The Decomposition Theorem

The aim of this section is to prove the following theorem

Theorem 1 (Decomposition Theorem). Let V be a vector space over a field K and let T be a linear operator on V. If $a_{1}, a_{2}, \ldots, a_{m}$ are distinct scalars and $k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N}$ then
$\operatorname{Ker}\left(\left(T-a_{1}\right)^{k_{1}}\left(T-a^{2}\right)^{k_{2}} \cdots\left(T-a_{m}\right)^{k_{m}}\right)=\operatorname{Ker}\left(\left(T-a_{1}\right)^{k_{1}}\right) \oplus \operatorname{Ker}\left(\left(T-a_{2}\right)^{k_{2}}\right) \oplus \cdots \oplus \operatorname{Ker}\left(\left(T-a_{m}\right)^{k_{m}}\right)$.
Corollary 2. A linear operator on a finite-dimensional vector space is diagonalizable iff its minimal polynomial is a product of distinct linear factors.

Lemma 3. Let T be a linear operator with $T^{k}=0, k \geq 1$. Then $1-T$ is invertible with

$$
(1-T)^{-1}=1+T+T^{2}+\cdots+T^{k-1}
$$

Proof. $(1-T)\left(1+T+\cdots+T^{k-1}\right)=1+T+\cdots+T^{k-1}-T-\cdots-T^{k}=1$. This proves the result since any two polynomials in T commute.
Corollary 4. If T is a linear operator with $(T-a)^{k}=0$ for some $k \geq 1$ and some scalar a then, for any scalar $c \neq a$, the operator $T-c$ is invertible with

$$
(c-T)^{-1}=(c-a)^{-1}+(c-a)^{-2}(T-a)+\cdots+(c-a)^{-k}(T-a)^{k-1}
$$

Proof. We have $c-T=c-a-(T-a)=(c-a)(1-(T-a) /(c-a))$.
Proof of Decomposition Theorem. Let $V_{i}=\operatorname{ker}(T-a)^{k_{i}}$. We first show that the sum $V_{1}+V_{2}+\cdots+V_{m}$ is direct. If $u \in V_{i}$ we must have $T(u) \in V_{i}$ since

$$
(T-a)^{k_{i}}(T(u))=(T-a)^{k_{i}} T(u)=T(T-a)^{k_{i}}(u)=T\left((T-a)^{k_{i}}(u)\right)=0
$$

If R_{i} is the restriction of T to V_{i} then R_{i} is a linear operator on V_{i} with $\left(R_{i}-a_{i}\right)^{k_{i}}=0$. It follows that $R_{i}-c$ is invertible for any scalar $c \neq a_{i}$. Now let $v_{i} \in V_{i}$ for $1 \leq i \leq m$ and suppose that $v_{1}+v_{2}+\cdots+v_{m}=0$. We want to show that $v_{i}=0$. But

$$
0=\prod_{j \neq i}\left(T-a_{j}\right)^{k_{j}}\left(v_{1}+v_{2}+\cdots+v_{m}\right)=S_{i}\left(v_{i}\right)
$$

with $S_{i}=\prod_{j \neq i}\left(R_{i}-a_{j}\right)^{k_{j}}$, an invertible operator on V_{i}. It follows that $v_{i}=0$ for all i and so the sum is direct.
To show that the sum is $\operatorname{ker}\left(\left(T-a_{1}\right)^{k_{1}}\left(T-a^{2}\right)^{k_{2}} \cdots\left(T-a_{m}\right)^{k_{m}}\right)$ we proceed by induction on m. Assume that the result is true for some $m=p$ and let

$$
v \in \operatorname{Ker}\left(\left(\mathrm{~T}-\mathrm{a}_{1}\right)^{\mathrm{k}_{1}}\left(\mathrm{~T}-\mathrm{a}^{2}\right)^{\mathrm{k}_{2}} \cdots\left(\mathrm{~T}-\mathrm{a}_{\mathrm{p}+1}\right)^{\mathrm{k}_{\mathrm{p}+1}}\right)
$$

