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Signal transduction networks can be perturbed biochemically, genet-
ically, and pharmacologically to unravel their functions. But at
the systems level, it is not clear how such perturbations are best
implemented to extractmolecularmechanisms that underlie network
function. Here, we combined pairwise perturbations with multipa-
rameter phosphorylationmeasurements to reveal causalmechanisms
within the signaling network response of cardiomyocytes to coxsack-
ievirus B3 (CVB3) infection. Using all possible pairs of six kinase
inhibitors, we assembled a dynamic nine-protein phosphorylation
signature of perturbed CVB3 infectivity. Cluster analysis of the
resulting dataset showed repeatedly that paired inhibitor data were
required for accurate data-drivenpredictionsof kinase substrate links
in the host network. With pairwise data, we also derived a high-
confidence network based on partial correlations, which identified
phospho-IκBα as a central “hub” in the measured phosphorylation
signature. The reconstructed network helped to connect phospho-
IκBα with an autocrine feedback circuit in host cells involving the
proinflammatory cytokines, TNF and IL-1. Autocrine blockade sub-
stantially inhibited CVB3 progeny release and improved host cell via-
bility, implicating TNF and IL-1 as cell autonomous components of
CVB3-inducedmyocardial damage.Weconclude that pairwise pertur-
bations, when combined with network-level intracellular measure-
ments, enrich for mechanisms that would be overlooked by single
perturbants.

pairwise perturbation | signaling network | systems biology | viral
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Intracellular signal transduction is achieved through binary pro-
tein–protein interactions that connect together to form networks

(1). Signaling pathways often have multiple layers of feedback
control, and cross-talk between pathways is usually extensive (2).
This complexity enables diverse stimuli to be integrated when key
cell decisions must be made (3, 4). However, conceptually, a “tan-
gled” signaling circuitmakes it difficult to assign unambiguous roles
to individual proteins in a straightforward way.
Viruses and other pathogens have evolved effective strategies to

subvert host signaling networks for their own purposes (5, 6). In-
fection is therefore equivalent to a systems-level perturbation,
which can be useful for understanding network function when
combined with targeted interventions. The question is how best to
deploy these perturbations in a way that takes network complexity
into consideration but also quickly identifies mechanistic con-
nections between signals and cell outcomes.
One observation that has emerged from recent studies of net-

works is the surprising richness of information that is capturedwhen
pairs of inputs or perturbations are considered (4, 7–14). Two-
factor screens typically reveal phenotypic synergies in only ∼10–
25% of all possible nC2 combinations (7, 15). However, pairwise
stimulation and observation appears to enrich for network states
that are especially relevant to predicting function (9, 10, 13). Dual
perturbation approaches can directly assign functional synergies in
cell phenotype (7, 14), but explaining the basis of such observations
is difficult without follow-up experiments at the molecular level. It

has not been determined whether a more comprehensive mecha-
nistic understanding could be gained by collecting intracellular
measurements for all pairwise conditions from the start.
Here, we pursued this question through an in vitro model of

cardiomyocyte infection with the pathogen coxsackievirus B3
(CVB3). CVB3 is among the most common causes of viral myo-
carditis in infants and young children, often leading to acute heart
failure and sudden death (16). To examine the direct mechanisms
whereby CVB3 disrupts the host cell signaling network and causes
tissue damage, we developed a pairwise pharmacological approach
to perturb cardiomyocyte signaling during CVB3 infection. Using
a panel of small-molecule kinase inhibitors, our goal was to identify
which protein kinases activated by CVB3 were responsible for the
phosphorylation signatures and toxicity observed in host cells.
We found multiple instances in which data from inhibitor pairs

were required for accurate clustering-based assignments of kinase
substrate interactions. Moreover, using graphical Gaussian mod-
eling (GGM) to reconstruct pairwise interactions based on partial
correlations within the inhibitor dataset, we were able to reveal an
extracellular positive feedback circuit for CVB3 cardiotoxicity.
CVB3 drives release of the proinflammatory cytokines, TNF, and
IL-1, which act as autocrine effectors to augment virus-induced
cell death. Our results suggest that pairwise perturbations may be
more effective at uncovering molecular mechanisms within sig-
naling networks than an equivalent numbers of single agents.

