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Abstract

Numerous statistical methods have been developed to explore genomic imprinting

and maternal effects, which are causes of parent-of-origin patterns in complex human

diseases and are confounded. However, most of these methods have limitations: they

may model only one of the two confounded epigenetic effects; they may make strong, yet

unrealistic assumptions about the population to avoid over-parameterization; or they

are applicable only to study designs that require the recruitment of difficult-to-obtain

control families. In this study, we develop a partial likelihood method for detecting

imprinting and maternal effects for a discordant sibpair design (LIMEDSP ) utilizing

all available sibship data without the need to recruit separate control families. By

matching affected and unaffected probands and stratifying according to their familial

genotypes, a partial likelihood component free of nuisance parameters can be extracted

from the full likelihood. This alleviates the need to make assumptions about the popu-

lation. Our theoretical analysis shows that the partial maximum likelihood estimators

based on LIMEDSP are consistent and asymptotically normally distributed. Using a
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closed-form formula, we compare a study design with more independent families and

a design with larger families by keeping the total number of individuals that need to

be genotyped fixed. We also conduct a simulation study to demonstrate the robust

property of LIMEDSP and show that it is a powerful approach that does not require

recruiting control families. To illustrate its practical utility, LIMEDSP is applied to a

clubfoot disease data set and to the data from the Framingham Heart Study.

Keywords: Ascertainment; Association study; Discordant Sibpair design; Imprinting effect;

Maternal effect; Partial likelihood

1 INTRODUCTION

Genome-wide association studies (GWAS) are used to identify common genetic variants

associated with complex human traits and provide valuable insights into the genetic ar-

chitecture of such traits. However, the variants identified thus far explain only a small

proportion of the variability in most complex traits, leading to concerns about “missing

heritability” (Manolio et al. 2009). Efforts to understand this missing heritability have re-

vealed that, because gene expression is a dynamic process, DNA sequence polymorphism is

not the only factor contributing to phenotypic variation. For example, other mechanisms

that may be involved include epigenetic modification and transcriptional/translational reg-

ulation (Hirschhorn 2009; Peters 2014). As a result, researchers are increasingly focusing on

epigenetic factors, including imprinting and maternal genotype effects (Kohda 2013).

Genomic imprinting is an epigenetic factor involving methylation and histone modifica-

tions that completely or partially silence the expression of a gene inherited from a particular
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parent, without altering the genetic sequence (Patten et al. 2014). As such, genomic imprint-

ing can lead to a parent-of-origin pattern in gene expressions, that is, an unequal expression

of a heterozygous genotype, depending on whether the imprinted variant is inherited from

the mother (maternal imprinting) or from the father (paternal imprinting). The imprinting

effect has been hailed as a key factor in understanding the interplay between the epigenome

and genome (Ferguson-Smith 2011). On the other hand, the maternal genotype effect, an-

other epigenetic effect, can also lead to a parent-of-origin pattern. This effect refers to the

phenomenon in which the genotype of a mother is expressed in the phenotype of her off-

spring. This is usually attributed to the mother passing extra mRNAs and proteins to her

offspring during pregnancy, which may change the expression level of certain genes.

Normal genetic imprinting contributes to a wide range of human growth and development

(Wilkinson et al. 2002; Peters 2014). However, the deregulation of imprinted genes has been

found to contribute to a number of complex human diseases, such as Beckwith–Wiedemann

syndrome, Silver–Russell syndrome, Angelman syndrome, and Prader–Willi syndrome (Lim

and Maher 2009). At the same time, studies have shown that maternal effects play an

important role in a variety of diseases, especially those related to pregnancy outcomes, such

as childhood cancers and birth defects (Haig 2004), certain psychiatric illnesses (Palmer

et al. 2008), and pregnancy complications (Svensson et al. 2009). However, limited data

availability and the insufficient power of current methods means that very few genes have

been identified as having genomic imprinting or maternal effects.

Because both imprinting and maternal effects exhibit parent-of-origin patterns, family

data are needed to trace inheritance paths. Here a common study design is that of case-

parent triads, which may also include control-parent triads. Based on this design, numerous
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methods have been proposed to model imprinting and maternal effects simultaneously in

order to avoid potential confounding, because methods that attempt to detect only one of

these effects may have inflated false positive or false negative rates when the other effect exists

as well (see Lin (2013) and the references therein). However, almost all of these methods rely

on strong, yet unrealistic assumptions about the population (e.g., mating symmetry) to avoid

over-parameterization. The likelihood ratio test is a classic example (Weinberg et al. 1998).

An exception is the recently proposed partial likelihood method for detecting imprinting and

maternal effects (LIME), which alleviates the need to make unrealistic assumptions (Yang

and Lin 2013). However, the study design for the LIME method requires the recruitment of

both case families and control families (Yang and Lin 2013), with information from additional

siblings accounted for in an extension to this method (Han et al. 2013). Thus, the price paid

for avoiding assumptions that are difficult to satisfy is the need for separate control families,

which are typically difficult to recruit. Recently, a mixture modeling approach was proposed

for detecting imprinting. However, the data employed in this approach are gene expressions

from a population sample (Li et al. 2015), which differs from our family-based design.

To enjoy the benefits of the LIME method without needing control families, here we

propose a LIME method based on a discordant sibpair design (LIMEDSP ). The proposed

method borrows from the work of Yang and Lin (2013) and Han et al. (2013), but considers

an alternative study design in which a nuclear family is recruited if there is a discordant

sibpair; that is, one sibling is affected and the other is unaffected. Data from additional

siblings (whether affected or not) may also be incorporated to further increase the method’s

power. The idea of LIMEDSP is to match affected proband-parent triads with unaffected

proband-parent triads, and then to factor out common terms involving mating-type proba-

4

Statistica Sinica: Preprint 
doi:10.5705/ss.202016-0114



bilities, the nuisance parameters. By doing so, LIMEDSP circumvents the problem of over-

parameterization, unrealistic assumptions, and the need for control families in the original

LIME design. When control families are available, they can be utilized to further increase

the statistical power of the method. Finally, note that the discordant sibpair design is pop-

ular in linkage and association studies (Horvath and Laird 1998), which provide practical

applications for LIMEDSP .

2 PARTIAL LIKELIHOOD METHOD (LIMEDSP)

2.1 Notation and Genetic Model

Consider a candidate genetic marker with two alleles A and B, where A is the allele of

interest, the variant allele, which may represent disease susceptibility or an epigenetic effect.

In a nuclear family, let F and M be the random variables denoting the number of A alleles

carried by the father and mother respectively, which can take values 0, 1, or 2, corresponding

to genotypes BB, AB, or AA, respectively. Similarly, let Ci be a random variable denoting

the number of A alleles (i.e. the genotype) of child i, for i = 1, 2, · · · Specifically, C1 and

C2 denote the affected and unaffected probands, respectively, through which the family is

recruited, whereas Ci, for i = 3, · · · , denote the additional siblings, if any. Then Di, for

i = 1, 2, · · · , denotes the disease status of a child (affected = 1; normal = 0). Thus, D1 = 1

and D2 = 0. The development of LIMEDSP is based on a multiplicativ risk model for disease

prevalence for a triad family:

P (D = 1|M = m,F = f, C = c) = δrI(c=1)
1 rI(c=2)

2 rI(c=1m)
im sI(m=1)

1 sI(m=2)
2 , (1)
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where r1 and r2 denote the effects of one or two copies of an individual’s own variant allele,

rim denotes the imprinting effect, s1 and s2 denote the effects of one or two copies of the

mother’s variant allele, and δ is the phenocopy rate. The notation c = 1m indicates that

the child’s genotype is AB, where the variant allele A is from the mother. We need to

estimate the model parameters, collectively denoted as θ = (δ, r1, r2, rim, s1, s2)T , although

the phenocopy rate δ may also be regarded as a nuisance parameter. Note that all parameters

are positive, and a parameter is identifiable and estimable only if the required data are

available. Furthermore, rim > 1, < 1,= 1 signify paternal, maternal, or no imprinting

effects, respectively. Although no restriction is placed on s1 and s2, they are typically ≥ 1,

with the equality denoting no maternal effect. A further constraint placed on the parameters

is that P (D|M = m,F = f, C = c) ≤ 1.

