MATH 133: Vectors, Matrices and Geometry

Solution Sketches for Written Assignment 1

Problem 1. (10 points) Label the vertices A,B,C,D counterclockwise starting with A. Let E,F be respectively the midpoints of the opposite sides AB and DC and let G, H be respectively the midpoints of the opposite sides AD and BC. Then

$$
\begin{array}{ll}
\overrightarrow{O E}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}), & \overrightarrow{O F}=\frac{1}{2}(\overrightarrow{O D}+\overrightarrow{O C}) \\
\overrightarrow{O G}=\frac{1}{2}(\overrightarrow{O D}+\overrightarrow{O A}), & \overrightarrow{O H}=\frac{1}{2}(\overrightarrow{O B}+\overrightarrow{O C})
\end{array}
$$

so that the position vectors of the midpoints of the line segments EF and GH are respectively

$$
\begin{aligned}
& \frac{1}{2}(\overrightarrow{O E}+\overrightarrow{O F})=\frac{1}{4}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O D}+\overrightarrow{O C}) \\
& \frac{1}{2}(\overrightarrow{O G}+\overrightarrow{O H})=\frac{1}{4}(\overrightarrow{O D}+\overrightarrow{O A}+\overrightarrow{O D B}+\overrightarrow{O C})
\end{aligned}
$$

which are equal and so equals $\overrightarrow{O R}$ for a unique point P which bisects each of these line segments. To show that this is the unique point on the two lines segments, one has to show that the vectors $\overrightarrow{E F}=(1 / 2)(\overrightarrow{A C}+\overrightarrow{B D}$ and $\overrightarrow{G H}=(1 / 2)(\overrightarrow{A C}-\overrightarrow{B D})$ are not proportional. To see this, first note $\overrightarrow{A C}$ and $\overrightarrow{B D}$ are non-proportional; otherwise A, B, C, D would be collinear. Thus $\overrightarrow{E F} \times \overrightarrow{G H}=\overrightarrow{B D} \times \overrightarrow{A C} \neq 0$ which shows that $\overrightarrow{B D}$ and $\overrightarrow{A C}$ are not proportional. Five bonus points are given for a correct proof of this fact.

Problem 2. (i) (5 points) The distance d is $\|\overrightarrow{P Q} \times \overrightarrow{P R}\| /\|\overrightarrow{P Q}\|$. We also have

$$
d^{2}=\|\overrightarrow{P R}\|^{2}-\left(\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{\overrightarrow{P Q} \|}\right)^{2}
$$

The distance d can also be obtained as the distance between the point R and the point of intersection of the plane passing through R and perpendicular to $\overrightarrow{P Q}$.
(ii) (5 points) The distance between ℓ_{1} and ℓ_{2} is the orthogonal projection of $\overrightarrow{P R}$ along $\overrightarrow{P Q} \times \overrightarrow{R S}$. It can be also be obtained by taking the distance between the two closest points on the two lines.