Results
Pairwise Pharmacological Perturbation of Cardiomyocytes Infected
with CVB3. To investigate the host network response to CVB3 in
a uniform cell population, we used HL-1 murine cardiomyocytes
(17). These cells can be infected with CVB3, support viral rep-
lication, and undergo virus-induced cell death (18).
We sought targeted perturbations that could be introduced

rapidly into cells and combined easily. Therefore, we avoided slow
overexpression or knockdown approaches that might yield adap-
tations in the underlying network. Focusing on small-molecule
inhibitors, we targeted six kinase signaling pathways previously
implicated in different facets of CVB3 infectivity: Akt–GSK3 (19),
IKK–NF-κB (20), Src-family kinases (21, 22), p38–MK2 (23, 24),
JNK (24), and MEK–ERK (25). Small-molecule inhibitors are
selective, but rarely specific (26, 27). In fact, some of the inhibitors
we used have unknownmechanisms of action (28) or are known to
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perturb multiple kinases aside from the primary target (26, 27, 29).
Consequently, the purpose of the small molecules was not to assign
roles directly to the presumed target kinase. Instead, inhibitor
combinations were used as a modular way to dampen the capacity
of cells to signal through different branches of the overall network.
We pretreated cells with single inhibitors or a paired combination

and monitored the dynamics of nine phosphorylation events over
a 24-h time course of CVB3 infection. Time points were selected to
capture the major stages of the viral life cycle: viral docking to the
host cell [∼10 min postinfection (p.i.)], host cell endocytosis (∼1 h
p.i.), synthesis of viralRNA(∼8 hp.i.), synthesis of viral proteins such
as VP1 capsid (∼16 h p.i.), and viral progeny release (VPR) (∼24 h
p.i.). We directly tracked the phosphorylation of five kinases—Akt,
GSK3β, p38, JNK, and ERK—whose activity we perturbed phar-
macologically. We also measured the phosphorylation status of
two proteins, Hsp-27 and IκBα, which are reliable indicators of p38–
MK2and IKKactivity, respectively (30–32). Lastly, wequantified key
phosphorylation sites on the transcription factors,CREBandATF-2.
These two proteins lie downstream of multiple kinase signaling
pathways (see below) and are important for integrating the host re-
sponse to CVB3 infection (33, 34).
We found that inhibitor pairs showed remarkably different

patterns of phosphoprotein dynamics in response to CVB3 in-
fection compared with the corresponding single inhibitors (Fig. 1).
For example, pretreatment of cells with any single inhibitor in the
panel caused an increase in Akt phosphorylation at 1 h p.i. (con-
ditions 2–8) compared with control (condition 1). However, this
spike in phospho-Akt was dampened when single inhibitors were
combined with the Akt inhibitor API-2 (28) (conditions 9–13),
even though API-2 by itself led to increased Akt phosphorylation
at 1 h p.i. (condition 2). Similarly, the nonspecific JNK inhibitor
SP600125 (26) and GSK3 inhibitor SB216763 (27) each increased
Hsp-27 phosphorylation (conditions 6–7) at 24 h p.i. compared
with control. However, combined inhibition with SP600125 and
SB216763 appeared to accelerate Hsp-27 phosphorylation (con-
dition 23), such that phospho-Hsp-27 was decreased relative to
control at 24 h p.i. Overall, we found that dual inhibitor treatments
caused changes in CVB3-induced signaling that were not quanti-
tatively predictable from single inhibitors (Fig. S1). This suggested
that inhibitor pairs had revealed network-level behaviors that
otherwise would have been missed.
Next, we complemented the intracellular signaling dataset with

three functional readouts of productive CVB3 infection: VP1
capsid protein expression, viral progeny release (VPR), and cyto-
toxicity determined by loss of MTS positivity (Fig. 2 and Fig. S2).

