1. (a) The parametric equations for the line passing through $A(0,1,0)$ and having direction $(1,1,1)$ are $x=t, y=1+t, z=t$.
(b) The distance of the point $Q=(1,0,2)$ to the line in $1(\mathrm{a})$ is $\|\overrightarrow{A Q} \times(1,1,1)\| / \|(1,1,1\|=\|(-3,1,2) \| / \sqrt{3}=$ $\sqrt{14} / \sqrt{3}=\sqrt{42} / 3$. It is also equal to $\|\overrightarrow{A Q}-(\overrightarrow{A Q} \cdot(1,1,1) /(1,1,1) \cdot(1,1,1))(1,1,1)\|=\|(1,-5,4)\| / 3$.
2. (a) The normal equation of the plane through the points $A(3,2,1), B(8,1,2), C(-4,1,-1)$ is $(x-3, y-2, z-1) \cdot \vec{n}=0$ where $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=(5,-1,1) \times(-7,-1,-2)=(3,3,-12)$. This equation can be written as $3 x+3 y-12 z=3$ or $x+y-4 z=1$.
(b) The line $x=1+3 t, y=-1+2 t, z=t$ meets the above plane for the value of t which satisfies $(1+3 t)+(-1+2 t)-4 t=1$. This implies $t=1$ which gives $D(4,1,1)$ as the point of intersection. The cosine of the acute angle between this line and the line through D perpendicular to the plane is $\mid(3,2,1) \cdot((1,1,-4)|/||(3,2,1)||||(1,1,-4)| \mid=1 / 6 \sqrt{7}=\sqrt{7} / 42$.
3. Row reducing the augmented matrix of the system to reduced echelon form, we get

$$
\left[\begin{array}{ccccc}
1 & 2 & 1 & -4 & 1 \\
1 & 3 & 7 & 2 & 2 \\
1 & 0 & -11 & -16 & -1
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1} \\
& R_{3} \rightarrow R_{3}-R_{1}
\end{aligned}\left[\begin{array}{ccccc}
1 & 2 & 1 & -4 & 1 \\
0 & 1 & 6 & 6 & 1 \\
0 & -2 & -12 & -12 & -2
\end{array}\right] \begin{aligned}
& R_{1} \rightarrow R_{1}-2 R_{2} \\
& R_{3} \rightarrow R_{3}+2 R_{2}
\end{aligned}\left[\begin{array}{ccccc}
1 & 0 & -11 & -16 & -1 \\
0 & 1 & 6 & 6 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus the given system is equivalent to $x_{1}-11 x_{3}-16 x_{4}=-1, x_{2}+6 x_{3}+6 x_{4}=1$ whose solutions are $x_{1}=-1+11 s+16 t, x_{2}=1-6 s-6 t, x_{3}=s, x_{4}=t$ with s, t arbitrary scalars.
4. (a) The relation $a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}+a_{4} u_{4}=0$ implies $a_{4}=0$ since $u_{4} \notin \operatorname{Span}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. But then $a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=0$ which implies $a_{1}=a_{2}=a_{3}=0$ since u_{1}, u_{2}, u_{3} are linearly independent. Thus $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly independent which implies $\operatorname{Span}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\mathbb{R}^{4} \operatorname{since} \operatorname{dim}\left(\mathbb{R}^{4}\right)=4$.
(b) If u, v are the sides of the parallelogram then $u+v, u-v$ are its diagonals. Since $(u-v) \cdot(u+v)=\|u\|^{2}-\|v\|^{2}$, we see that the diagonals are orthogonal if and only if $\|u\|=\|v\|$.
5. (a) Row reducing the augmented matrix of the system to echelon form, we get

$$
\left[\begin{array}{cccc}
1 & 2 & -b & 1 \\
1 & 3 & -1 & a \\
2 & 5 & 1 & 1
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}\left[\begin{array}{cccc}
1 & 2 & -b & 1 \\
0 & 1 & b-1 & a-1 \\
0 & 1 & 2 b+1 & -1
\end{array}\right] \quad R_{3}-2 R_{1} \rightarrow R_{3}-R_{2}\left[\begin{array}{cccc}
1 & 2 & -b & 1 \\
0 & 1 & b-1 & a-1 \\
0 & 0 & b+2 & -a
\end{array}\right]
$$