2.2 Ascertainment and Probability Formulation

Because families are ascertained through discordant sibpairs, the probability of the observed

data from a family will be conditional on the affection status of the two probands only (i.e.,

not on any additional siblings):

P (M = m,F = f,C1 = c1, C2 = c2, Ci = ci,Di = di, i = 3, · · · | D1 = 1,D2 = 0)

= P (M = m,F = f,C1 = c1|D1 = 1,D2 = 0)P (M = m,F = f,C2 = c2|D1 = 1,D2 = 0) (2)

×
∏

i≥3

P (Ci = ci|M = m,F = f)P (Di = di|M = m,F = f,Ci = ci) (3)

×
P (D1 = 1,D2 = 0)

P (M = m,F = f)P (D1 = 1|M = m,F = f)P (D2 = 0|M = m,F = f)
. (4)

A detailed derivation of this formula can be found in Supplementary Material S1. On the

right-hand side of the above formula, the probability of the observed data is expressed as

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202016-0114



the product of three components: the proband-parents triad probability (mother, father, and

child) conditional on the proband disease status (2), the joint probability of the genotypes and

phenotypes of any additional siblings given the parents’ genotypes (3), and the remaining

part (4). The component expressed in (2) regarding the contribution from the probands

can be thought of as being obtained from a “retrospective” design, which can be turned

into a “prospective” design using stratification, as discussed in detail below. The second

component, given in (3), accounts for information from additional siblings and is formulated

using a “prospective” design and free of any nuisance parameters. The last component shown

in (4) is the remaining term that contains the nuisance parameters. Whereas the prospective

part is straightforward, involving parameters of interest only, as can be seen from disease risk

model (1), the retrospective part is more intricate and is examined in detail in the following

subsection.

We first note that, in (2),

P (M = m,F = f,C1 = c1|D1 = 1,D2 = 0) =
P (M = m,F = f,C1 = c1,D1 = 1,D2 = 0)

P (D1 = 1,D2 = 0)
. (5)

There are 15 possible combinations of genotypes for the parents (M, F) and a child (C);

these, together with their labeling (types), are listed in Table 1, with the corresponding

probability for the numerator in (5) given in the last column of the top segment. Similarly,

the probability P (M = m,F = f, C2 = c2, D1 = 1, D2 = 0) is given in the last column of

the bottom segment of the table. Derivations of the probabilities for a few of the cases are

provided in Supplementary Material S2. In the expressions in Table 1, µmf (m = 0, 1, 2,

f = 0, 1, 2) denotes the mating-type probabilities, that is, µmf = P (M = m,F = f). Note

that we do not make any assumptions about the mating-type probabilities, such as Hardy-
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Weinberg equilibrium (HWE) or even mating symmetry; thus, µmf is not necessarily equal

to µfm. As shown in the table, these nuisance parameters can be factored out completely

from the six model parameters. This observation forms the basis of the partial likelihood

formulation.

2.3 Organization of Data

Table 1 shows that, conditional on each possible triad genotype vector (m, f, c), the counts

of the affected and unaffected proband-parent triads share the same nuisance parameter

components µmf . Thus, the proportion of affected proband-parents triads among all triads

with that genotype vector is free of nuisance parameters. For example, among all proband-

parent triads with the genotype combination (m, f, c), the probability of observing an affected

proband-parent triad is

pmfc =
NP (m, f, C1 = c|D1 = 1, D2 = 0)

NP (m, f, C1 = c|D1 = 1, D2 = 0) +NP (m, f, C2 = c|D1 = 1, D2 = 0)

=
P (m, f, C1 = c,D1 = 1, D2 = 0)

P (m, f, C1 = c,D1 = 1, D2 = 0) + P (m, f, C2 = c,D1 = 1, D2 = 0)

=
P (D = 1|m, f, c)P (D = 0|m, f)

P (D = 1|m, f, c)P (D = 0|m, f) + P (D = 0|m, f, c)P (D = 1|m, f)
, (6)

which includes only those parameters in (1). This manipulation turns the data from a

retrospective design into a “prospective” design using stratifation according to each triad

genotype combination. We denote the denominator of (6) as Smfc. Thus, pmfc = P (D =

1|m, f, c)P (D = 0|m, f)/Smfc.

By applying this idea to the overall likelihood, we can extract a partial likelihood com-

ponent that only involves the parameters of interest. Let n1
mfc and n0

mfc denote the count

of affected proband-parent triads and unaffected proband-parent triads, respetively, with
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genotype M = m, F = f , and C = c. Note that N =
∑

m,f,c n
1
mfc +

∑
m,f,c n

0
mfc is the

number of independent families. Similarly, let sn1
mfc and sn0

mfc denote the counts of affected

additional sibling-parent triads and unaffected additional sibling-parent triads, respectively,

with genotype combination M = m, F = f , and C = c. Recall that we denote the vector

of the parameters of interest by θ = (δ, r1, r2, rim, s1, s2)⊤. We further denote the vector of

nuisance parameters (including the mating-type probabilities) by φ. Then, according to the

three component factorization,

L(θ,φ) =
∏

m,f,c

[P (m, f, C1 = c|D1 = 1, D2 = 0)]n
1

mfc [P (m, f, C2 = c|D1 = 1, D2 = 0)]n
0

mfc

×
∏

m,f,c

[P (c|m, f)]sn
1

mfc+sn0

mfc [P (D = 1|m, f, c)]sn
1

mfc [P (D = 0|m, f, c)]sn
0

mfc

×
∏

m,f,c

[
P (D1 = 1, D2 = 0)

P (m, f)P (D2 = 0|m, f)P (D1 = 1|m, f)

]n1

mfc

∝
∏

m,f,c

p
n1

mfc

mfc (1− pmfc)
n0

mfc

∏

m,f,c

q
sn1

mfc

mfc (1− qmfc)
sn0

mfc (7)

×
∏

m,f,c

S
n1

mfc+n0

mfc

mfc

[
P (D1 = 1, D2 = 0)

P (m, f)P (D2 = 0|m, f)P (D1 = 1|m, f)

]n1

mfc

, (8)

where pmfc and Smfc are defined as above, and qmfc = P (D = 1|M = m,F = f, C = c).

Note that all of the nuisance parameters in φ are present only in (8), whereas the factors

in (7) contain only the parameters in θ, which is therefore taken as our partial likelihood.

The parameters in θ can be inferred by maximizing the partial likelihood instead of the full

likelihood to avoid estimating the nuisance parameters (Cox 1975). In fact, the first factor of

the partial likelihood component can be regarded as the likelihood of the reorganized data,

conditional on each possible triad (m, f, c) type. Within each type, the counts of the affected-

proband triads follow a “renormalized” binomial distribution with the conditional probability

pmfc. The second factor, on the other hand, represents the contributions from the additional
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siblings. Because the affection statuses of the additional siblings are obtained prospectively,

the probability of observing affected sibling-parent triads in a particular familial genotype

combination (m, f, c) is simply the penetrance probability. Furthermore, by design, pmfc

does not involve population disease prevalence information P (D = 1), which is another

nuisance parameter.

2.4 Partial Likelihood and Asymptotic Properties

From the above organization of the data, it is clear that the log partial likelihood lpar(θ) is

as follows:

lpar(θ) =
∑

m,f,c

{
n1
mfc × log[pmfc] + n0

mfc × log[1− pmfc]

}

+
∑

m,f,c

{
sn1

mfc × log[qmfc] + sn0
mfc × log[1− qmfc]

}
.

By solving the score-type equation

∂lpar(θ)

∂θ
= l′par(θ) = 0, (9)

the maximum partial likelihood estimator (mple) of θ can be obtained following the work

of Zhang et al. (2016).

We use n to represent the total number of the four types of triads inferred from the families

in the partial log-likelihood lpar(θ): affected proband-parent triads, unaffected proband-

parent triads, affected additional sibling-parent triads, and unaffected additional sibling-

parent triads. That is,

n =
∑

m,f,c

n0
mfc +

∑

m,f,c

n1
mfc +

∑

m,f,c

sn0
mfc +

∑

m,f,c

sn1
mfc.
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As we can see from the partial likelihood, these four types of triads contribute independent

information, conditional on the genotype of the parents. Thus, n is regarded as the effective

sample size. We study the asymptotic properties of the mple of θ, denoted by θn, as the

effective sample size n tends to infinity.

Let θ0 denote the true value of the parameter vector θ = (δ, r1, r2, rim, s1, s2)⊤.We assume

that θ0 is an interior point of the parameter space Θ ⊂ R6.

Theorem 1 Under the regularity conditions provided in Supplementary Material S3, we

have the following:

(i) The likelihood equation has a unique consistent solution θ̂n, i.e. θ̂n −→ θ0 with

probability tending to one.

(ii) Asymptotic normality:
√
n(θ̂n−θ0) −→ N(0, I−1(θ0)), where I(θ0) is the information

matrix given by

I(θ0) =
∑

m,f,c

[p′mfc(θ0)][p′mfc(θ0)]⊤ ×Bmfc

pmfc(θ0)(1− pmfc(θ0))
+

∑

m,f,c

[q′mfc(θ0)][q′mfc(θ0)]⊤ × Cmfc

qmfc(θ0)(1− qmfc(θ0))
,

where 0 ≤ Bmfc < 1 and 0 ≤ Cmfc < 1 are the limits in probability of {n1
mfc+n0

mfc

n
}

and { sn1
mfc+sn0

mfc

n
}, respectively, when n → ∞.

The proof of the theorem can be found in Supplementary Material S3. Note that although the

consistent solution of partial likelihood score equation (9) is unique (Chanda 1954; Lindsay

1980), there may exist inconsistent roots.
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2.5 Combining Data From the Two Study Designs

In a real data analysis, both case-control family data and discordant sibpair data may exist.