We found that all single inhibitor treatments substantially reduced
VP1 expression, VPR, and toxicity caused by CVB3 (P < 0.05).
When these data were used to predict dual inhibitor responses
under the assumption of Bliss independence (35), we found many
instances of significant synergy or antagonism (P < 0.05). In-
terestingly, the pattern of nonadditivity across inhibitor pairs
depended on the readout. For instance, SP600125 plus SB216763
was strongly synergistic for reducing VP1 expression (Fig. 2A).
However, the same combination showedan additiveVPR response
and antagonistic cytotoxicity (Fig. 2 B and C). Our measurements
of CVB3 infectivity further support the conclusion that paired
signaling inhibitors establish network states that cannot be ach-
ieved or predicted if the same inhibitors are used individually (15).
To examine simple signal–response relationships between

measured phosphoprotein dynamics and cell phenotype, we cor-
related each time-integrated phosphorylation profile with VP1,
VPR, and cell death across all 23 conditions (Fig. 2 D–F). We
observed weak covariation between individual phosphoprofiles
and CVB3-induced cell outputs with |R| < 0.5 for all correlations
examined. This indicates that the host response is distributed
across multiple signaling circuits with no individual pathway
dominating in the network as a universal control point (3). We
conclude that systematic intracellular perturbations are not an
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Fig. 1. Single and pairwise small-molecule perturbation of a dynamic nine-
protein phosphorylation signature induced by CVB3 infection. HL1 cells were
pretreated with one of seven small-molecule kinase inhibitors or a paired
combination of these inhibitors for 0.5 h, infected with CVB3 (M.O.I. = 9),
and then assessed for the indicated phosphoproteins by phospho-ELISA.
Data are shown as mean of two or four independent experiments and were
standardized by the z-score function in MATLAB as described in Methods.
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Fig. 2. Paired inhibitor combinations cause synergistic or antagonistic in-
hibition of viral protein expression, progeny release, and cardiotoxicity. HL1
cells were pretreated and infected as described in Fig. 1. (A) VP1 capsid protein
expression, (B) VPR, and (C) cell death were measured by Western blotting,
plaque assay, andMTS assay, respectively (Methods). Data are presented as the
mean of three independent replicates. Both VP1 expression and VPR were
normalized to the DMSO-treated control. Cell death was normalized to the
CVB3-infected DMSO-treated control. Bliss predictions of independence were
performed as described (35), and significant differences between measured
responses and Bliss predictions were calculated by two-tailed t test with un-
equal variance. Measured responses significantly below Bliss prediction were
defined as synergistic inhibition (green), whereas those significantly above
were antagonistic (red), and those not significantly different were additive
(gray). Time-integrated phosphorylation profiles of proteins measured in
Fig. 1 were correlated with (D) VP1 capsid protein expression, (E) VPR, and
(F) cell death at 16 h. Pearson correlation coefficients are shown ±90% Fisher
z-transformed confidence intervals.
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effective means for observing strong links between individual sig-
nals and cell responses.

Hierarchical Deconstruction of the CVB3-Induced Signaling Network.
We next sought to determine whether dual inhibitor treatments
could enrich for correlations that were causal within the signaling
dataset. Our predictions focused on identifying the context-
dependent kinases responsible for the activating phosphorylation of
ATF-2onThr69/Thr71 andofCREBonSer133 (Fig. 1 andTable S1).
Active ATF-2– and CREB-mediated gene expression is an impor-
tant component of the antiviral and pathogenic responses to
CVB3 infection (33, 34).
ATF-2 and CREB phosphorylation sites act as points of con-

vergence for multiple kinase signaling pathways. ATF-2 can be
phosphorylated by the proline-directed JNK (36), p38 (37), and
ERK (38) MAPK pathways. Conversely, CREB is phosphorylated
by basophilic kinases, such as PKA (39), RSK2 downstream of
ERK (40), and MSK1 downstream of ERK and p38 (41). The
pathways mediating ATF-2 and CREB phosphorylation in a given
context depend on which kinases are activated and accessible
during a biological event.Many of the candidateATF-2 andCREB
kinases (or their upstream activators) were measured in our
dataset (Fig. 1 andTable S1).We therefore could test whether data
from the dual inhibitor conditions were particularly important for
correctly identifying the dominant ATF-2 and CREB kinases
during CVB3 infection.
We used hierarchical clustering as a simple pairwise analysis tool