which shows that the given has a unique solution if $b \neq-2$ and no solution if $b=-2, a \neq 0$.
(b) If $b=-2, a=0$, the given system is equivalent to $x_{1}+2 x_{2}+2 x_{3}=1, x_{2}-3 x_{3}=-1$ which has the infinite solution set $x_{1}=3-8 s, x_{2}=-1+3 s, x_{3}=s$ with s an arbitrary scalar.
6. (a) Row reducing A to reduced echelon form, we get

$$
\left[\begin{array}{cc}
1 & 0 \\
-5 & 2
\end{array}\right] R_{2} \rightarrow R_{2}+5 R_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] R_{2} \rightarrow R_{2} / 2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Which shows that

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
5 & 1
\end{array}\right] A=I, \quad A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
5 & 1
\end{array}\right] .
$$

(b) Hence $A=\left(\left[\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\right)^{-1}=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]^{-1}\left[\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ -5 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
7. (a) Row reducing A to echelon form, we get

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& R_{4} \rightarrow R_{4}-4 R_{1}
\end{aligned}\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & -1 & -2 & -3 & -4 \\
0 & -2 & -4 & -6 & -8 \\
0 & -3 & -6 & -9 & -12
\end{array}\right] \begin{aligned}
& R_{1} \rightarrow R_{1}+2 R_{2} \\
& R_{3} \rightarrow R_{3}-2 R_{2} \\
& R_{4} \rightarrow R_{4}-3 R_{2}
\end{aligned}\left[\begin{array}{ccccc}
1 & 0 & -1 & -2 & -3 \\
0 & -1 & -2 & -3 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which is row equivalent to $B=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(b) Since row equivalent matrices have the same row space and the non-zero rows of a matrix in echelon form is a basis for its row space we see that $(1,0,-1,-2,-3),(0,1,2,3,4)$ is a basis for the row space of A. Since the first two columns of B are a basis for its column space and the colums of A and B have the same dependence relations, we see that the first two columns of A are a basis for the column space of A. Since row equivalent matrices have the same null space we see that the null space of A is the solution space of $x_{1}-2 x_{3}-3 x_{4}-4 x_{5}=0, x_{2}+2 x_{3}+3 x_{4}+4 x_{5}=0$. Hence

$$
\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-3 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
-4 \\
0 \\
0 \\
1
\end{array}\right]
$$

is a basis for the null space of A.
8. (a) $\operatorname{det}\left(-A^{3} B^{-2}\right)=(-1)^{2} \operatorname{det}(A)^{3} \operatorname{det}(B)^{-2}=2^{3} / 3^{2}$,
$\operatorname{det}\left(2 A^{-1} B A\right)=2^{2} \operatorname{det}(A)^{-1} \operatorname{det}(B) \operatorname{det}(A)=12$, $\operatorname{det}\left(A^{-1} A^{T}\right)=\operatorname{det}(A)^{-1} \operatorname{det}(A)=1$.
(b)

$$
\begin{aligned}
\left|\begin{array}{lll}
a+d & d+g & g+a \\
b+e & e+h & h+b \\
c+f & f+i & i+c
\end{array}\right| & =\left|\begin{array}{lll}
a & d+g & g+a \\
b & e+h & h+b \\
c & f+i & i+c
\end{array}\right|+\left|\begin{array}{ccc}
d & d+g & g+a \\
e & e+h & h+b \\
f & f+i & i+c
\end{array}\right| \text { (linearity in a column) } \\
& =\left|\begin{array}{lll}
a & d+g & g \\
b & e+h & h \\
c & f+i & i
\end{array}\right|+\left|\begin{array}{ccc}
d & g & g+a \\
e & h & h+b \\
f & i & i+c
\end{array}\right| \text { (det unchanged by type I column operation) } \\
& =\left|\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right|+\left|\begin{array}{ccc}
d & g & a \\
e & h & b \\
f & i & c
\end{array}\right| \text { (det unchanged by type I column operation) } \\
& =2\left|\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right|=2 \text { (det changes sign if } 2 \text { columns interchanged). }
\end{aligned}
$$

