The Decomposition Theorem

The aim of this section is to prove the following theorem

Theorem 1 (Decomposition Theorem). Let V' be a vector space over a field K and let T be a
linear operator on V. If ay,as, ..., an, are distinct scalars and ky, ks, ...,k € N then

Ker((T—al)k1 (T—aQ)k2 ce (T—am)km) = Ker((T—al)kl)@Ker((T—ag)kQ)G} . ~@Ker((T—am)k‘“).

Corollary 2. A linear operator on a finite-dimensional vector space is diagonalizable iff its minimal
polynomial is a product of distinct linear factors.

Lemma 3. Let T be a linear operator with T* =0, k > 1. Then 1 — T is invertible with
A-T) ' =14+T+T%+... 4T

Proof. 1-T)14+T+---+TtY=1+T+ - +TF 1T —...—T* = 1. This proves the result
since any two polynomials in T' commute. O

Corollary 4. If T is a linear operator with (T — a)* = 0 for some k > 1 and some scalar a then,
for any scalar ¢ # a, the operator T — c is invertible with

(c—T)'=(c—a)t+(c—a) 2 (T—a)+ -+ (c—a) *(T —a) "
Proof. Wehavec—T=c—a—(T—a)=(c—a)(1— (T —a)/(c—a)). O

Proof of Decomposition Theorem. Let V; = ker(T—a)*:. We first show that the sum V;+Vo+- - -+V,,
is direct. If u € V; we must have T'(u) € V; since

(T = a)*(T(u) = (T = )" T(u) = T(T — a)" (u) = T((T ~ a)* (u)) = 0.

If R; is the restriction of 7' to V; then R; is a linear operator on V; with (R; — a;)* = 0. It follows
that R; — ¢ is invertible for any scalar ¢ # a;. Now let v; € V; for 1 < i < m and suppose that
v1 +v3 + -+ v, =0. We want to show that v; = 0. But

0 =TT = a;)™ (o1 + w3+ -+ + ) = Si(v3)
J#i

with S; =[] ; 7M(Ri — a;)%, an invertible operator on V;. It follows that v; = 0 for all i and so the
sum is direct.

To show that the sum is ker((T' — a1)* (T — a®)*2 .- - (T — a,,)*™) we proceed by induction on m.
Assume that the result is true for some m = p and let

v € Ker((T —ap)! (T —a?) - (T — apy1) ).

Then w = (T — ap11)k+1 (v) € Ker((T —ay)51 (T —a2)ke ... (T —a,)¥»). By our inductive hypothesis
we have w = wy +wa + - - - +w, with w; € V;. But, by the invertibility of the restriction of T'— ap41
to V; for 1 <i < p, we have w; = (T — a;)* (v;) with v; € V;. Hence

(T = ap1)"™+ (v) = (T = api1)™* (01 + 02+ +vp)

which shows that vp41 = v — (v1 +v2 + -+ v,) € Ker(T —apy1. Thus v = v +va + -+ + Vpt1
yielding the result for m = p + 1. O



Example 1. A function y = f(x) is a solution of the homogeneous differential equation
y" — 4y + 5y —2y=0
if and only iff f is infinitely differentiable and
f € Ker(D? — 4D? + 5D — 2) = Ker((D — 1)*(D — 2)) = Ker((D — 1)?) @ Ker(D — 2),

where D is the differentiation operator on C*°(R), the vector space of infinitely differentiable real
valued functions on R. Since Ker((D —1)?) = Span(e*, xe*) and Ker(D —2) = Span(e®*), this shows
this the solutions of the given diiferential equation are the functions

y = f(z) = ae” + bre” + ce’x.
To solve the non-homogeneous differential equation
y/// _ 4y// + 5y/ _ 2y — eSz

it suffices to find one solution yp since, for any other solution y, the function y — yp is a solution
of the associated homogeneous system; so y = yp + ae® + bxe® + ce®® is the general solution of the
given non-homogeneous equation. Since e3® € Ker(D — 3) and the restrictions of D — 1, D — 2 to
Ker(D — 3) are invertible, we must have yp = Ce3*. Substituting this in the given equation, we get
C=1/4.