forassemblinggroupsofphosphoproteinswith similarmeasurement
patterns (42). Because different kinase pathways could be important
for ATF-2 and CREB phosphorylation at different stages of CVB3
infection, we clustered the phosphoprotein data for each individual
time point (Fig. S3). We built clusters from four different variations
of the inhibitor dataset. First, we analyzed the complete dataset
comprised of 23 conditions (seven single inhibitor treatments,
15 dual inhibitor treatments, andonecontrol). Then,we subsampled
thecomplete dataset threedifferentways, usingonly treatmentswith
single inhibitors (plus control), only treatments with double inhib-
itors, or with mixtures of treatments involving single and double
inhibitors.Wecontrolled fordifferences in sample size by repeatedly
taking random subsets of double and single + double inhibitor
treatments that matched the size of the single inhibitor treatments
(eight conditions). We averaged the clustering results of many ran-
dom samplings to achieve a size-adjusted clustering dendrogram for
double and single + double treatments (Methods). Lastly, we
inspected the position of ATF-2 and CREB in the resulting den-
drograms and predicted that the nearest measured kinase (or acti-
vation readout) would be the most important biochemically. These
predictions were tested by adding inhibitors, which were chemically
distinct fromthoseused in theoriginal dataset (Fig. 1), shortly before
the selected time point of CVB3 infection.
We found that data from paired inhibitors improved the accu-

racy of clustering-based predictions in several distinct ways. For
example, at 0 h p.i., double inhibitor treatments appeared to syn-
ergize with single treatments independent of the overall sample
size to linkATF-2with JNK (Fig. 3A).Upon treatment of cells with
a JNK peptide inhibitor (JNKi), we reproducibly detected a 2-fold
decrease in phospho-ATF-2 (P < 0.01, Fig. 3 B and C). The de-
crease was specific to JNK inhibition because ATF-2 phosphory-
lation was not significantly perturbed by inhibitors of the p38,
MEK–ERK, or PI3K–Akt pathways (Fig. 3B). This indicates that
JNK signaling partly controls basal ATF-2 phosphorylation that
precedes CVB3 infection.
A second, more practical advantage of paired inhibitors related

to increasing the data “space”with which to define protein clusters
(Fig. 1) (42).Byusingpairwise combinations,we could augment the
breadth of experimental conditions without addingmore inhibitors
to the panel. Importantly, we found that the information contained
in these added conditions was meaningful. For instance, at 0.17 h
p.i., phospho-CREB clustered with p38–MK2 activation for all
size-adjusted, eight-sample clusters, irrespective of which inhibitor
treatments were included (Fig. 3D). By contrast, when the com-
plete dataset was used, we found that phospho-CREB clustered
with MEK–ERK activation, suggesting that RSK was the relevant
CREB kinase (40). Treatment of cells with inhibitors of p38 (43) or
RSK (44) revealed that RSK inhibition abolished CREB phos-

phorylation, whereas p38 inhibition had no effect (Fig. 3E). These
results show that RSK is a key CREB kinase for the early response
toCVB3 infection, which was predicted when the inhibitor training
set was expanded to include paired combinations.
Accurate kinase substrate predictions did not universally require

pairwise data. For example, at 24 h p.i., all of the clustering variants
grouped ATF-2 phosphorylation with p38–MK2 signaling (Fig.
3F). Accordingly, p38 inhibition substantially decreased phospho-
ATF-2 during the late stages of CVB3 infection, whereas JNK or
MEK–ERK inhibition did not (Fig. 3G). We note that the same
p38 inhibitor had no effect on ATF-2 phosphorylation before
CVB3 infection (Fig. 3B), illustrating the context-dependent role
of individual kinases on shared substrates.
To test the accuracy toward more global predictions of mecha-

nism, we combined the time course measurements into a single
dataset and subsampled the inhibitor conditions as before (Fig.
3H). With time-aggregated data, we found that ERK specifically
clustered with CREB phosphorylation because of the information
contained in double inhibitor treatments.WhenRSKwas inhibited
shortly before each time point of CVB3 infection, we found that
CREB phosphorylation was uniformly abolished (Fig. 3I), as pre-
dicted by thedouble inhibitor data. Thus, in contrast to the context-
specific kinases ofATF-2 (Fig. 3B andG), our results support RSK
as the dominant CREB kinase throughout CVB3 infection.