Therefore, it is important to combine all information to make full use of the data, leading

to the proposal of LIMED+. Suppose data set A is obtained from a case-control family

design. Then, the LIME method of Yang and Lin (2013) is applied to extract the partial

likelihood pLA(θ). On the other hand, if data set B is the consequence of a discordant

sibpair study design, then we use the currently proposed LIMEDSP approach to obtain the

partial likelihood component pLB(θ). The total partial likelihood for all available data is

then pL(θ) = pLA(θ) ∗ pLB(θ), given that the data in sets A and B are independent. Note

that if both studies focus on the the same underlying disease model, then the parameters of

interest are identical. The model parameters in θ are estimated by maximizing the partial

likelihood pL(θ). The MPLE of LIMED+ has the same asymptotic properties as those of

LIMEDSP .

3 EVALUATION OF INFORMATION CONTENT

In practical applications, resources are finite. As such, it is important to have a good

understanding of the information contained in commonly used study designs. Questions of

interest include the roles of additional siblings in the DSP design, and in particular, whether

it is better to recruit additional siblings (if available) or additional independent families by

considering “per individual” information. To facilitate this investigation, we consider eight

disease models (Table 2). The first three models have no imprinting nor maternal effects.

Models 4 has maternal effects only, models 5 and 6 have imprinting effects only, and models 7
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and 8 have both types of parent-of-origin effects. For each of these eight models, we consider

eight scenarios, which are combinations of two levels of minor allele frequency (MAF) {0.1,

0.3}, two levels of population disease prevalence P (D = 1) (PREV) {0.05, 0.15}, and two

levels of HWE (not hold = 0, hold = 1). Suppose p is the MAF, then the probabilities of

a genotype taking the values 0, 1, and 2 are (1 − p)2(1 − ζ) + (1 − p)ζ , 2p(1 − p)(1 − ζ),

and p2(1 − ζ) + pζ , respectively, where ζ is the inbreeding parameter (Weir, 1996). When

HWE holds, ζ = 0. When HWE does not hold, ζ is set to 0.1 and 0.3 for males and

females, respectively. Note that with the specification of each scenario and a disease model,

the penetrance probability (1) is fully specified. Because the summation over the 15 joint

probabilities P (D = 1,M, F, C) is equal to the disease prevalence P (D = 1), the phenocopy

rate can be solved from the equation.

Intuitively, including additional siblings in a DSP design will typically increase the infor-

mation available for estimating the model parameters, and, hence the detection power for a

fixed sample of N families. In fact, this is demonstrated using a theoretical calculation of

“per family” information content (Supplementary Fig. S1). However, including additional

siblings leads to a larger number of total individuals, and hence greater genotyping and

phenotyping costs, even if the number of families N remains fixed. As such, whether it is

beneficial to recruit additional siblings is no longer clear from the perspective of “per indi-

vidual” information content, which is the average information contributed by a single family

member. We take up this investigation by considering three study designs, D, D + 1, and

D+ 2, denoting a DSP design with 0, 1, and 2 additional siblings, respectively, leading to a

total of 4, 5, and 6 individuals, respectively, per family. Figure 1 shows the information con-

tent per individual for the three study designs when HWE holds and MAF is 0.3 (scenarios
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6 and 8 in Table 2) for all eight disease models. Plots for the other scenarios are given in the

Supplementary Material, Fig. S2-4. Unsurprisingly, the figures show that there is essentially

no information for inferences on the maternal effect parameters s1, s2 when only discordant

sibpairs are recruited. This is because the two siblings in a discordant sibpair share the

same mother, which provides a very limited contrast for the maternal effect. A theoretical

explanation is provided in Supplementary Material S4. Fortunately, when additional siblings

are available, maternal effects can be estimated. For the other parameters r1, r2, and rim,

the efficiency depends on the disease prevalence. When the disease prevalence is high (0.15),

recruiting additional siblings, which are likely to include affected cases given the common

disease, will increase the efficiency. On the other hand, when the disease prevalence is low

(0.05), recruiting additional independent families or siblings leads to fairly similar results

(apart from estimating the maternal effects), although having a larger number of indepen-

dent families is slightly better for estimating the other parameters. Thus, depending on the

disease prevalence and the which parameters are of greater interest, the most efficient design

may vary.

4 SIMULATION

Given our understanding of LIMEDSP from the theoretical analysis, in this section, we

demonstrate its empirical performance with finite samples by studying its size and power in

a simulation for a typical sample size in genetic epidemiology. We consider D, D + 1, and

D+2 designs, each with 300 families. All combinations of the eight disease models and eight

population scenarios are included, leading to 192 (3× 8× 8) simulation settings, with 1000
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simulated data sets under each setting.

Figure 2 shows the empirical type I error rates and the power of LIMEDSP under all eight

disease models and scenario 1. The three rows represent the three designs considered. The

three bars refer to association, imprinting, and maternal effects, respectively. The results

show that the type I error rates are close to the nominal value of 0.05, marked by a horizontal

dashed line for association under model 1, the imprinting effect under models 1, 2, 3, and

4, and the maternal effect under models 1, 2, 3, 5, and 6, across all three designs. Note

that when there are no additional siblings (i.e. the D design), the type I error rate for the

maternal effect is rather low. This is not surprising because, as we discussed earlier, such

data provide no information for inferring the maternal effect. Comparing the three designs,

we can see that the power increases as additional siblings are recruited, especially when

detecting the maternal effect. Note that LIMEDSP is incapable of detecting the maternal

effect when there are only discordant sibpairs, but that the power increases when additional

siblings are available. The results for the other seven scenarios are similar and are shown in

the Supplementary Material, Fig. S5-11.

5 REAL DATA ANALYSIS

To illustrate the application of LIMEDSP and LIMED+ to real human genetic studies, we

consider two complex diseases with established genetic bases, namely, clubfoot and the Fram-

ingham Heart Study (FHS). Both studies are family based and have extended pedigrees. In

the clubfoot data, we extract nuclear families with discordant sibpairs and additional sib-

lings, if available. Thus, LIMEDSP is applicable to these data. For the FHS, we extract
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nuclear families that have discordant sibpairs or are case-parent or control-parent triads, all

potentially involving additional siblings, and analyze these data using LIMED+.

5.1 Analysis of the Clubfoot Data

Clubfoot is a congenital deformity in which the affected foot appears to have been rotated

internally at the ankle. With treatment, most patients recover completely during early child-

hood and are able to walk and participate in athletics. Thus, understanding the underlying

causal mechanism is important for the development of effective treatment strategies. Our

LIMEDSP analysis uses 87 discordant sibpairs with 33 additional siblings. These range from

discordant sibpairs without additional siblings to discordant sibpairs with six siblings. The

data are obtained from dbGaP (www.ncbi.nlm.nih.gov/gap/).

Among the top (i.e. the smallest p-values) single nucleotide polymorphisms (SNPs) iden-

tified by LIMEDSP (Table 3), some reside within genes that have been identified in the

literature, either for symptoms directly related to clubfoot or for other congenital diseases.

For example, two SNPs (rs11048527 and rs6785520) with very small p-values for imprinting

effects are in genes that have recently been found to be associated with clubfoot. Specifically,

a duplication in a region of the gene ITPR2 was found in a patient presenting symptoms

that include clubfoot (Al-Qattan 2013). The most direct evidence of the involvement of

the gene TNIK comes from the study of Zhang et al. (2014), in which the authors showed

that the p-value for the association between the gene and clubfoot is less than 0.001. As

another example, one of the top SNPs (rs9446305) with some evidence of a maternal effect

is in gene B3GAT2, the association of which with the clubfoot syndrome has been discussed
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(http://biograph.be/concept/graph/C1866294/C1412717). In addition, SNP rs11766624, re-

siding in the AUTS2 gene, also has a relatively small p-value for detecting the maternal effect.

It has been found that deletion of exon 6 of the AUTS2 gene can cause congenital disorders,

including eversion of the feet. Note that multiple studies have identified rare mutations in

the AUTS2 gene with autism, another congenital disease (Oksenberg et al. 2013). In fact,

autism has been found to be related to maternal effects (Zandi et al. 2006), consistent with

our finding.

LIMEDSP also identifies some other genes that have been reported to be associated

with complex developmental traits in the literature. For example, RORA is related to

autism (Nguyen et al. 2010), and TNIK and FARP1 are related to fetal brain outgrowth

and development (Coba et al. 2012). In a recent study, gene IFT52 was linked to skeletal

ciliopathy, manifestations of which include congenital diseases (Girisha et al. 2016). A list

of the top-20 SNPs (with the smallest p-values) identified by LIMEDSP for each of the

association, imprinting, and maternal effects can be found in the Supplementary Material,

Tables S1-3. Given the large number of SNPs investigated, some of those identified may

not be genome-wide significant. A complete set of results for all of the SNPs analyzed are

provided in the Supplementary Material, Fig. S12-14.

