the standard basis) of the orthogonal projection of Cn on
the eigenspace of TA corresponding to the eigenvalue ci.

From the spectral resolution of A we get

An = cn
1Q1 + cn

2Q2 + · · ·+ cn
mQm

for any natural number n and hence, for any polynomial p(λ),

p(A) = p(c1)Q1 + p(c2)Q2 + · · ·+ p(cm)Qm.

If p(ci) 6= 0 for all i, then p(A) is invertible with

p(A)−1 = p(c1)−1Q1 + p(c2)−1Q2 + · · ·+ p(cm)−1Qm.

If pi(λ) =
∏

j 6=i
λ−ci

cj−ci
, we have pi(ci) = 1 and pj(ci) = 0 for j 6= i. Hence Qi = pi(A).

If f is any complex valued function whose domain is a subset of C and contains the set of
eigenvalues of T , we define

f(A) = f(c1)Q1 + f(c2)Q2 + · · ·+ f(cm)Qm.

For example, if f(z) = ez =
∑

n≥0 zn/n! then

eA = ec1E1 + ec2E2 + · · ·+ ecmEm.

A Hermitian matrix is said to be positive if the eigenvalues are ≥ 0 and positive definite if the
eigenvalues are > 0. If A is a positive Hermitian matrix, then there is a positive Hermitian matrix
B with B2 = A, namely

B =
√

A =
√

c1Q1 +
√

c2Q2 + · · ·+√
cmQm.

We shall see later that B is in fact unique.
If A is a real symmetric matrix, the projection matrices of its spectral resolution are real since

the eigenvalues of A are real. Indeed, if

A = λ1R1 + λ2R2 + · · ·+ λnRn

with Ri = PiP
t
i , where Pi is the i-th column of a real orthogonal matrix P with P−1AP equal to a

diagonal matrix with i-th diagonal entry equal to λi, the matrix Qi is the sum of the Rj with λj = ci.
The matrix Qi is the matrix (with respect to the standard basis) of the orthogonal projection of Rn

on the eigenspace of TA corresponding to the eigenvalue ci.
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Example 2. . If A is the real symmetric matrix




2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


, we have (A−1)2 = 4(A−1) and so

(A−1)(A−5) = 0. The eigenspace for the eigenvalue 1 is the subspace W⊥ of example 1 and so has as
orthonormal basis f1 = (1/

√
2)(1,−1, 0, 0), f2 = (1/

√
6)(1, 1,−2, 0), f3 = (1/2

√
3)(1, 1, 1,−3). The

eigenspace for the eigenvalue 5 is one-dimensional with basis the unit vector f4 = (1/2)(1, 1, 1, 1).
The matrix

P = [1R4 ]f,e =




1/
√

2 1/
√

6
√

3/2 1/2
−1/

√
2 1/

√
6 1/2

√
3 1/2

0 −2/
√

6 1/2
√

3 1/2
0 0 −3/2

√
3 1/2




is an orthogonal matrix with

P−1AP =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 5


 .

If Pi is the i-th column of P and Ri = PiP
t
i , we have

R1 =
1
2




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 , R2 =

1
6




1 1 −2 0
1 1 −2 0
−2 −2 4 0
0 0 0 0


 ,

R3 =
1
12




1 1 1 −3
1 1 1 −3
1 1 1 −3
−3 −3 −3 9


 , R4 =

1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

We have A = R1 + R2 + R3 + 5R4 = Q1 + 5Q2, where

Q1 = R1 + R2 + R3 =
1
4




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 , Q2 = R4 =

1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

We thus have An = Q1 + 5nQ2 for all n ∈ Z and, if B =
√

A = Q1 +
√

5Q2, we have B2 = A.

As another application of this consider etA = etQ1 + e5tQ2 with t ∈ R. Then etA is a matrix
C = [cij(t)] whose entries are differentiable real valued functions cij(t) of t. If we define the derivative
of C = C(t) to be dC

dt = C ′(t) = [c′ij(t)], we have d
dte

tA = etQ1 + 5e5tQ2 = AetA. This can be used
to solve the system of differential equations

dx1

dt
= 2x1 + x2 + x3 + x4

dx2

dt
= x1 + 2x2 + x3 + x4

dx3

dt
= x1 + x2 + 2x3 + x4

dx4

dt
= x1 + x2 + x3 + 2x4
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Indeed, writing this system in the form dX
dt = AX, it is an easy exercise to prove that

X = etA




a
b
c
d




is the unique solution with X(0) = [a, b, c, d]t.
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