Host Signaling Network Reconstruction Using Paired Inhibitor Data.
The CVB3 clustering results suggested that causal connections
became enriched when paired inhibitors were included. However,
clustered dendrograms focus on the most dominant positive
covariations in a dataset and do not account for shared correlations
among measured variables (42). This is problematic for network
reconstruction (45) because anticorrelations (as in Fig. 2D–F) are
important for defining inhibitory edges between nodes. Further-
more, ignoring shared correlations makes it impossible to distin-
guish whether two nodes are directly connected or whether a third
correlated variable intervenes between them.
To accommodate these scenarios, we used GGM (46) to derive

a candidate host cell signaling network from the phosphoprotein
dataset. GGM assigns edges between nodes based on their partial
correlation—the pairwise correlation that remains after consid-
ering the correlations that two variables share with other variables
in the dataset. Of 36 possible pairwise edges between the nine
phosphoproteins, we identified 10 whose partial correlations were
significantly above background (P < 0.05) (Fig. 4A). Eight of 10
partial correlations were consistent with biochemical mechanisms
that have been reported in the literature (Table S2) although
only one had been specifically implicated in CVB3 pathogenesis
(20). Visual inspection of the resulting GGM network revealed
phospho-IκBα as a network “hub” that was densely connected with
other proteins in the dataset (Fig. 4B). Notably, the assigned edges
between IκBα and p38, JNK, and ATF-2 were not indicated by
cluster-based analysis of the same data (Fig. 3H), demonstrating
the value of the GGM approach for network reconstruction.
IκBα phosphorylation is a key intermediate step toward activation

of NF-κB (47), a transcription factor that is critical for inflammatory
gene expression (48). CVB3 infection itself did not strongly induce
phospho-IκBα (Fig. 1), in agreement with previous work showing
that host cell IκBα levels are reduced by a viral protease encoded by
the CVB3 genome (49). However, upon pretreatment of cells with
various signaling inhibitors that disruptCVB3 infection,weobserved
a spike of IκBα phosphorylation at ∼8 h p.i. IκBα phosphorylation
could conceivably stem from expression of viral proteins, but many
inhibitor conditions that strongly induced phospho-IκBα also
blocked expression of viral proteins (e.g., conditions 2, 11, and 14)
(Figs. 1 and 2A). This raised the possibility that phospho-IκBα arose
fromstimuli thatwere endogenous tohost cells, thereby contributing
to its centrality in the GGM network (Fig. 4B).
Two major inducers of IκBα phosphorylation are the proin-

flammatory cytokines TNF and IL-1 (48).Moreover, in response to
pathogenic and inflammatory stimuli, both TNF and IL-1 can be
released to signal in an autocrine manner (50, 51). We tested
whether these cytokines could be involved in CVB3 pathogenesis
by blocking autocrine signaling with a neutralizing antibody to
TNF and a naturally occurring IL-1 receptor antagonist (IL-1ra).
Although neither perturbation affected CVB3-induced VP1 ex-
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pression (Fig. 4C), we observed potent inhibition ofVPRby plaque
forming assay when either cytokine receptorwas blocked (Fig. 4D).
The decrease in VPR further coincided with significant increases
in cell viability upon CVB3 infection (P < 0.05) (Fig. 4E). Thus,
autocrine TNF and IL-1 signaling is critical for establishing a host
cell signaling network (Fig. 4B) that enables CVB3 propagation,
release, and cardiotoxicity. More generally, our work provides
evidence that coupling intracellular measurements with pairwise
pharmacological perturbations may be particularly efficient at re-
vealing molecular mechanisms between signaling proteins.

Discussion
Interrogating signal transduction by small-molecule pairs is
a convenient method for rapidly exploring network states and
their associated cell outcomes. Our results illustrate that inhibitor
pairs reveal informationabout a signalingnetwork that improves the
prediction of biochemical mechanisms. If signaling profiles of dual
inhibitorswere simply linear superpositions of the individual agents,
then there would be no gain in useful information. A recent report
has suggested such additivity in the intracellular response to drugs