5.2 Analysis of the FHS Data

The FHS is a long-term, ongoing cardiovascular risk study on cohorts of residents in Fram-

ingham, Massachusetts. We focus on hypertension, a multifactorial complex trait, which can

increase the risk of coronary heart disease. A person is classified as hypertensive if his/her
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systolic blood pressure is ≥ 140mmHg, or diastolic blood pressure is ≥ 90mmHg, or if he/she

takes medication to control blood pressure. In this analysis, we focus on 263 DSP families

(with 229 additional siblings), 436 case-parent triads, and 281 control-parent triads (with

230 additional siblings in total). Because the data comprise not only DSP families, but also

case-control families, we use the LIMED+ procedure, which is applicable to a mixture of

these two types of families.

Many top SNPs identified as associated with the hypertensive trait by LIMED+ (top seg-

ment of Table 4) have been identified in the literature as related to hypertension, cardiovascular-

related disorders, or other complex diseases. Specifically, SNP rs16892095, residing in the

intron region of gene CC2D2A on chromosome 4, is found to be associated with the Meckel

and Joubert syndromes, conditions that may be related to atrial septal defects (Elmali et al.

2014). In addition, rs2229188 is an SNP associated with hypertension. It is in the intron

region of gene CYP51A1 on chromosome 7. There are a number of haplotypes involving

rs2229188 that are inferred to be strongly associated with hypertension (Wang and Lin

2014).

Several of the genes found to potentially exert an imprinting effect on hypertension (mid-

dle segment of Table 4) are worth discussing. Previous research suggests that the FABP4

level, related to adiposity and metabolic disorders, is a novel predictor of cardiovascular

mortality in end-stage renal disease (Furuhashi et al. 2011). In addition, FABP4 has been

found to contribute to blood pressure elevation and the atherogenic metabolic phenotype,

and an elevated FABP4 level is predisposed by a family history of hypertension (Ota et al.

2012). Gene COL2A1 in chromosome 12 is highly expressed in endocardial cushions and

is very important in heart valve function (Peacock et al. 2008). Furthermore, LRP1B is
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important in the development of atherosclerosis, a disease that affects arterial blood ves-

sels (www.scbt.com/datasheet-49230-lrp1b-n-19-antibody.html). On the other hand, gene

KCNQ3 in chromosome 8, together with other KCNQ channels, is believed to play a func-

tional role in pulmonary artery smooth muscle (Joshi et al. 2006).

Finally, four of the top genes for maternal effects that harbor multiple SNPs (last seg-

ment of Table 4) have been discussed in the literature. In particular, gene CHCHD6 has

been identified as having a hypertension risk effect in a linkage analysis on chromosome 3

(Chiu et al. 2014). On the other hand, gene ENPP3 in chromosome 6 is a member of the

ENPP family. Rucker et al. (2007) demonstrated the presence of this family in the cardiac

system, which suggests that these enzymes could contribute to the fine-tuning control of

the nucleotide levels at the nerve terminal endings of left ventricles involved in several car-

diac pathologies. As another example, gene PDE11A is associated with the development

of adrenocortical hyperplasia, which leads to Cushing syndrome (Horvath et al. 2006), and

Cushing syndrome has clinical manifestations of arterial hypertension. Finally, LRRK2 mu-

tant mice was found to have caused blood pressure changes (Herzig et al. 2011). A list of the

top-20 SNPs (with the smallest p-values) identified by LIMED+ for associatoon, imprinting,

and maternal effects can be found in the Supplementary Material, Tables S4-6. As with

the clubfoot study, some of the SNPs identified may not reach genome-wide significance.

A complete set of results for all of the SNPs analyzed is provided in the Supplementary

Material, Fig. S15-17.

19

Statistica Sinica: Preprint 
doi:10.5705/ss.202016-0114



6 DISCUSSION

Imprinting and maternal effects are two confounding epigenetic factors that are increasingly

being explored for their roles in complex traits. The partial likelihood method proposed in

this paper, LIMEDSP , provides a robust approach for detecting these two effects without

needing to make unrealistic assumptions or requiring the collection of separate control fam-

ilies. Based on the asymptotic property of LIME and a closed-form formula for calculating

information, we provide a tool for comparing the relative efficiency of various study designs

for a specific underlying disease model. We carried out a simulation study with finite samples

to demonstrate the robustness of LIMEDSP without sacrificing power.

We further applied LIMEDSP and LIMED+ to two data sets to illustrate their utility

in analyses of real data. The results show that many of our findings are consistent with

those in the literature, but potential novel genes also emerged. Interestingly, for the FHS

data, even though 2332 of the 48071 SNPs investigated (about 5%) failed the HWE test

at the 0.1% level, none needed to be removed in our analysis, because LIMED+ is robust

to departures from HWE. In fact, four of the SNPs among the top-20 presented in the

Supplementary Material, Table S4 (including one with a small p-value of 3 × 10−7), failed

the HWE test, which would not have been studied using traditional methods for detecting an

association. We also checked for the familial consistency of geneotypes and did not uncover

any problems. For the clubfoot data, a large proportion of the SNPs (over 60%) failed the

HWE tests. This is not surprising because the sample is composed of roughly 50% Hispanic

and 50% non-Hispanic subjects. Further HWE testing within each of the two subsamples

showed that less than 5% of the SNPs failed the test, which is similar to the result from the
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FHS data. As investigated and discussed in Yang and Lin (2013), the LIME methodology is

robust to this type of population stratification, that is, when the sample is a mixture from

two subpopulations in which HWE may or may not hold. Therefore, the results presented

in this paper remain valid.

Because proband information is required in our analysis, we investigated the sensitivity of

LIMED+ against the designations by studying the variability of the outcomes with multiple

sets of proband labeling. We considered SNP rs1562705 as an example, using 100 replications

to test for imprinting effects. In each replication, a discordant sibpair was chosen randomly

as probands from every DSP family and a child was chosen randomly as the proband for

each case or control family. From the plot of the −log10(p-value) versus the replication index

(Supplementary Material, Fig. S18), we can see that although there is variation across the

100 replications, the results remain qualitatively the same because the p-values are small (less

than 10−3). Thus, the proposed method is robust to the somewhat arbitrary designations of

probands, echoing the results from an earlier study (Han et al. 2013), which included only

case and control families.

Despite its advantages, LIMEDSP has several limitations. A disadvantage of LIMEDSP

when compared to LIME is that it cannot be applied directly to families when the father’s

genotype is missing. This is because after we match the affected proband-mother pair with

the unaffected proband-mother pair using the child-mother genotype combination, nuisance

parameters can no longer be separated from the parameters of interest. Details are provided

in Supplementary Material S5. A potential solution is to infer the haplotype frequencies first

using information from nearby loci, and then applying LIMEDSP based on the imputed data

from compatible haplotypes. By weighting the likelihood according to the probabilities of
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the compatible haplotypes, a preliminary simulation shows that the empirical type I error

is close to the nominal value, whereas the power is close to that when using the complete

family data (results not shown). However, the HWE assumption is generally needed to

infer haplotypes, which leads to bias if the assumption is violated, such as when population

stratification exists. Therefore, further study is needed to find a satisfactory solution.

The DSP design addresses a practical difficulty in recruiting control families. As such,

design efficiency is not the foremost criterion. Nevertheless, it is important to understand

the relative efficiency of these two designs, namesly, DSP versus family case-control, to

quantify the information loss in a more practicable design. To this end, we compared the

“per individual” information for these two study designs (Supplementary Material S6). The

results (Supplementary Material, Fig. S19- S26) show that the family case-control design

is typically more powerful, especially in detecting maternal effects. Nevertheless, LIMEDSP

can be more informative than LIME for estimating some of the parameters, especially when

there is a severe imbalance between the number of case families and the number of control

families. This is illustrated by a simulation study; details are provided in Supplementary

Material S6. Because control families are more difficult to recruit, LIMEDSP is a useful

addition to the statistical toolbox for genetic analyses. Most importantly, if data from both

types of study designs are available, they should be utilized fully, as demonstrated in our

FHS analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains detailed derivations of the probability for a DSP with

an arbitrary number of siblings, additional information on the calculation of the probabilities
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in Table 1, the regularity conditions and proof of Theorem 1, estimations of maternal effects

for a DSP design without additional siblings and a DSP design with missing father genotypes,

the relative efficiency of LIMEDSP vs. LIME, and supplementary tables and figures.
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Table 1. Joint probability of mother-father-child triad genotypes and proband disease status

(a). Triad genotype with affected child
Type m f c P (M = m,F = f, C1 = c,D1 = 1, D2 = 0)a

1 0 0 0 µ00δ(1− δ) b

2 0 1 0 µ01
1
2δ

1
2(2− δ − δr1)

3 0 1 1 µ01
1
2δr1

1
2(2− δ − δr1)

4 0 2 1 µ02δr1(1− δr1)
5 1 0 0 µ10

1
2s1δ

1
2(2− δs1 − δr1rims1)

6 1 0 1 µ10
1
2δr1rims1

1
2(2− δs1 − δr1rims1)