Then $w=\left(T-a_{p+1}\right)^{k_{p+1}}(v) \in \operatorname{Ker}\left(\left(\mathrm{T}-\mathrm{a}_{1}\right)^{\mathrm{k}_{1}}\left(\mathrm{~T}-\mathrm{a}^{2}\right)^{\mathrm{k}_{2}} \cdots\left(\mathrm{~T}-\mathrm{a}_{\mathrm{p}}\right)^{\mathrm{k}_{\mathrm{p}}}\right)$. By our inductive hypothesis we have $w=w_{1}+w_{2}+\cdots+w_{p}$ with $w_{i} \in V_{i}$. But, by the invertibility of the restriction of $T-a_{p+1}$ to V_{i} for $1 \leq i \leq p$, we have $w_{i}=\left(T-a_{i}\right)^{k_{i}}\left(v_{i}\right)$ with $v_{i} \in V_{i}$. Hence

$$
\left(T-a_{p+1}\right)^{k_{p+1}}(v)=\left(T-a_{p+1}\right)^{k_{p+1}}\left(v_{1}+v_{2}+\cdots+v_{p}\right)
$$

which shows that $v_{p+1}=v-\left(v_{1}+v_{2}+\cdots+v_{p}\right) \in \operatorname{Ker}\left(\mathrm{T}-\mathrm{a}_{\mathrm{p}+1}\right.$. Thus $v=v_{1}+v_{2}+\cdots+v_{p+1}$ yielding the result for $m=p+1$.

Example 1. A function $y=f(x)$ is a solution of the homogeneous differential equation

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=0
$$

if and only iff f is infinitely differentiable and

$$
f \in \operatorname{Ker}\left(\mathrm{D}^{3}-4 \mathrm{D}^{2}+5 \mathrm{D}-2\right)=\operatorname{Ker}\left((\mathrm{D}-1)^{2}(\mathrm{D}-2)\right)=\operatorname{Ker}\left((\mathrm{D}-1)^{2}\right) \oplus \operatorname{Ker}(\mathrm{D}-2),
$$

where D is the differentiation operator on $C^{\infty}(\mathbb{R})$, the vector space of infinitely differentiable real valued functions on \mathbb{R}. Since $\operatorname{Ker}\left((D-1)^{2}\right)=\operatorname{Span}\left(\mathrm{e}^{\mathrm{x}}, \mathrm{xe}^{\mathrm{x}}\right)$ and $\operatorname{Ker}(\mathrm{D}-2)=\operatorname{Span}\left(\mathrm{e}^{2 \mathrm{x}}\right)$, this shows this the solutions of the given diiferential equation are the functions

$$
y=f(x)=a e^{x}+b x e^{x}+c e^{2} x
$$

To solve the non-homogeneous differential equation

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=e^{3 x}
$$

it suffices to find one solution y_{P} since, for any other solution y, the function $y-y_{P}$ is a solution of the associated homogeneous system; so $y=y_{P}+a e^{x}+b x e^{x}+c e^{2 x}$ is the general solution of the given non-homogeneous equation. Since $e^{3 x} \in \operatorname{Ker}(\mathrm{D}-3)$ and the restrictions of $D-1, D-2$ to $\operatorname{Ker}(\mathrm{D}-3)$ are invertible, we must have $y_{P}=C e^{3 x}$. Substituting this in the given equation, we get $C=1 / 4$.
If we want to find a particular solution of $y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=e^{x}$, one has to proceed differently as $(D-1)$ is not invertible on $\operatorname{Ker}(\mathrm{D}-1)$. Since $y_{P} \in \operatorname{Ker}\left((\mathrm{D}-1)^{3}(\mathrm{D}-2)\right)$, we have $y_{P}=C x^{2} e^{x}$. Substituting this in the given differential equation, we get $C=-1 / 2$.

Example 2. To find a formula for $s_{n}=\sum_{i=0}^{i=n}\left(i^{2}-1\right) 2^{i}$ we use the fact that

$$
s_{n+1}-s_{n}=\left((n+1)^{2}-1\right) 2^{n+1}=\left(2 n^{2}+4 n\right) 2^{n}
$$

to deduce that the infinite sequence $s=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)$ is in the kernel of $(L-1)(L-2)^{3}$, where L is the left-shift operator on \mathbb{R}^{∞}. But, using the fact that

$$
\operatorname{Ker}\left((\mathrm{L}-\mathrm{r})^{\mathrm{k}}\right)=\operatorname{Span}\left((1),\left(\mathrm{r}^{\mathrm{n}}\right), \ldots,\left(\mathrm{n}^{\mathrm{k}-1} \mathrm{r}^{\mathrm{n}}\right)\right)
$$

we obtain

$$
\operatorname{Ker}\left((L-1)(L-2)^{3}\right)=\operatorname{Ker}(L-1)+\operatorname{Ker}\left((L-2)^{3}\right)=\operatorname{Span}\left((1),\left(2^{\mathrm{n}}\right),\left(\mathrm{n} 2^{\mathrm{n}}\right),\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)\right)
$$

which shows that there must be scalars a, b, c, d such that

$$
s_{n}=a+b 2^{n}+c n 2^{n}+d n^{2} 2^{n}
$$

for $n \geq 0$. But $s_{0}=-1, s_{1}=-1, s_{2}=10, s_{3}=74$ and so a, b, c, d is a solution of the equations

$$
\begin{aligned}
a+b & =-1 \\
a+2 b+2 c+2 d & =-1 \\
a+4 b+8 c+16 d & =10 \\
a+8 b+24 c+72 d & =74
\end{aligned}
$$

which has the unique solution $a=-10, b=9, c=-7, d=5 / 2$. (Can you explain why a priori this system would have a unique solution?) Thus $s_{n}=-10+9 \cdot 2^{n}-7 n 2^{n}-5 n^{2} 2^{n-1}$ for $n \geq 0$.

