
The Decomposition Theorem

The aim of this section is to prove the following theorem

Theorem 1 (Decomposition Theorem). Let V be a vector space over a field K and let T be a
linear operator on V . If a1, a2, ..., am are distinct scalars and k1, k2, ..., km ∈ N then

Ker((T−a1)k1(T−a2)k2 · · · (T−am)km) = Ker((T−a1)k1)⊕Ker((T−a2)k2)⊕· · ·⊕Ker((T−am)km).

Corollary 2. A linear operator on a finite-dimensional vector space is diagonalizable iff its minimal
polynomial is a product of distinct linear factors.

Lemma 3. Let T be a linear operator with T k = 0, k ≥ 1. Then 1− T is invertible with

(1− T )−1 = 1 + T + T 2 + · · ·+ T k−1.

Proof. (1− T )(1 + T + · · ·+ T k−1) = 1 + T + · · ·+ T k−1 − T − · · · − T k = 1. This proves the result
since any two polynomials in T commute.

Corollary 4. If T is a linear operator with (T − a)k = 0 for some k ≥ 1 and some scalar a then,
for any scalar c 6= a, the operator T − c is invertible with

(c− T )−1 = (c− a)−1 + (c− a)−2(T − a) + · · ·+ (c− a)−k(T − a)k−1.

Proof. We have c− T = c− a− (T − a) = (c− a)(1− (T − a)/(c− a)).

Proof of Decomposition Theorem. Let Vi = ker(T−a)ki . We first show that the sum V1+V2+· · ·+Vm

is direct. If u ∈ Vi we must have T (u) ∈ Vi since

(T − a)ki(T (u)) = (T − a)kiT (u) = T (T − a)ki(u) = T ((T − a)ki(u)) = 0.

If Ri is the restriction of T to Vi then Ri is a linear operator on Vi with (Ri − ai)ki = 0. It follows
that Ri − c is invertible for any scalar c 6= ai. Now let vi ∈ Vi for 1 ≤ i ≤ m and suppose that
v1 + v2 + · · ·+ vm = 0. We want to show that vi = 0. But

0 =
∏

j 6=i

(T − aj)kj (v1 + v2 + · · ·+ vm) = Si(vi)

with Si =
∏

j 6=i(Ri − aj)kj , an invertible operator on Vi. It follows that vi = 0 for all i and so the
sum is direct.
To show that the sum is ker((T − a1)k1(T − a2)k2 · · · (T − am)km) we proceed by induction on m.
Assume that the result is true for some m = p and let

v ∈ Ker((T− a1)k1(T− a2)k2 · · · (T− ap+1)kp+1).

Then w = (T −ap+1)kp+1(v) ∈ Ker((T−a1)k1(T−a2)k2 · · · (T−ap)kp). By our inductive hypothesis
we have w = w1 +w2 + · · ·+wp with wi ∈ Vi. But, by the invertibility of the restriction of T − ap+1

to Vi for 1 ≤ i ≤ p, we have wi = (T − ai)ki(vi) with vi ∈ Vi. Hence

(T − ap+1)kp+1(v) = (T − ap+1)kp+1(v1 + v2 + · · ·+ vp)

which shows that vp+1 = v − (v1 + v2 + · · · + vp) ∈ Ker(T − ap+1. Thus v = v1 + v2 + · · · + vp+1

yielding the result for m = p + 1.
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Example 1. A function y = f(x) is a solution of the homogeneous differential equation

y′′′ − 4y′′ + 5y′ − 2y = 0

if and only iff f is infinitely differentiable and

f ∈ Ker(D3 − 4D2 + 5D− 2) = Ker((D− 1)2(D− 2)) = Ker((D− 1)2)⊕Ker(D− 2),

where D is the differentiation operator on C∞(R), the vector space of infinitely differentiable real
valued functions on R. Since Ker((D−1)2) = Span(ex, xex) and Ker(D−2) = Span(e2x), this shows
this the solutions of the given diiferential equation are the functions

y = f(x) = aex + bxex + ce2x.