7 1 1 0 µ11
1
4δs1

1
4(4− δs1 − δs1r1 − δs1r1rim − δr2s1)

8 1 1 1 µ11
1
4δs1r1(1+rim)

1
4(4−δs1−δs1r1−δs1r1rim−δr2s1)

9 1 1 2 µ11
1
4δs1r2

1
4(4− δs1 − δs1r1 − δs1r1rim − δr2s1)

10 1 2 1 µ12
1
2δr1s1

1
2(2− δr1s1 − δr2s1)

11 1 2 2 µ12
1
2δr2s1

1
2(2− δr1s1 − δr2s1)

12 2 0 1 µ20δr1s2rim(1− δr1s2rim)
13 2 1 1 µ21

1
2δr1s2rim

1
2(2− δr1s2rim − δr2s2)

14 2 1 2 µ21
1
2δr2s2

1
2(2− δr1s2rim − δr2s2)

15 2 2 2 µ22δr2s2(1− δr2s2)

(b). Triad genotype with unaffacted child
Type m f c P (M = m,F = f, C2 = c,D1 = 1, D2 = 0)a

1 0 0 0 µ00δ(1− δ)
2 0 1 0 µ01

1
2(1− δ)12δ(1 + r1)

3 0 1 1 µ01
1
2(1− δr1)

1
2δ(1 + r1)

4 0 2 1 µ02δr1(1− δr1)
5 1 0 0 µ10

1
2(1− δs1)

1
2δs1(1 + r1rim)

6 1 0 1 µ10
1
2(1− δr1rims1)

1
2s1δ(1 + r1rim)

7 1 1 0 µ11
1
4(1− δs1)

1
4δs1(1 + r1 + r1rim + r2)

8 1 1 1 µ11
1
4(2− δs1r1(1 + rim))

1
4δs1(1 + r1 + r1rim + r2)

9 1 1 2 µ11
1
4(1− δs1r2)

1
4δs1(1 + r1 + r1rim + r2)

10 1 2 1 µ12
1
2(1− δr1s1)

1
2δs1(r1 + r2)

11 1 2 2 µ12
1
2(1− δr2s1)

1
2δs1(r1 + r2)

12 2 0 1 µ20δr1s2rim(1− δr1s2rim)
13 2 1 1 µ21

1
2(1− δr1s2rim)

1
2δs2(r1rim + r2)

14 2 1 2 µ21
1
2(1− δr2s2)

1
2δs2(r1rim + r2)

15 2 2 2 µ22δr2s2(1− δr2s2)

Note: aM, F, and C are the number of variant alleles carried by the mother, father, and
child in a triad, and take values of 0, 1, or 2; the mating type probability for
(M,F ) = (m, f) is denoted by µmf ; D1 = 1 (D2 = 0) indicates that the child is affected
(unaffected). bNotation for model parameters, δ: the phenocopy rate; r1: relative risk of
carrying one variant allele; r2: relative risk of carrying two variant alleles; rim: imprinting
effect parameter with a single variant allele from mother; s1: maternal effect with mother
carrying one variant allele; s2: maternal effect with mother carrying two copies of the
variant allele.
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Table 2. Eight disease models and eight scenarios comprised of three factors

Model Parametersa Scenario Factorsb

model/scenario r1 r2 rim s1 s2 MAF PREV HWE
1 1 1 1 1 1 0.1 0.05 0
2 2 3 1 1 1 0.1 0.05 1
3 1 3 1 1 1 0.1 0.15 0
4 1 3 1 2 2 0.1 0.15 1
5 1 3 3 1 1 0.3 0.05 0
6 3 3 1/3 1 1 0.3 0.05 1
7 1 3 3 2 2 0.3 0.15 0
8 3 3 1/3 2 2 0.3 0.15 1

Note: aThe notation for the model parameters is the same as that in Table 1. bMAF: minor
allele frequency; PREV: prevalence (rare = 0.05; common = 0.15); HWE: Hardy-Weinberg
equilibrium (Yes = 1; No = 0); a specification of a disease model and a scenario completely
determines the penetrance model specified in equation (1).

31

Statistica Sinica: Preprint 
doi:10.5705/ss.202016-0114



Table 3. Top SNPs for association, imprinting, and maternal effects for the clubfoot data
using LIMEDSP

Effect SNP Chr Position(BP)∗ Gene -log10(P-value)
Association rs1568717 15 61362446 RORA 3.52
Imprinting rs2145214 20 42237066 IFT52 11.99

rs11048527 12 26604100 ITPR2 11.10
rs6785520 3 170991646 TNIK 10.97

Maternal rs9446305 6 71598570 B3GAT2 4.55
rs11766624 7 69887084 AUTS2 4.50
rs585157 13 99045319 FARP1 4.47

∗Position (BP) is the genomic position of the SNP relative to the start of the chromosome (Chr) in terms of
the base pair (BP).
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Table 4. Top SNPs for association, imprinting and maternal effects for the Framingham
Heart Study data using LIMED+

Effect SNP Chr Position(BP)∗ Gene -log10(P-value)
Association rs16892095 4 15518356 CC2D2A 15.65

rs2229188 7 92134309 CYP51A1 15.11
Imprinting rs2290201 8 82394701 FABP4 5.32

rs2213162 12 48390721 COL2A1 4.46
rs1562705 2 142796062 LRP1B 4.36
rs6471053 8 133310740 KCNQ3 4.10

Maternal rs2272487 3 126451936 CHCHD6 8.44
rs9852584 3 126445456 CHCHD6 6.26
rs13230531 7 6114558 CHCHD6 5.52
rs7741727 6 132069916 ENPP3 5.19
rs1370656 2 178607997 PDE11A 5.18
rs7133914 12 40702910 LRRK2 5.16

∗The Position(BP) is the genomic position of the SNP relative to the start of the chromosome (Chr) in terms
of base pair (BP).
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Figure Legends

Figure 1: Information content per individual for eight disease models and two PREVs

when HWE holds and MAF is 0.3. Each curve depicts the information for estimating one of

the five parameters for data types D, D + 1, and D + 2.

Figure 2: Type I error rate and power of LIMEDSP under eight disease models and

scenario 1, as given in Table 2. The three rows represent three data types: D, D + 1, and

D + 2, respectively. The three bars refer to association, imprinting, and maternal effects,

respectively. The horizontal line marks the nominal level of 0.05.
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Figure 1. Information content per individual for eight disease models and two PREVs when
HWE holds and MAF is 0.3. Each curve depicts the information for estimating one of the
five parameters for data types D, D + 1, and D + 2.
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Figure 2. Type I error rate and power of LIMEDSP under eight disease models and scenario
1, as given in Table 2. The three rows represent three data types: D, D+1, and D+2. The
three bars refer to association, imprinting, and maternal effects, respectively. The horizontal
line marks the nominal level of 0.05.
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Supplementary Material for“Imprinting and

Maternal E↵ect Detection Using Partial

Likelihood Based on Discordant Sibpair

Data”

Fangyuan Zhang and Shili Lin

S1. Detailed Derivation of Probability for a DSP with

Siblings

In the main text, the probability for a discordant sibpair with an arbitrary number of sib-
lings is factored into three components (expressions (2)-(4) in main text). In the following,
we provide the detailed derivation for the formula.

P (M = m,F = f, C1 = c1, C2 = c2, Ci

= c
i

, D
i

= d
i

, i = 3, · · · | D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0)

⇥ P (C
i

= c
i

, D
i

= d
i

, i = 3, · · · | M = m,F = f, C1 = c1, C2 = c2, D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0) (1)

⇥
Y

i�3

P (C
i

= c
i

|M = m,F = f)P (D
i

= d
i

|M = m,F = f, C
i

= c
i

). (2)

The above expression holds because given parents’ genotypes, di↵erent children’s genotypes
and disease status are independent. In particular, we note that expression (2) is the same
as expression (3) in the main text. We then take a further look at expression (1).

P (M = m,F = f, C1 = c1, C2 = c2 | D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (C2 = c2 | M = m,F = f, C1 = c1, D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (C2 = c2 | M = m,F = f,D2 = 0) (3)

= P (M = m,F = f, C1 = c1 | D1 = 1, D2 = 0)P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0) (4)

⇥ P (C2 = c2 | M = m,F = f,D2 = 0)

P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0)
. (5)

1



Now note that (3) holds because of conditional independence again, and expresion (4) is
the same as (2) in the main text. We then further check expression (5):

P (C2 = c2 | M = m,F = f,D2 = 0)

P (M = m,F = f, C2 = c2 | D1 = 1, D2 = 0)

=
P (C2 = c2 | M = m,F = f,D2 = 0)P (D1 = 1, D2 = 0)

P (M = m,F = f, C2 = c2, D1 = 1, D2 = 0)

=
P (C2 = c2 | M = m,F = f,D2 = 0)P (D1 = 1, D2 = 0)

P (M = m,F = f,D2 = 0)P (C2 = c2 | M = m,F = f,D2 = 0)P (D1 = 1 | C2 = c2,M = m,F = f,D2 = 0)

=
P (D1 = 1, D2 = 0)

P (M = m,F = f,D2 = 0)P (D1 = 1 | M = m,F = f)
(6)

=
P (D1 = 1, D2 = 0)

P (M = m,F = f)P (D2 = 0 | M = m,F = f)P (D1 = 1 | M = m,F = f)
. (7)

Again, expression (6) holds because of conditional independence, and expression (7) is the
same as (4) in the main text (4). Therefore, the probability of interest is factored into the
products of expressions (4), (2) and (7), which correspond to expressions (2), (3), and (4),
respectively, in the main text, completing the deviation of the probability.