(52).However, thiswork focused onprotein expression levels rather
than posttranslational modifications and examined only three tar-
geted signaling inhibitors (oneofwhich showed clearnonadditivity).
Although gradual changes in protein expression may be roughly
approximated by linear superposition, our data show that direct
perturbations of kinase activity are frequently nonadditive.
There are advantages to exploiting the nonlinearity of signaling

inhibitors when designing experiments. For example, with 10
inhibitors, there are (102 − 10)/2 = 45 additional pairwise oppor-
tunities to further characterize the systems-level properties of
a network. Using this number of inhibitor pairs is easier, more cost-
effective, and (for some analyses) more valuable than adding
45 single inhibitors to study network function. The mechanisms
revealed by such studies will depend heavily on the choice of
inhibitors and their effects on themeasured intracellular pathways,
emphasizing the importance of experimental design when using
a pairwise approach. The key is to view these interventions as
general perturbations to the network rather than as experiments
that will directly assign molecular mechanisms.
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Still higher combinations of inhibitors could readily be tested as
we did for pairs here, but it is uncertain whether these conditions
would reveal additional molecular insights. Chatterjee et al. (8)
recently showed that higher-order combinations of input stimuli
can be quantitatively predicted from pairwise data, suggesting that
nonlinear information processing may normally stop at pairs (11).
However, small-molecule inhibitors differ from extracellular
stimuli in that inhibitors intentionally push the signaling network
into states not normally occupied physiologically. The benefit of
using more than two small molecules will ultimately depend on the
overall connectivity of the network and the ability of the inhibitor
panel to disrupt redundant or compensatory pathways within cells.
Our pairwise analysis of the host signaling response to CVB3

infection highlighted a central role for phospho-IκBα downstream
of autocrine TNF and IL-1 signaling. For nearly two decades, it has
been known that TNF and IL-1 promote myocarditis caused by
CVB3 (53). Circulating TNF and IL-1 levels rise substantially upon
CVB3 infection (54), but the major source of these cytokines in the
heart has been thought to be infiltratingmonocytes (55).Our results
with cultured cells suggest that cardiomyocytes may “prime”
monocyte infiltration and their own toxicity by autocrine stimulation
with inflammatory cytokines. In the future, pairwise inhibitor
strategies couldbeapplied to identify the relevantCVB3-dependent
pathways that drive autocrine TNF and IL-1 signaling in the heart.

Methods
Cells and Viruses. HL1 cells were obtained from Dr. William C. Claycomb.
(Louisiana State University Medical Center, New Orleans, LA) and were
maintained as described previously (17). CVB3 (Kandolf strain) was propa-
gated in HeLa cells and virus titers were determined by the plaque assay.

Viral Infection and Perturbations. HL1 cells were sham-infected with PBS or
infectedwithCVB3(multiplicityof infection[M.O.I.]=9)afterpretreatmentwith
one of 23different experimental conditions (one control, seven single signaling
inhibitors, or 15 combinations of two signaling inhibitors). The chemical inhib-
itors included API-2 (reported Akt inhibitor, 1 μM), BAY11-7085 (IκB, 10 μM),
SB203580 (p38, 50 μM), SB216763 (GSK3β, 10 μM), SP600125 (JNK, 50 μM) PP2
(Src-family kinases, 10 μM), and U0126 (MEK1/2, 20 μM) were obtained from
Tocris Biosciences. SL0101 (RSK, 100 μM), LY294002 (PI3K, 10μM), andSB202190

(p38, 10 μM)were purchased fromCalbiochem. PD184352 (MEK1/2, 10 μM)was
obtained from Santa Cruz Biotechnology. Both anti–TNF-α (1 μM) and IL-1ra
(0.5 μM) were obtained from R&D Systems.

Phospho-ELISA. Cell lysates of infected HL1 cells were collected at 0, 0.17, 1, 8,
16, and 24 h p.i. After normalizing protein concentration, samples were
analyzed by phospho-ELISA (Biosource) for the phosphorylation levels of Akt
(Ser473), ATF2 (Thr69/Thr71), CREB (Ser133), ERK1/2 (Thr185/Tyr187), GSK3β
(Ser9), Hsp27 (Ser82), IκBα (Ser32), JNK1/2 (Thr183/Tyr185), and p38 MAPK
(Thr180/Tyr182) according to the manufacturer’s instructions.