Let V be a vector space over a field K and let T be a linear operator on V. A subspace W is said to be T-invariant if $T(W) \subseteq W$. If $f_{1}, f_{2}, \ldots, f_{n}$ is a basis of V with f_{1}, \ldots, f_{m} a basis of W then $A=[T]_{f}=\left[a_{i j}\right]$ has a block decomposition

$$
\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]
$$

with $B=\left[a_{i j}\right]_{1 \leq i, j \leq m}, C=\left[a_{i j}\right]_{1 \leq i \leq m, j>m}, D=\left[a_{i j}\right]_{i>m, 1 \leq j \leq m}, E=\left[a_{i j}\right]_{i, j>m}$. We have $D=0$ iff W is T-invariant and $C=0$ iff $\operatorname{Span}\left(\mathrm{f}_{\mathrm{m}+1}, \ldots, \mathrm{f}_{\mathrm{n}}\right)$ is T-invariant. It follows by induction that V is a direct sum of finitely many T-invariant subspaces iff T has a matrix representation which is in block-diagonal form.
If S and T are linear operators on V which commute, i.e. $S T=T S$, then $\operatorname{Ker}(\mathrm{S})$ and $\operatorname{Im}(\mathrm{S})$ are T-invariant. This is left as an execise for the reader. If V is a direct sum of T-invariant subspaces, then T can be represented by a block-diagonal matrix.

Example 3. Let D be the differentiation operator on $C^{\infty}(\mathbb{R})$ and let

$$
V=\operatorname{Ker}\left(\left(\mathrm{D}-\mathrm{a}_{1}\right)^{\mathrm{k}_{1}}\left(\mathrm{D}-\mathrm{a}_{2}\right)^{\mathrm{k}_{2}} \cdots\left(\mathrm{D}-\mathrm{a}_{\mathrm{m}}\right)^{\mathrm{k}_{\mathrm{m}}}\right)
$$

with a_{1}, \ldots, a_{m} distinct scalars. Then V is the direct sum of the D-invariant subspaces $V_{i}=\operatorname{Ker}(\mathrm{D}-$ $\left.\mathrm{a}_{\mathrm{i}}\right)^{\mathrm{k}_{\mathrm{i}}}$. Moreover, with respect to the basis

$$
e^{a_{i} x}, x e^{a_{i} x}, \frac{1}{2} x^{2} e^{a_{i} x}, \ldots, \frac{1}{\left(k_{m}-1\right)!} x^{k_{m}-1} e^{a_{i} x}
$$

of V_{i}, the matrix of the restriction of D to V_{i} is the $k \times k$ matrix

$$
J_{k}(a)=\left[\begin{array}{ccccccc}
a & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & a & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & a & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & a
\end{array}\right]
$$

with $a=a_{i}, k=k_{i}=\operatorname{dim}\left(V_{i}\right)$. The matrix $J_{k}(a)$ is called a Jordan matrix of size k and diagonal element a. The minimal polynomial of this matrix is $(\lambda-a)^{k}$ which is also equal to the characteristic polynomial. The restriction of D to V thus has a block-diagonal representation with m Jordan blocks, the i-th being $J_{k_{i}}\left(a_{i}\right)$, and its characteristic and minimal polynomials are both equal to

$$
\left(\lambda-a_{1}\right)^{k_{1}}\left(\lambda-a_{2}\right)^{k_{2}} \cdots\left(\lambda-a_{m}\right)^{k_{m}} .
$$

In the next section we will show that any linear operator on a finite-dimensional vector space whose minimal polynomial is a product of linear factors has a matrix representation in block-diagonal form with Jordan blocks. Since any polynomial over \mathbb{C} is a product of linear factors, any linear operator on a finite- dimenasional vector space over \mathbb{C} has such a block-diagonal form. In particular, any matrix over \mathbb{C} is similar to one in block-diagonal form with Jordan blocks. Moreover, we shall show that these Jordan blocks are unique up to a permuation of the blocks. This is the so-called Jordan canonical form.