S2. Calculation of Probabilities in Table 1.

Consider a candidate genetic marker with two alleles A and B, where A is the allele of
interest, the variant allele, which may code for disease susceptibility or epigenetic e↵ect.
In a nuclear family, let F and M be the random variables denoting the number of A alleles
carried by father and mother respectively, which can take values 0, 1, or 2, corresponding to
genotype BB, AB or AA, respectively. Similarly, let C

i

be the random variable denoting the
number of A alleles, that is, the genotype of child i, i = 1, 2, · · · . Specifically, C1 and C2 are
designated for the a↵ected and una↵ected probands, respectively, through which the family
is recruited, whereas C

i

, i = 3, · · · , are for the additional siblings, if any. D
i

, i = 1, 2, · · · ,
denote disease status of children (1 - a↵ected; 0 - normal). Thus, D1 = 1 and D2 = 0.

In table 1, the formulas to calculate the joint probabilities are as follows:

P (M = m,F = f, C1 = c,D1 = 1, D2 = 0)

= P (M = m,F = f)P (C1 = c|M = m,F = f)

⇥ P (D1 = 1|M = m,F = f, C1 = c)P (D2 = 0|M = m,F = f), and

P (M = m,F = f, C2 = c,D1 = 1, D2 = 0)

= P (M = m,F = f)P (C2 = c|M = m,F = f)

⇥ P (D2 = 0|M = m,F = f, C2 = c)P (D1 = 1|M = m,F = f).

For all types other than type 8 (Table 1), if a child has one copy of the variant allele, the
parental origin can be unambiguously identified, and hence the joint probability can be

2



easily obtained by extracting the relevant factors from the relative risk model for disease
prevalence.

P (D = 1|M = m,F = f, C = c) = �r
I(c=1)
1 r

I(c=2)
2 r

I(c=1m)
im

s
I(m=1)
1 s

I(m=2)
2 , (8)

where the parameters: r1 and r2 denote the e↵ect of one or two copies of an individual’s
own variant allele, r

im

denotes imprinting e↵ect, s1 and s2 denote the e↵ect of one or two
copies of the mother’s variant allele, and � is the phenocopy rate. The notation c = 1

m

denotes that the child’s genotype is heterozygous, where the variant allele is from mother.
The indicator variable D denotes the disease status of a child (1 - a↵ected; 0 - normal).We
use µ

mf

’s (m = 0, 1, 2, f = 0, 1, 2) to denote the mating type probabilities.
For example, in the familial genotype combination (m, f, c) = (2, 0, 1),

P (M = 2, F = 0, C1 = 1, D1 = 1, D2 = 0)

= P (M = 2, F = 0)P (C1 = 1|M = 2, F = 0)

⇥ P (D1 = 1|M = 2, F = 0, C1 = 1)P (D2 = 0|M = 2, F = 0)

= µ20�r1s2rim(1� �r1s2rim),

and

P (M = 2, F = 0, C2 = 1, D1 = 1, D2 = 0)

= P (M = 2, F = 0)P (C2 = 1|M = 2, F = 0)

⇥ P (D2 = 0|M = 2, F = 0, C2 = 1)P (D1 = 1|M = 2, F = 0)

= µ20(1� �r1s2rim)�r1s2rim.

For type 8, in which (m, f, c) = (1, 1, 1), the variant allele carried by the child can be
inherited either from the mother or the father with equal probabilities and, as such, the
joint probability ends up being the summation of two probabilities weighted equally. We
show the calculation of P (M = 1, F = 1, C1 = 1, D1 = 1, D2 = 0) as an example:

P (M = 1, F = 1, C1 = 1, D1 = 1, D2 = 0)

= P (M = 1, F = 1)P (C1 = 1
m

|M = 1, F = 1)

⇥ P (D1 = 1|M = 1, F = 1, C1 = 1
m

)P (D2 = 0|M = 1, F = 1)

+ P (M = 1, F = 1)P (C1 = 1
f

|M = 1, F = 1)

⇥ P (D1 = 1|M = 1, F = 1, C1 = 1
f

)P (D2 = 0|M = 1, F = 1)

= 1/4µ11�r1s1(1 + r
im

)1/4(4� �s1 � �r1s1 � �r1s1rim � �r2s1).

S3. Regularity Conditions and Proof of Theorem 1

The LIME
DSP

uses a multiplicative relative risk model for the disease prevalence are as
given in (1) above. The vector of parameters of interest is denoted by

✓ = (�, r1, r2, rim, s1, s2).

3



Let n1
mfc

and n0
mfc

denote the count of a↵ected proband-parent triads and una↵ected
proband-parent triads with genotype M = m, F = f , and C = c, respectively. Simi-
larly, let sn1

mfc

and sn0
mfc

denote the counts of a↵ected additional sibling-parent triads and
una↵ected additional sibling-parent triads with genotype combination M = m, F = f and
C = c, respectively.

To make inference about ✓, we use the partial log-likelihood

l
par

(✓) =
X

m,f,c

⇢
n1
mfc

⇥ log[p
mfc

(✓)] + n0
mfc

⇥ log[1� p
mfc

(✓)]

�

+
X

m,f,c

⇢
sn1

mfc

⇥ log[q
mfc

(✓)] + sn0
mfc

⇥ log[1� q
mfc

(✓)]

�

= l
t1(✓) + l

t2(✓).

The e↵ective total sample size, called n, in the partial log-likelihood l
par

(✓), is computed
as

n =
X

m,f,c

[n0
mfc

+ n1
mfc

] +
X

m,f,c

[sn0
mfc

+ sn1
mfc

]

= (N +N) + (sN0
t

+ sN1
t

)

= n
t

+ sn
t

where N denotes the total number of independent families, and (sN0
t

, sN1
t

) are the total
number of una↵ected and a↵ected siblings in all complete families, respectively. Hence n

t

is the total number of probands children, and sn
t

is the total number of additional siblings
besides discordant sibpair.

The maximum partial likelihood estimator (mple) of ✓ is denoted by

b✓
n

= argmax✓ l
par

(✓)

which is assumed to be obtained by solving the score-type equation

@l
par

(✓)

@✓
= l0

par

(✓) = l0
t1(✓) + l0

t2(✓) = 0.

We study the theoretical properties of b✓
n

, as the e↵ective sample size n = n
t

+ sn
t

tends
to infinity. We should note that here when n ! 1, each of the sample sizes (n

t

, sn
t

) also
tend to infinity, at the same rate, such that

n
t

n
�! 1 ,

sn
t

n
�! 1.

Clearly, this is under the assumption that both sums
P

are present in the partial log-
likelihood l

par

(✓) defined above. If, however, there are no additional siblings, the theorem
still holds and the proof is analogous.
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Regularity Conditions

Let ✓0 be the true value of the parameter of interest. In what follows we denote

C
rn(✓0) = {✓ 2 ⇥ ⇢ R6 : k✓ � ✓0k  r

n

}

as some neighborhood of ✓0, with radius r
n

, where r
n

! 0, as n tends to infinity. Later
on, we will see that this rate is n�1/2. The regularity conditions are:

R1. The true value ✓0 of the parameter vector ✓ is an interior point of the compact
parameter space ⇥.

R2. The cell probabilities p
mfc

(✓) and q
mfc

(✓) admit up to their third-order partial deriva-
tives with respect to the elements of the parameter vector ✓ = (�, r1, r2, rim, s1, s2),
for any ✓ 2 C

rn(✓0).

R3. The cell probabilities p
mfc

(✓) and q
mfc

(✓) are bounded away from the boundaries zero
and one, at least for those ✓ 2 C

rn(✓0). Further, the partial derivatives of the cell
probabilities, up to third order, are bounded by some constants, for any ✓ 2 C

rn(✓0).

R4. Identifiability: for any ✓1,✓2 2 ⇥, p
mfc

(✓1) = p
mfc

(✓2), qmfc

(✓1) = q
mfc

(✓2), for all
(m, f, c) combinations, imply that ✓1 = ✓2.

R5. The information matrix

I(✓) = �E{l00
par

(✓)} = �E{@
2l

par

(✓)

@✓@✓T

}

is positive definite for any ✓ 2 C
rn(✓0).

We adopt the line of proof provided in Chanda (1954) and Lindsay (1980) to our partial
likelihood context.