To solve the non-homogeneous differential equation

y′′′ − 4y′′ + 5y′ − 2y = e3x

it suffices to find one solution yP since, for any other solution y, the function y − yP is a solution
of the associated homogeneous system; so y = yP + aex + bxex + ce2x is the general solution of the
given non-homogeneous equation. Since e3x ∈ Ker(D − 3) and the restrictions of D − 1, D − 2 to
Ker(D− 3) are invertible, we must have yP = Ce3x. Substituting this in the given equation, we get
C = 1/4.
If we want to find a particular solution of y′′′ − 4y′′ + 5y′ − 2y = ex, one has to proceed differently
as (D− 1) is not invertible on Ker(D− 1). Since yP ∈ Ker((D− 1)3(D− 2)), we have yP = Cx2ex.
Substituting this in the given differential equation, we get C = −1/2.

Example 2. To find a formula for sn =
∑i=n

i=0 (i2 − 1)2i we use the fact that

sn+1 − sn = ((n + 1)2 − 1)2n+1 = (2n2 + 4n)2n

to deduce that the infinite sequence s = (s0, s1, ..., sn, ...) is in the kernel of (L − 1)(L − 2)3, where
L is the left-shift operator on R∞. But, using the fact that

Ker((L− r)k) = Span((1), (rn), . . . , (nk−1rn)),

we obtain

Ker((L− 1)(L− 2)3) = Ker(L− 1) + Ker((L− 2)3) = Span((1), (2n), (n2n), (n22n)),

which shows that there must be scalars a, b, c, d such that

sn = a + b2n + cn2n + dn22n

for n ≥ 0. But s0 = −1, s1 = −1, s2 = 10, s3 = 74 and so a, b, c, d is a solution of the equations

a + b = −1
a + 2b + 2c + 2d = −1

a + 4b + 8c + 16d = 10
a + 8b + 24c + 72d = 74

which has the unique solution a = −10, b = 9, c = −7, d = 5/2. (Can you explain why a priori this
system would have a unique solution?) Thus sn = −10 + 9 · 2n − 7n2n − 5n22n−1 for n ≥ 0.
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Let V be a vector space over a field K and let T be a linear operator on V . A subspace W is said
to be T -invariant if T (W ) ⊆ W . If f1, f2, ..., fn is a basis of V with f1, ..., fm a basis of W then
A = [T ]f = [aij ] has a block decomposition

[
B C
D E

]

with B = [aij ]1≤i,j≤m, C = [aij ]1≤i≤m,j>m, D = [aij ]i>m,1≤j≤m, E = [aij ]i,j>m. We have D = 0
iff W is T -invariant and C = 0 iff Span(fm+1, ..., fn) is T -invariant. It follows by induction that V
is a direct sum of finitely many T -invariant subspaces iff T has a matrix representation which is in
block-diagonal form.
If S and T are linear operators on V which commute, i.e. ST = TS, then Ker(S) and Im(S) are
T -invariant. This is left as an execise for the reader. If V is a direct sum of T -invariant subspaces,
then T can be represented by a block-diagonal matrix.

Example 3. Let D be the differentiation operator on C∞(R) and let

V = Ker((D− a1)k1(D− a2)k2 · · · (D− am)km)

with a1, ..., am distinct scalars. Then V is the direct sum of the D-invariant subspaces Vi = Ker(D−
ai)ki . Moreover, with respect to the basis

eaix, xeaix,
1
2
x2eaix, . . . ,

1
(km − 1)!

xkm−1eaix

of Vi, the matrix of the restriction of D to Vi is the k × k matrix

Jk(a) =




a 1 0 0 · · · 0 0
0 a 1 0 · · · 0 0
0 0 a 1 · · · 0 0
0 0 0 a · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · a 1
0 0 0 0 · · · 0 a




with a = ai, k = ki = dim(Vi). The matrix Jk(a) is called a Jordan matrix of size k and diagonal
element a. The minimal polynomial of this matrix is (λ−a)k which is also equal to the characteristic
polynomial. The restriction of D to V thus has a block-diagonal representation with m Jordan blocks,
the i-th being Jki(ai), and its characteristic and minimal polynomials are both equal to

(λ− a1)k1(λ− a2)k2 · · · (λ− am)km .

In the next section we will show that any linear operator on a finite-dimensional vector space whose
minimal polynomial is a product of linear factors has a matrix representation in block-diagonal form
with Jordan blocks. Since any polynomial over C is a product of linear factors, any linear operator
on a finite- dimenasional vector space over C has such a block-diagonal form. In particular, any
matrix over C is similar to one in block-diagonal form with Jordan blocks. Moreover, we shall show
that these Jordan blocks are unique up to a permuation of the blocks. This is the so-called Jordan
canonical form.

3