If we want to find a particular solution of y""' — 4y" + 5y’ — 2y = e, one has to proceed differently
as (D — 1) is not invertible on Ker(D —1). Since yp € Ker((D —1)3(D — 2)), we have yp = Cx?e®.
Substituting this in the given differential equation, we get C = —1/2.

Example 2. To find a formula for s, = Zzzg(zz —1)2% we use the fact that
Spt1 — 8n = ((n+1)* = 1)2""! = (2n? 4 4n)2"

to deduce that the infinite sequence s = (80, 81, ..., Sn,...) is in the kernel of (L — 1)(L — 2)3, where
L is the left-shift operator on R*°. But, using the fact that

Ker((L — 1)*) = Span((1), ("), . .., (n*~11m)),
we obtain
Ker((L — 1)(L — 2)3) = Ker(L — 1) + Ker((L — 2)*) = Span((1), (2"), (n2"), (n*2)),
which shows that there must be scalars a,b, c,d such that
Sp = a+ b2" 4+ cn2™ + dn?2"
forn >0. But so = —1,s1 = —1,85 = 10,83 = 74 and so a,b,c,d is a solution of the equations

a+b=-1
a+2b+2c+2d=-1
a+ 4b+ 8¢+ 16d = 10
a+8b+24c+ 72d =74

which has the unique solution a = —10,b = 9,¢ = —7,d = 5/2. (Can you explain why a priori this
system would have a unique solution?) Thus s, = —10+ 92" — Tn2" — 5n22"~1 for n > 0.



Let V be a vector space over a field K and let T be a linear operator on V. A subspace W is said
to be T-invariant it T(W) C W. If fi1, fa,..., fn is a basis of V with fi,..., fi, a basis of W then
A = [T]y = [a;;] has a block decomposition

B C

D FE

with B = [ajjli<ij<m, C = [agli<icmjsm, D = [aijlisma<j<m, £ = [aij]ij>m. We have D = 0
iff W is T-invariant and C' = 0 iff Span(fy41,...,fy) is T-invariant. It follows by induction that V/
is a direct sum of finitely many T-invariant subspaces iff T has a matrix representation which is in
block-diagonal form.

If S and T are linear operators on V which commute, i.e. ST = TS, then Ker(S) and Im(S) are
T-invariant. This is left as an execise for the reader. If V' is a direct sum of T-invariant subspaces,
then T' can be represented by a block-diagonal matrix.

Example 3. Let D be the differentiation operator on C*(R) and let
V =Ker((D — a;)" (D — ap)*2 .- (D — ay,)<™)

with ay, ..., am distinct scalars. Then V is the direct sum of the D-invariant subspaces V; = Ker(D —
a;)5i. Moreover, with respect to the basis

1 2 _a;x 1 km—1_a;x

a;x a; T T e

,reMt —xTe T,

e 5 RN —

of Vi, the matriz of the restriction of D to V; is the k X k matriz

a 1 0 0 0 0
0 a 1 O 0 0
0 0 a 1 0 0
Ji(a) = 0 0 0 a 0 0
0000 -+ a1
0 0 00 - 0 aj

with a = a;, k = k; = dim(V;). The matriz Ji(a) is called a Jordan matriz of size k and diagonal
element a. The minimal polynomial of this matriz is (A\—a)* which is also equal to the characteristic
polynomial. The restriction of D to V' thus has a block-diagonal representation with m Jordan blocks,
the i-th being Ji,(a;), and its characteristic and minimal polynomials are both equal to

A —a)fP (N —ag)® - (N —ap)rm.

In the next section we will show that any linear operator on a finite-dimensional vector space whose
minimal polynomial is a product of linear factors has a matriz representation in block-diagonal form
with Jordan blocks. Since any polynomial over C is a product of linear factors, any linear operator
on a finite- dimenasional vector space over C has such a block-diagonal form. In particular, any
matriz over C is similar to one in block-diagonal form with Jordan blocks. Moreover, we shall show
that these Jordan blocks are unique up to a permuation of the blocks. This is the so-called Jordan
canonical form.