Proof of Theorem 1

Proof of Part (i) of Theorem 1. For simplicity in notation, we denote the vector of
parameters of interest as ✓ = (�, r1, r2, rim, s1, s2) = (✓1, ✓2, ✓3, ✓4, ✓5, ✓6). By the regularity
Condition R2, for the first part of the partial log-likelihood, l

t1(✓), representing proband
triads, we have that

@l
t1(✓)

@✓
j

= l0
t1,j(✓) = l0

t1,j(✓0) +
6X

k=1

l00
t1,jk(✓0)(✓k � ✓0

k

) +
1

2

6X

l,k

l000
t1,jkl(e✓)(✓k � ✓0

k

)(✓
l

� ✓0
l

) (9)

for j = 1, 2, . . . , 6, where e✓ is between ✓0 and ✓ 2 C
rn(✓0); l00

t1,jk(·) and l000
t1,jkl(·) are the

second and third-order partial derivatives of the function l
t1(·), respectively. For j, k, l =

1, 2, 3, 4, 5, 6, we have
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l0t1,j(✓) =
X

m,f,c

@pmfc(✓)

@✓j
⇥
⇢

n1
mfc

pmfc(✓)
�

nmfc � n1
mfc

1� pmfc(✓)

�

l00t1,jk(✓) =
X

m,f,c

@2pmfc(✓)

@✓j@✓k
⇥
⇢

n1
mfc

pmfc(✓)
�

nmfc � n1
mfc

1� pmfc(✓)

�

�
X

m,f,c

@pmfc(✓)

@✓j
⇥ @pmfc(✓)

@✓k
⇥
⇢

n1
mfc

[pmfc(✓)]2
+

nmfc � n1
mfc

[1� pmfc(✓)]2

�

l000t1,jkl(✓) =
X

m,f,c

@3pmfc(✓)

@✓j@✓k@✓l
⇥
⇢

n1
mfc

pmfc(✓)
�

nmfc � n1
mfc

1� pmfc(✓)

�

�
X

m,f,c

@2pmfc(✓)

@✓j@✓k
⇥ @pmfc(✓)

@✓l
⇥
⇢

n1
mfc

[pmfc(✓)]2
+

nmfc � n1
mfc

[1� pmfc(✓)]2

�

�
X

m,f,c


@2pmfc(✓)

@✓j@✓l
⇥ @pmfc(✓)

@✓k
+

@pmfc(✓)

@✓j
⇥ @2pmfc(✓)

@✓k@✓l

�
⇥
⇢

n1
mfc

[pmfc(✓)]2
+

nmfc � n1
mfc

[1� pmfc(✓)]2

�

�
X

m,f,c

@pmfc(✓)

@✓j
⇥ @pmfc(✓)

@✓k
⇥ @pmfc(✓)

@✓l

⇢ �2n1
mfc

[pmfc(✓)]3
+

2(nmfc � n1
mfc)

[1� pmfc(✓)]3

�

for any ✓ 2 C
rn(✓0).

For every triad type (m, f, c), denote the ratio

r1
mfc

=
n1
mfc

n
mfc

where n
mfc

= n0
mfc

+ n1
mfc

. The form of the partial log-likelihood l
par

(✓) suggests that, for
each triad type (m, f, c) and conditional on n

mfc

, we have n1
mfc

|n
mfc

⇠ Binomial(n
mfc

, p
mfc

(✓)).
By using a double conditional expectation technique, it is thus easy to see that E(r1

mfc

) =
p
mfc

(✓). Now, we have that

n�1E{l0
t1,j(✓)} = 0

�n�1E{l00
t1,jk(✓)} =

X

m,f,c

@p
mfc

(✓)

@✓
j

⇥ @p
mfc

(✓)

@✓
k

⇥
⇢

E(n
mfc

/n)

[p
mfc

(✓)][1� p
mfc

(✓)]

�
= I

t1,jk(✓)

for any ✓ 2 C
rn(✓0), where E(·) is the expected value under the model with the parameter

✓.
Further, by the regularity condition R3, for any ✓ 2 C

rn(✓0),

n�1|l000
t1,jkl(✓)| 

X

m,f,c

2

����
@3p

mfc

(✓)

@✓
j

@✓
k

@✓
l

����+
X

m,f,c

����
@2p

mfc

(✓)

@✓
j

@✓
k

⇥
@p

mfc

(✓)

@✓
l

����⇥
⇢

(n
mfc

/n)

[p
mfc

(✓)][1� p
mfc

(✓)]

�

+
X

m,f,c

����
@2p

mfc

(✓)

@✓
j

@✓
l

⇥
@p

mfc

(✓)

@✓
k

+
@p

mfc

(✓)

@✓
j

⇥
@2p

mfc

(✓)

@✓
k

@✓
l

����⇥
⇢

(n
mfc

/n)

[p
mfc

(✓)][1� p
mfc

(✓)]

�

+ 2
X

m,f,c

����
@p

mfc

(✓)

@✓
j

⇥
@p

mfc

(✓)

@✓
k

⇥
@p

mfc

(✓)

@✓
l

����

⇢
(n

mfc

/n)

[p
mfc

(✓)]2
+

(n
mfc

/n)

[1� p
mfc

(✓)]2

�

= O
p

(1),
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which implies that l000
t1,jkl(✓) = O

p

(n), for any ✓ 2 C
rn(✓0).

On the other hand, by the law of large numbers, we have that

r1
mfc

=
n1
mfc

n
mfc

w.p.o���! p
mfc

(✓0) ,
n
mfc

n

w.p.o���! E

✓
n
mfc

n

◆
= B

mfc

(10)

for some constant 0 < B
mfc

< 1, as n ! 1, where w.p.o stands for with probability
tending to one. Thus, using (10), as n ! 1, we have

l0
t1,j(✓0)/n

w.p.o���! 0 , l00
t1,jk(✓0)/n

w.p.o���! I
t1,jk(✓0) , l000

t1,jkl(✓0)/n = O
p

(1). (11)

for j, k, l = 1, 2, . . . , 6.
By similar argument,s and under the regularity conditions R1-R5, for the remaining

three terms of the partial log-likelihood, we have that

n�1E{l0
t2,j(✓)} = 0

�n�1E{l00
t2,jk(✓)} =

X

(m,f,c)

@q
mfc

(✓)

@✓
j

⇥ @q
mfc

(✓)

@✓
k

⇥
⇢

E(sn
mfc

/n)

[q
mfc

(✓)][1� q
mfc

(✓)]

�
= I

t2,jk(✓)

n�1{l000
t2,jkl(✓)} = O

p

(1) as n ! 1.

Thus, similar to (11), as n ! 1, we have that

l0
t2,j(✓0)/n

w.p.o���! 0 , l00
t2,jk(✓0)/n

w.p.o���! I
t2jk(✓0) , l000

t2,jkl(✓0)/n = O
p

(1),

for j, k, l = 1, 2, . . . , 6.
Using the above results, we have that

l0
par

(✓0)/n
w.p.o���! 0 , l00

par

(✓0)/n
w.p.o���! I(✓0) , l000

par

(✓0)/n = O
p

(1) (12)

as n ! 1. Here I(✓0) is a 6⇥6 information matrix constructed based on the {I
t1,jk(✓), It2,jk(✓)},

for j, k = 1, 2, . . . , 6.
Thus consider the score-type equation divided by the total sample size n, which leads

to the equations

n�1
6X

k=1

l00
par,jk

(✓0)(✓k � ✓0
k

) = �n�1l0
par,j

(✓0)�
1

2
n�1

6X

l,k=1

l000
par,jkl

(e✓)(✓
k

� ✓0
k

)(✓
l

� ✓0
l

)

for j = 1, . . . , 6. By expanding the summation on the left hand side and re-writing with
respect to each ✓

k

� ✓0
k

, we have that

✓
k

�✓0
k

=
6X

j=1

[
�1

n
l0
par,j

(✓0)]⇥l⇤
par,jk

(✓0)�
1

2

6X

l,r=1


(✓

r

�✓0
r

)(✓
l

�✓0
l

)

✓ 6X

j=1

[
1

n
l000
par,jrl

(e✓)]⇥l⇤
par,jk

(✓0)

◆�

(13)
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for k = 1, . . . , 6, where l⇤
par,jk

(✓0) are the elements of the inverse matrix

✓
l00
par,jk

(✓0)/n; j, k =

1, . . . , 6

◆�1

. By (12), the first term on the right hand side of the above equations tends

to zero, as n ! 1. This implies that the equations in (13) have at least one solution, in
terms of ✓

k

� ✓0
k

, that satisfies

✓̂
k

� ✓0
k

�!p 0 ; k = 1, . . . , 6,

as n ! 1. Thus, there exists a solution, say, b✓
n

of the score-type equation l0
par

(✓) = 0

such that b✓
n

�!p ✓0, as n ! 1.
Now we prove the uniqueness of such consistent estimator. Under the regularity condi-

tions R1-R5, and consistency of ✓̂
n

, we have that

1

n
l00
par

(✓̂
n

) + I(✓0) = o
p

(1) (14)

as n tends to 1, where I(✓0) is the positive definite information matrix. Let us assume
that there exist two such consistent estimators, say, ✓̂1n and ✓̂2n of ✓0 that are the solutions
of the score-type equation

l0
par

(✓) = 0.