9. (a) We have $L=\operatorname{Span}\left(\left[\begin{array}{c}3 \\ -2\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\operatorname{proj}_{L}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\frac{3 x-2 y}{13}\left[\begin{array}{c}3 \\ -2\end{array}\right]=\frac{1}{13}\left[\begin{array}{cc}9 & -6 \\ -6 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ so that the standard matrix of T is $\frac{1}{13}\left[\begin{array}{cc}9 & -6 \\ -6 & 4\end{array}\right]$. Now $S\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x \\ y\end{array}\right]-2 \operatorname{perp}_{L}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x \\ y\end{array}\right]-2\left(\left[\begin{array}{l}x \\ y\end{array}\right]-\operatorname{proj}_{L}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)\right)=$ $2 \operatorname{proj}_{L}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)-\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{13}\left[\begin{array}{cc}5 & -12 \\ -12 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ so that the standard matrix of S is $\frac{1}{13}\left[\begin{array}{cc}5 & -12 \\ -12 & -5\end{array}\right]$. Since $S T=$ $T S=T$ the standard matrices of $S T, T S$ and T are the same.
(b) Since $\left.S\left(\left[\begin{array}{c}3 \\ -2\end{array}\right]\right)=T\left(\left[\begin{array}{c}3 \\ -2\end{array}\right]\right)=\left[\begin{array}{c}3 \\ -2\end{array}\right]\right)$ and $S\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)=-\left[\begin{array}{l}2 \\ 3\end{array}\right], T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)=0$ we see that the eigenvalues of S are $-1,1$ and the eigenvalues of T are 0,1 .
10. (a) The characteristic polynomial of A is

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\left|\begin{array}{ccc}
\lambda-3 & -1 & -1 \\
-1 & \lambda-3 & -1 \\
-1 & -1 & \lambda-3
\end{array}\right|=\left|\begin{array}{ccc}
\lambda-3 & -1 & -1 \\
-1 & \lambda-3 & -1 \\
0 & 2-\lambda & \lambda-2
\end{array}\right|=(\lambda-2)\left|\begin{array}{ccc}
\lambda-3 & -1 & -1 \\
-1 & \lambda-3 & -1 \\
0 & -1 & 1
\end{array}\right| \\
&=(\lambda-2)\left|\begin{array}{ccc}
\lambda-3 & -2 & -1 \\
-1 & \lambda-4 & -1 \\
0 & 0 & 1
\end{array}\right|=(\lambda-2)\left(\lambda^{2}-5 \lambda+10\right)=(\lambda-2)^{2}(\lambda-5)
\end{aligned}
$$

which shows that the eigenvalues are 2,5 .
(b) The eigenspace for the eigenvalue 2 is $\operatorname{null}(2 I-A)$ which is the solution space of $x_{1}+x_{2}+x_{3}=0$ which has $(1,-1,0)^{T},\left(1,0,-1^{T}\right)$ as basis. An orthogonal basis for this eigenspace is $(1,-1,0)^{T},(1,1,-2)^{T}$. The eigenspace for the eigenvalue 5 has $(1,1,1)^{T}$ as basis. The orthonormal matrix

$$
P=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right]
$$

has the property $P^{-1} A P=P^{T} A P=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$.
11. (a) Applying the Gram-Schmidt process to $u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$, we get $v_{1}=u_{1}$,

$$
\begin{aligned}
& v_{2}=u_{2}-\frac{<u_{2}, v_{1}>}{<v_{1}, v_{1}>} v_{1}=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
4 \\
1 \\
2
\end{array}\right], \\
& v_{3}=u_{3}-\frac{<u_{3}, v_{1}>}{<v_{1}, v_{1}>} v_{1}-\frac{<u_{3}, v_{2}>}{\left\langle v_{2}, v_{2}>\right.} v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{3}{11}\left[\begin{array}{c}
-1 \\
4 \\
1 \\
2
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
3 \\
-1 \\
-3 \\
5
\end{array}\right] .
\end{aligned}
$$

Hence $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{22}}\left[\begin{array}{c}-1 \\ 4 \\ 1 \\ 2\end{array}\right], \frac{1}{\sqrt{44}}\left[\begin{array}{c}3 \\ -1 \\ -3 \\ 5\end{array}\right]$ is an orthonormal basis for W.
(b) We have $W^{\perp}=\operatorname{Null}\left(\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]=\operatorname{Null}\left(\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right]\right)\right.$.

