Inner Product Spaces: Part 1

Let V be a real or complex vector space, i.e., a vector space over \mathbb{R} or \mathbb{C}. An inner product on V is a function of $V \times V$ into \mathbb{R} if V is real and into \mathbb{C} if V is complex such that, denoting the value of this function on the pair $(u, v) \in V \times V$ by $\langle u, v\rangle$, the following properties hold:

1. $<a u+b v, w>=a<u, w>+b<v, w>$;
2. $\langle u, v\rangle=\overline{\langle v, u\rangle ; ~}$
3. $\langle u, u>\geq 0$ with equality iff $u=0$.

Hence, for all $u, v, w \in V, a, b \in K$, we have $<u, a v+b w>=a<u, v>+b<u, w>$ if $K=\mathbb{R}$ and $<u, a v+b w>=\bar{a}<u, v>+\bar{a}<u, w>$ if $K=\mathbb{C}$. If V is real we have $<u, v>=<v, u>$.

A vector space together with an inner product is called an inner product space. Any subspace of an inner product space is an inner product space.

The norm or length of $u \in V$ is defined to the the unique real number $\|u\| \geq 0$ such that $\|u\|^{2}=<u, u>$. We have $\|u\|=0 \Longleftrightarrow u=0$ and $\|a u\|=\mid a\| \| u \|$ for any scalar a. A vector of norm 1 is called a unit vector or a normalized vector. Any non-zero vector u can be normalized, i.e. transformed into a unit vector, by multiplying it by $1 /\|u\|$. Two vectors u, v are said to be orthogonal if $\langle u, v\rangle=0$. Note that $\langle u, v\rangle=0 \Longleftrightarrow<v, u\rangle=0$.

Example 1. The vector space \mathbb{R}^{n} together with the inner product

$$
<x, y>=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

is a real inner product space.
Example 2. The vector space \mathbb{C}^{n} together with the inner product

$$
<x, y>=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\cdots+x_{n} \bar{y}_{n}
$$

is a complex inner product space.
Example 3. The vector space $\mathbb{R}^{m \times n}$ together with the inner product

$$
<A, B>=\sum_{i, j} a_{i j} b_{i j}=\operatorname{tr}\left(\mathrm{A}^{\mathrm{t}} \mathrm{~B}\right)
$$

is a real inner product space. Note that when $n=1$ we have $<A, B>=A^{t} B$.
Example 4. The vector space $\mathbb{C}^{m \times n}$, together with the inner product

$$
<A, B>=\sum_{i, j} a_{i j} \bar{b}_{i j}=\operatorname{tr}\left(\mathrm{A}^{\mathrm{t}} \overline{\mathrm{~B}}\right)
$$

is a complex inner product space where $\bar{B}=\left[\bar{b}_{i j}\right]$ is the conjugate of the matrix $B=\left[b_{i j}\right]$. We have

$$
\overline{a A+b B}=\bar{a} \bar{A}+\bar{b} \bar{B}
$$

and $\overline{A C}=\bar{A} \bar{C}$. Note that in the case $n=1$ we have $<A, B>=A^{t} \bar{B}$.

Example 5. The vector space $C([a, b])$ of real-valued continuous functions on the interval $[a, b]$ of \mathbb{R} together with the inner product

$$
<f, g>=\int_{a}^{b} f(t) g(t) d t
$$

is a real inner product space.
Example 6. The vector space $C_{\mathbb{C}}([a, b])$ of complex-valued continuous functions on the interval $[a, b]$ of \mathbb{R} together with the inner product

$$
<f, g>=\int_{a}^{b} f(t) \overline{g(t)} d t
$$

is a complex inner product space. A function $f:[a, b] \rightarrow \mathbb{C}$ can be uniquely written in the form $f=f_{1}+i f_{2}$ with f_{1}, f_{2} real-valued (the real and imaginary parts of f). The function f is said to be continuous if f_{1} and f_{2} are continuous and for such a function we define

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} f_{1}(t) d t+i \int_{a}^{b} f_{2}(t) d t
$$