Western Blot Analysis. Cell lysates were prepared as described previously (24).
Equal amounts of protein were subjected to SDS-polyacrylamide gel electropho-
resis and then transferred to nitrocellulose membranes (GE Healthcare). Mem-
braneswere blocked for 1 hwith nonfat drymilk solution (3% in PBS) containing
0.1% Tween-20. Blots were then incubated with one of the following primary
antibodies: anti-VP1 (1:1,000; Dako), anti–β-actin (1:5,000; Sigma), anti–phospho-
ATF2 (1:1,000,Thr69/Thr71; Cell Signaling), anti–phospho-CREB (1:1,000. Ser133;Cell
Signaling), or anti-tubulin (1:5,000; Cell Signaling) for 1 h, followed by incubation
for 1 h with horseradish peroxidase-conjugated secondary antibodies (Santa
Cruz). Immunoreactive bands were visualized by enhanced chemiluminescence
(Pierce) on a ChemiGenius2 CCD camera-based detection system. Where in-
dicated, band intensities were quantified by densitometry with ImageJ.

Plaque Assays. CVB3 titers in cell supernatants were determined onmonolayers
of HeLa cells by an agar overlay plaque assay in triplicate (24). Briefly, samples
were serially diluted 10-fold and overlaid on 90–95% confluent monolayers of
HeLa cells in six-well plates and incubated for 1 h. Mediumwas aspirated, HeLa
cells were washed with PBS twice, and 2 mL of complete DMEM containing
0.75% agar was overlaid onto each well. Cells were incubated at 37 °C for 72 h,
fixed with Carnoy’s fixative (75% ethanol, 25% acetic acid) for 30 min, and
stained with 1% crystal violet. Plaques were counted, and viral concentrations
were calculated as plaque-forming unit per milliliter.

Cell Viability Assays. HL-1 cells were grown in 12-well plates and infected with
CVB3 (M.O.I = 9) for 16 and 24 h after pretreatment with inhibitors. The MTS
solutions (1:5) were added to wells for 2.5 h and then transferred to 96-well
plates. Cell viabilities of infected and noninfected cells were assessed by MTS
assay (CellTiter 96; Promega, Inc.).
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Fig. 4. Data-driven interactions between phosphoprotein
pairs reveal a convergent autocrine circuit through TNF, IL-1,
and phospho-IκBα that promotes CVB3 progeny release and
cardiotoxcity. (A) Significant partial correlation coefficients in
the phosphoprotein network based on single and paired in-
hibitor data. Partial correlation coefficients are shown as the
mean ± SD as determined by bootstrapping. The range of
background partial correlations (dashed line) was calculated
by shuffling the starting dataset before performing the anal-
ysis. (B) Phospho-IκBα is a hub in the measured CVB3-induced
network. An undirected graph of the partial correlations from
A is shown, where the black and red lines indicate positive
and negative partial correlations, respectively. (C) Autocrine
TNF and IL-1 blockade does not affect VP1 expression. HL1
cells were pretreated with TNF-neutralizing antibody (anti-
TNF, 1 μM), IL-1ra (0.5 μM), or anti-TNF + IL-1ra for 1 h and
then infected with CVB3 (M.O.I. = 9) as described in Fig. 1. VP1
expression at 16 h p.i. was quantified by Western blotting
with tubulin used as a loading control. (D) Autocrine TNF and
IL-1 blockade inhibits CVB3 progeny release. A digitized,
representative CVB3 plaque assay is shown from HL1 cells
treated with the indicated inhibitors and infected with CVB3
for 24 h. (E) Autocrine TNF and IL-1 blockade significantly
improves cell viability in CVB3-infected cells. Data are pre-
sented as the mean ± SD of three independent replicates.
Asterisks indicate P < 0.05 by paired t test. Treatment with
anti-TNF or IL-1ra without CVB3 infection did not affect
measured viability (not shown).
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Hierarchical Clustering. Phosphoprotein data were standardized as z-scores
before clustering. Hierarchical clustering was performed with the clustergram
function inMATLABusing a Euclideandistancemetric and average linkage. For
subsampled dendrograms (Fig. 3), 10,000 different submatriceswere randomly
generated fromoriginaldataby the function,and themeanEuclideandistances
were used as the basis for the subsampled clustering with average linkage.

GGM. The GeneNet package (56) was used in R to calculate significant partial
correlation coefficients for signaling molecules. Background partial corre-
lation coefficients were determined by random sampling of 100 different
submatrices of the original dataset.
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