
MATH 133 Final Examination December 10, 2003

1. (a) Find an equation for the plane containing the line (x, y, z) = (1 + t, 2 + 2t, 3− t) and parallel
to the line (x, y, z) = (s, s, s).

(b) Find the distance between the two lines in 1(a).
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2. (a) Find, in vector parametric form, the equation of the line L of intersection of the two planes

x + 2y + 3z = 1 and 2x + 5y − z = 2.

(b) Find the equation of the plane containing the line L in 2(a) and perpendicular to the line

x = 1 + 3t, y = 1 + 7t, z = 1 + 2t.
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3. (a) Find all values of k for which the matrix




k −2 3
k − 4 k − 4 −5

k −2 k + 5


 is invertible.

(b) For which values of k is the system

kx− 2y + 3z = 1

(k − 4)x + (k − 4)y − 5z = 1

kx− 2y + (k + 5)z = 1

solvable?
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4. Let A =

[
0 1
−3 9

]

(a) Write A−1 as a product of elementary matrices.

(b) Write A as a product of elementary matrices.
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5. Let A =




1 2 2 1 1
2 4 5 3 2
3 6 7 5 3
4 8 9 5 4


 .

(a) Bring A to row reduced echelon form.

(b) Find bases for (i) the row space, (ii) the column space and (iii) the null space of A.
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6. Let u1, u2, u3 be vectors in Rn and let v1 = u1, v2 = u1 + 2u2, v3 = u1 + 2u2 − u3.

(a) If u1, u2, u3 are linearly independent, show that v1, v2, v3 are linearly independent.

(b) If v1, v2, v3 are linearly independent, show that u1, u2, u3 are linearly independent.

6



MATH 133 Final Examination December 10, 2003

7. Let T : R2 → R2 be a linear transformation with

T

([−4
−3

])
=

[
3
5

]
, T

([−3
−2

])
=

[
4
−5

]
.

(a) Find the matrix of T with respect to the standard basis.

(b) Show that T−1 exists and find its matrix with respect to the standard basis.
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8. (a) For which values of c is the matrix A =




3 1 0
0 2 c
0 0 2


 diagonalizable.

(b) If A =




2 −2 3
1 1 1
1 3 −1


,

(i) find the characteristic polynomial of A and the eigenvalues of A; (Hint: -2 is an eigenvalue)

(continued on next page)
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(ii) find a basis of each eigenspace;

(iii) determine whether or not there is an invertible matrix P such that P−1AP is a diagonal
matrix. Exhibit P if it exists but you don’t have to compute P−1 explicitly.
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9. Let A =

[
3 2
5 6

]

(a) Find an invertible matrix P such that P−1AP is a diagonal matrix.

(b) Find a matrix B with B3 = A.
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10. (a) If A is a diagonalizable 2× 2 matrix with A3 = −I, where I is the identity matrix, show that
A = −I.

(b) Using the fact that A2 − tr(A)A + det(A)I = 0 for any 2 × 2 matrix A, find a 2 × 2 matrix
A with A2 − A + I = 0. Show that A3 = −I.
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11. Let W = span

(



1
−1
2
−2


 ,




0
1
−2
1




)

(a) Find an orthonormal basis for W .

(b) Find an basis for W⊥ and use this to find a homogeneous system of equations whose solution
space is W .
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12. Let A =

[
5 −3
−3 5

]
.

(a) Find an orthogonal matrix P such that P T AP is a diagonal matrix.

(b) Using (a), show that 5x2 − 6xy + 5y2 = 2 is the equation of an ellipse. Find the length and a
direction vector of each axis.
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