Theorem 1. (Pythagoras) If V is an inner product space and $u, v \in V$ are orthogonal then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Proof. $\|u+v\|^{2}=<u+v, u+v>=<u, u>+<u, v>+<v, u>+<v, v>=\|u\|^{2}+\|v\|^{2}$ if $<u, v>=0$.
Theorem 2. If V is an inner product space and $u, v \in V$ with $u \neq 0$ then $c=<u, v>/<u, u>$ is the unique scalar c such that $v-c u$ is orthogonal to u.
Proof. $<v-c u, u>=<v, u>-c<u, u>=0 \Longleftrightarrow c=<u, v>/<u, u>$.
Theorem 3. (Cauchy-Schwartz Inequality) If V is an inner product space and $u, v \in V$ then

$$
|<u, v>| \leq\|u\|\|v\|
$$

If $u \neq 0$, we have equality iff v is a scalar multiple of u.
Proof. Without loss of generality we may assume $u \neq 0$. If $c=<u, v>/<u, u>$ we have $v=v-c u+c u$ with

$$
\|v\|^{2}=\|v-c u\|^{2}+\|c u\|^{2} \geq|c|^{2}\|u\|^{2}=<u, v>^{2} /\|u\|^{2}
$$

with equality iff $v=c u$.
If u, v are non-zero vectors in a real inner product space V there is a unique real number θ with $0 \leq \theta \leq 2 \pi$ such that

$$
\cos (\theta)=\frac{\langle u, v\rangle}{\|u\|\|v\|}
$$

The real number theta is called the bf angle between u and v. We have

$$
<u, v>=\|u\|\|v\| \cos (\theta)
$$

and so u, v are orthognal iff $\theta=\pi / 2$.

Example 7. The functions $f(x)=\sin (x), g(x)=\cos (x)$ in $C([0,2 \pi])$ are orthogonal since

$$
\int_{0}^{2 \pi} \sin (x) \cos (x) d x=\frac{1}{2} \int_{0}^{2 \pi} \sin (2 x) d x=0
$$

The reader will check that $\|f\|=\|g\|=1 / \sqrt{\pi}$.
Theorem 4. (Minkowski's Inequality) If V is an inner product space and $u, v \in V$ then $\|u+v\| \leq$ $\|u\|+\|v\|$.

Proof. $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}+<u, v>+<v, u>\leq$ and

$$
<u, v>+<v, u>\leq 2|<u, v>| \leq 2\|u\|\|v\|
$$

so that $\|u+v\|^{2} \leq\|u\|^{2}+\|v\|^{2}+2\|u\|\| \| v \|=(\|u\|+\|v\|)^{2}$.
Example 8. If $x, y \in K^{n}$ with $K=\mathbb{R}$ or \mathbb{C} we have

$$
\begin{gathered}
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}} \\
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}} .
\end{gathered}
$$

Example 9. For $K=\mathbb{R}$ or \mathbb{C} we let

$$
\ell_{K}^{2}=\left\{x \in K^{\infty}\left|\sum_{i=0}^{\infty}\right| x_{i} \mid<\infty\right\}
$$

Using the Cauchy-Schwartz inequality in K^{n} we see that ℓ_{K}^{2} is an inner product space with inner product

$$
<x, y>=\sum_{i=1}^{\infty} x_{i} \bar{y}_{i}
$$

If u, v are vectors in an inner product space V, one defines the bf distance between u and v to be $d(u, v)=\|u-v\|$. This distance has the usual properties of the ordinary distance function on R^{2} or R^{3}, in particular, it satisfies the triangle inequality

$$
d(u v) \leq d(u, w)+d(w, v)
$$

for any $u, v, w \in V$. A sequence $\left(u_{n}\right)_{n \geq 1}$ of vectors of V is said to converge to a vector $u \in V$ if $\left\|u-u_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. A convergent sequence is also a Cauchy sequence, i.e., $\left\|u_{n}-u_{m}\right\| \rightarrow 0$ as $m, n \rightarrow \infty$. If every Cauchy sequence converges, the inner product space V is said to be a Hilbert space. The spaces $K^{n}, K^{m \times n}$ and ℓ_{K}^{2} are examples of Hilbert spaces.

