Inner Product Spaces: Part 1

Let V be a real or complex vector space, i.e., a vector space over R or C. An inner product
on V is a function of V' x V into R if V is real and into C if V' is complex such that, denoting the
value of this function on the pair (u,v) € V x V by < u,v >, the following properties hold:

1. <au+bv,w>=a<u,w>—+b<v,w >;
2. <u,v>=<v,u >;
3. < u,u >> 0 with equality iff u = 0.

Hence, for all u,v,w € V, a,b € K, we have < u,av +bw >=a <u,v > +b<u,w > if K =R
and < u,av +bw >=a < u,v > +a < u,w > if K =C. If V is real we have < u,v >=< v,u >.

A vector space together with an inner product is called an inner product space. Any subspace
of an inner product space is an inner product space.

The norm or length of u € V is defined to the the unique real number ||u|| > 0 such that
[lu||? =< u,u >. We have ||u|]| =0 <= u =0 and ||au|| = |a|||u|| for any scalar a. A vector of
norm 1 is called a unit vector or a normalized vector. Any non-zero vector u can be normalized,
i.e. transformed into a unit vector, by multiplying it by 1/||u||. Two vectors u,v are said to be
orthogonal if < u,v >= 0. Note that < u,v >=0 < < v,u >=0.

Example 1. The vector space R™ together with the inner product
<z,y>=T1y1 +T2y2 + -+ TpYn

s a real inner product space.

Example 2. The vector space C™ together with the inner product
<X,y >=T1Yp + T2Yy + -+ TRY,

18 a complex inner product space.

Example 3. The vector space R™*™ together with the inner product

<A B>= Zaijbij = tI‘(AtB)

i
is a real inner product space. Note that when n = 1 we have < A, B >= A'B.

Example 4. The vector space C™*" together with the inner product

< A, B >= Zaijgij = tr(AtE),

i,J
is a complex inner product space where B = [b;;] is the conjugate of the matriz B = [b;;]. We have
aA+bB=aA+b B

and AC = A C. Note that in the case n = 1 we have < A, B >= A'B.



Example 5. The vector space C([a,b]) of real-valued continuous functions on the interval [a,b] of
R together with the inner product

b
<f.g >=/ f(t)g(t)dt

18 a real inner product space.

Example 6. The vector space Cc([a,b]) of complez-valued continuous functions on the interval [a, b]
of R together with the inner product

b
</l >=/ f(t)g(t)dt

is a complex inner product space. A function f : [a,b] — C can be uniquely written in the form
f = fi+ify with f1, fo real-valued (the real and imaginary parts of f). The function f is said to be
continuous if f1 and fo are continuous and for such a function we define

/abf(t)dt = /ab fi(t)dt +¢/ab fo(t)dt.

Theorem 1. (Pythagoras) If V is an inner product space and u,v € V are orthogonal then
[lu +olf* = [Jul|* + [Jo] %,

Proof. |lu+v||> =< u+v,u+v >=<u,u >+ < u,v >+ < v,u >+ < v,v >= |[u|]? + |[v]|? if
<u,v>=0.

Theorem 2. IfV is an inner product space and u,v € V with u # 0 then ¢ =< u,v > / < u,u >
1s the unique scalar ¢ such that v — cu is orthogonal to u.

Proof. <v—cu,u>=<v,u>—-c<u,u>=0 << c=<u,v>/<uu>. O
Theorem 3. (Cauchy-Schwartz Inequality) If V is an inner product space and u,v € V then

| <w,v > [ < |ulllo]].
If u # 0, we have equality iff v is a scalar multiple of u.

Proof. Without loss of generality we may assume u # 0. If ¢ =< u,v > / < u,u > we have
v = v — cu + cu with

19112 = [lv = cul|* + [leu||* > |e?||ul[* =< u,v >* /| |u][?
with equality iff v = cu. O
If w, v are non-zero vectors in a real inner product space V there is a unique real number 6 with

0 < 6 < 27 such that
<u,v >

<os(0) = Tl

The real number theta is called the
bf angle between u and v. We have

< u,v >= |[ull[[v]| cos(6)

and so u,v are orthognal iff § = 7/2.



Example 7. The functions f(x) = sin(z), g(z) = cos(z) in C([0,27r]) are orthogonal since

2m 1 2
/ sin(x) cos(z)dx = 5/ sin(2z)dz = 0.
0 0

The reader will check that ||f|| = ||g|| = 1//7.

Theorem 4. (Minkowski’s Inequality) If V is an inner product space and u,v € V then ||u+ v|| <
[lull + [Jv]]-

Proof. ||u+v||? = ||ul|® + [|v]]*+ < u,v > + < v,u >< and
<Uuv >+ <v,u>< 2| <u,v > | < 2ull||v]|
so that |lu+v[|? < [Jul[* + [[v]|* + 2[[ulll|v]] = ([l + []v]])*. O

Example 8. If z,y € K" with K =R or C we have

n n n

1 1

>l < O [l il
=1 =1 =1

i 1 - 1 - 1
Oz +wiE < O |zl + O il E.
=1 1=1 =1

Example 9. For K =R or C we let

o={ze K™ | Z\xz\ < o0}
i=0

Using the Cauchy-Schwartz inequality in K™ we see that (% is an inner product space with inner
product

o0
<z y>=) 27
=1

If u, v are vectors in an inner product space V, one defines the
bf distance between u and v to be d(u,v) = ||u — v||. This distance has the usual properties of the
ordinary distance function on R? or R3, in particular, it satisfies the triangle inequality

d(uwv) < d(u,w) + d(w,v)

for any u,v,w € V. A sequence (uy)n>1 of vectors of V is said to converge to a vector u € V if
[|lu—un|| — 0 as n — oco. A convergent sequence is also a Cauchy sequence, i.e., |[u, — up|| — 0 as
m,n — oo. If every Cauchy sequence converges, the inner product space V is said to be a Hilbert
space. The spaces K", K™*" and (2. are examples of Hilbert spaces.



