
Inner Product Spaces: Part 1

Let V be a real or complex vector space, i.e., a vector space over R or C. An inner product
on V is a function of V × V into R if V is real and into C if V is complex such that, denoting the
value of this function on the pair (u, v) ∈ V × V by < u, v >, the following properties hold:

1. < au + bv, w >= a < u, w > +b < v, w >;

2. < u, v >= < v, u >;

3. < u, u >≥ 0 with equality iff u = 0.

Hence, for all u, v, w ∈ V, a, b ∈ K, we have < u, av + bw >= a < u, v > +b < u, w > if K = R
and < u, av + bw >= a < u, v > +a < u,w > if K = C. If V is real we have < u, v >=< v, u >.

A vector space together with an inner product is called an inner product space. Any subspace
of an inner product space is an inner product space.

The norm or length of u ∈ V is defined to the the unique real number ||u|| ≥ 0 such that
||u||2 =< u, u >. We have ||u|| = 0 ⇐⇒ u = 0 and ||au|| = |a|||u|| for any scalar a. A vector of
norm 1 is called a unit vector or a normalized vector. Any non-zero vector u can be normalized,
i.e. transformed into a unit vector, by multiplying it by 1/||u||. Two vectors u, v are said to be
orthogonal if < u, v >= 0. Note that < u, v >= 0 ⇐⇒ < v, u >= 0.

Example 1. The vector space Rn together with the inner product

< x, y >= x1y1 + x2y2 + · · ·+ xnyn

is a real inner product space.

Example 2. The vector space Cn together with the inner product

< x, y >= x1y1 + x2y2 + · · ·+ xnyn

is a complex inner product space.

Example 3. The vector space Rm×n together with the inner product

< A, B >=
∑

i,j

aijbij = tr(AtB)

is a real inner product space. Note that when n = 1 we have < A, B >= AtB.

Example 4. The vector space Cm×n, together with the inner product

< A, B >=
∑

i,j

aijbij = tr(AtB),

is a complex inner product space where B = [bij ] is the conjugate of the matrix B = [bij ]. We have

aA + bB = aA + b B

and AC = A C. Note that in the case n = 1 we have < A,B >= AtB.
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Example 5. The vector space C([a, b]) of real-valued continuous functions on the interval [a, b] of
R together with the inner product

< f, g >=
∫ b

a

f(t)g(t)dt

is a real inner product space.

Example 6. The vector space CC([a, b]) of complex-valued continuous functions on the interval [a, b]
of R together with the inner product

< f, g >=
∫ b

a

f(t)g(t)dt

is a complex inner product space. A function f : [a, b] → C can be uniquely written in the form
f = f1 + if2 with f1, f2 real-valued (the real and imaginary parts of f). The function f is said to be
continuous if f1 and f2 are continuous and for such a function we define

∫ b

a

f(t)dt =
∫ b

a

f1(t)dt + i

∫ b

a

f2(t)dt.

Theorem 1. (Pythagoras) If V is an inner product space and u, v ∈ V are orthogonal then

||u + v||2 = ||u||2 + ||v||2.
Proof. ||u + v||2 =< u + v, u + v >=< u, u > + < u, v > + < v, u > + < v, v >= ||u||2 + ||v||2 if
< u, v >= 0.

Theorem 2. If V is an inner product space and u, v ∈ V with u 6= 0 then c =< u, v > / < u, u >
is the unique scalar c such that v − cu is orthogonal to u.

Proof. < v − cu, u >=< v, u > −c < u, u >= 0 ⇐⇒ c =< u, v > / < u, u >.

Theorem 3. (Cauchy-Schwartz Inequality) If V is an inner product space and u, v ∈ V then

| < u, v > | ≤ ||u||||v||.
If u 6= 0, we have equality iff v is a scalar multiple of u.

Proof. Without loss of generality we may assume u 6= 0. If c =< u, v > / < u, u > we have
v = v − cu + cu with

||v||2 = ||v − cu||2 + ||cu||2 ≥ |c|2||u||2 =< u, v >2 /||u||2

with equality iff v = cu.

If u, v are non-zero vectors in a real inner product space V there is a unique real number θ with
0 ≤ θ ≤ 2π such that

cos(θ) =
< u, v >

||u||||v|| .

The real number theta is called the
bf angle between u and v. We have

< u, v >= ||u||||v|| cos(θ)

and so u, v are orthognal iff θ = π/2.
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Example 7. The functions f(x) = sin(x), g(x) = cos(x) in C([0, 2π]) are orthogonal since

∫ 2π

0

sin(x) cos(x)dx =
1
2

∫ 2π

0

sin(2x)dx = 0.

The reader will check that ||f || = ||g|| = 1/
√

π.

Theorem 4. (Minkowski’s Inequality) If V is an inner product space and u, v ∈ V then ||u + v|| ≤
||u||+ ||v||.
Proof. ||u + v||2 = ||u||2 + ||v||2+ < u, v > + < v, u >≤ and

< u, v > + < v, u >≤ 2| < u, v > | ≤ 2||u||||v||

so that ||u + v||2 ≤ ||u||2 + ||v||2 + 2||u||||v|| = (||u||+ ||v||)2.
Example 8. If x, y ∈ Kn with K = R or C we have

|
n∑

i=1

xiyi| ≤ (
n∑

i=1

|xi|2) 1
2 (

n∑

i=1

|yi|2) 1
2

(
n∑

i=1

|xi + yi|2) 1
2 ≤ (

n∑

i=1

|xi|2) 1
2 + (

n∑

i=1

|yi|2) 1
2 .

Example 9. For K = R or C we let

`2K = {x ∈ K∞ |
∞∑

i=0

|xi| < ∞}.

Using the Cauchy-Schwartz inequality in Kn we see that `2K is an inner product space with inner
product

< x, y >=
∞∑

i=1

xiyi.

If u, v are vectors in an inner product space V , one defines the
bf distance between u and v to be d(u, v) = ||u− v||. This distance has the usual properties of the
ordinary distance function on R2 or R3, in particular, it satisfies the triangle inequality

d(uv) ≤ d(u,w) + d(w, v)

for any u, v, w ∈ V . A sequence (un)n≥1 of vectors of V is said to converge to a vector u ∈ V if
||u− un|| → 0 as n →∞. A convergent sequence is also a Cauchy sequence, i.e., ||un − um|| → 0 as
m,n →∞. If every Cauchy sequence converges, the inner product space V is said to be a Hilbert
space. The spaces Kn, Km×n and `2K are examples of Hilbert spaces.
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