By the extension of Rolle’s theorem to multivariate case, there exists a point ✓̃
n

laying
inside a hyper-cell with the vector ✓̂1n � ✓̂2n as its diagonal, such that

l00
par

(✓̃
n

) = 0. (15)

On the other hand, since ✓̂1n and ✓̂2n are consistent estimators, so is ✓̃
n

and it must
satisfy (14). But clearly (14) and (15) contradict. This implies that the consistent estimator
✓̂
n

is unique. This completes the proof of Part(i). �
The result of Lemma 1 below is used for proving Part (ii) of Theorem 1.

Lemma 1 Under the regularity conditions R1-R5, we have that

l0
par

(✓0)p
n

�!d N(0, I(✓0))

as n ! 1.

Proof of Lemma 1. Consider the partial-score function

@l
par

(✓)

@✓

����
✓=✓0

= l0
par

(✓0) = l0
t1(✓0) + l0

t2(✓0)

=
X

m,f,c

n
mfc

⇥ p0
mfc

(✓0)

p
mfc

(✓0)[1� p
mfc

(✓0)]
⇥ [r1

mfc

� p
mfc

(✓0)]

+
X

m,f,c

sn
mfc

⇥ q0
mfc

(✓0)

q
mfc

(✓0)[1� q
mfc

(✓0)]
⇥ [s1

mfc

� q
mfc

(✓0)],
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where p0
mfc

(✓0) and q0
mfc

(✓0) are the 6-dimensional vectors of the partial derivatives of the
cell probabilities p

mfc

(✓) and q
mfc

(✓), with respect to ✓, which are evaluated at the true
✓0. Also,

r1
mfc

=
n1
mfc

n
mfc

, s1
mfc

=
sn1

mfc

sn
mfc

,

are the ratios of the number of cases among: proband (m, f, c) triads and additional (m, f, c)
sibling triads respectively.

We first try to find the limiting distribution of l0
t1(✓0)/

p
n, as n ! 1. We have that

l0
t1(✓0)p

n
=
X

m,f,c

p0
mfc

(✓0)

p
mfc

(✓0)[1� p
mfc

(✓0)]
⇥
r

n
mfc

n
⇥p

n
mfc

[r1
mfc

� p
mfc

(✓0)]

In what follows we use the Wald device. For any non-zero vector v 2 R6,

w
n

(✓0) =
v>l0

t1(✓0)p
n

=
X

m,f,c

u
mfc

(✓0)

p
mfc

(✓0)[1� p
mfc

(✓0)]
⇥
r

n
mfc

n
⇥p

n
mfc

[r1
mfc

� p
mfc

(✓0)]

where u
mfc

(✓0) = v>p0
mfc

(✓0) is a scalar. Note that conditional on the n
mfc

’s, the ratios
r1
mfc

’s are independent, each having the conditional asymptotic distribution

p
n
mfc

[r1
mfc

� p
mfc

(✓0)] �!d N(0, p
mfc

(✓0)(1� p
mfc

(✓0))

as n ! 1. Note that since n
mfc

’s are following a multinomial distribution, say, with the
joint probability mass function g(n

mfc

;m, f, c), then

F
n

(w) = P (w
n

(✓0)  w) =
ntX

{m,f,c:nmfc=0}

P (w
n

(✓0)  w|n
mfc

,m, f, c) g(n
mfc

;m, f, c).

On the other hand, as n ! 1, since n
mfc

/n
p! E(n

mfc

/n) = B
mfc

, for some constant
0 < B

mfc

< 1, then
(w

n

(✓0)|nmfc

,m, f, c) �!d N(0, �2(✓0))

where

�2(✓0) =
X

m,f,c

u2
mfc

(✓0)⇥ B
mfc

p
mfc

(✓0)(1� p
mfc

(✓0))
.

Therefore, for w 2 R, as n ! 1,

F
n

(w) �! 1

�(✓0)
�

✓
w

�(✓0)

◆

where �(·) is the distribution function of the standard normal. This implies that

w
n

(✓0) �!d N(0, �2(✓0))
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as n ! 1. Hence,

l0
t1(✓0)p

n
�!d N

 
0,
X

m,f,c

[p0
mfc

(✓0)][p0
mfc

(✓0)]> ⇥ B
mfc

p
mfc

(✓0)(1� p
mfc

(✓0))

!
, n ! 1.

Similarly, we have

l0
t2(✓0)p

n
�!d N

 
0,
X

m,f,c

[q0
mfc

(✓0)][q0
mfc

(✓0)]> ⇥ C
mfc

q
mfc

(✓0)(1� q
mfc

(✓0))

!
,

for some constants 0 < C
mfc

< 1, such that, as n ! 1,

sn
mfc

n
�!p C

mfc

.

Thus, by the independence of the ratios r1
mfc

and s1
mfc

, as the e↵ective sample size
n = n

t

+ sn
t

tends to infinity, we have

l0
par

(✓0)p
n

=
l0
t1(✓0)p

n
+

l0
t2(✓0)p

n
�!d N (0, I(✓0))

where I(✓0) = I
t1(✓0) + I

t2(✓0), and

I
t1(✓0) =

X

m,f,c

[p0
mfc

(✓0)][p0
mfc

(✓0)]> ⇥ B
mfc

p
mfc

(✓0)(1� p
mfc

(✓0)
,

I
t2(✓0) =

X

m,f,c

[q0
mfc

(✓0)][q0
mfc

(✓0)]> ⇥ C
mfc

q
mfc

(✓0)(1� q
mfc

(✓0)
,

are 6⇥ 6-dimensional positive definite information matrices.
Hence, as n ! 1, we have that

l0
par

(✓0)p
n

�!d N(0, I(✓0)). (16)

This completes the proof of Lemma 1. �
Proof of Part (ii) of Theorem 1. Let b✓

n

be the MPLE, which satisfies the score-type
equation

l0
par

(b✓
n

) = 0.

By the regularity conditions R1-R5, we have that

0 =
1

n
l0
par

(✓0) +
1

n
l00
par

(✓0)(1 + o
p

(1))⇥ (b✓
n

� ✓0)

=
1

n
l0
par

(✓0) +


1

n
l00
par

(✓0) + I(✓0)� I(✓0)

�
(1 + o

p

(1))⇥ (b✓
n

� ✓0)

where by (12) l00
par

(✓0)/n+ I(✓0) = o
p

(1). Therefore, by the result of Lemma 1,

p
n (b✓

n

� ✓0) = I�1(✓0)⇥
l0
par

(✓0)p
n

�!d N(0, I�1(✓0)),

as n ! 1. This completes the proof of Part(ii) of Theorem 1. �
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S4. Estimation of Maternal E↵ect with the DSP Design

without Additional Siblings

To analyze the information for detecting parent-of-origin e↵ects, especially maternal e↵ect,
we take a closer look at p

mfc

in the partial likelihood:

p
mfc

=
P (D = 1|m, f, c)P (D = 0|m, f)

P (D = 1|m, f, c)P (D = 0|m, f) + P (D = 0|m, f, c)P (D = 1|m, f)

= 1/

✓
1 +

P (D = 0|m, f, c)

P (D = 0|m, f)
/
P (D = 1|m, f, c)

P (D = 1|m, f)

◆
.

P (D = 1|m, f, c)

P (D = 1|m, f)
=

�r
I(C=1)
1 r

I(C=2)
2 r

I(C=1m)
im

s
I(M=1)
1 s

I(M=2)
2P

c⇤ p(c ⇤ |m, f)�rI(C⇤=1)
1 r

I(C⇤=2)
2 r

I(C⇤=1m)
im

s
I(M=1)
1 s

I(M=2)
2

=
r
I(C=1)
1 r

I(C=2)
2 r

I(C=1m)
imP

c⇤ p(c ⇤ |m, f)rI(C⇤=1)
1 r

I(C⇤=2)
2 r

I(C⇤=1m)
im

. (17)

P (D = 0|m, f, c)

P (D = 0|m, f)
=

1� �r
I(c=1)
1 r

I(c=2)
2 r

I(c=1m)
im

s
I(m=1)
1 s

I(m=2)
2

1�
P

c⇤ p(c ⇤ |m, f)�rI(c⇤=1)
1 r

I(c⇤=2)
2 r

I(c⇤=1m)
im

s
I(m=1)
1 s

I(m=2)
2

. (18)

We can see that for maternal e↵ect, (17) is totally independent of parameters s1 and
s2. Though (18) includes maternal e↵ect parameters, when there is only maternal e↵ect,
i.e. r1 = r2 = r

im

= 1, maternal e↵ect parameters will be canceled out again. Fur-
thermore, when there are other e↵ects besides maternal e↵ect, only (F,M) belonging to
{(1, 2), (2, 1), (1, 0), (0, 1), (1, 1)} is informative for (18), and if disease penetrance for these
combinations with di↵erent o↵spring genotype are similar, for example, P (D = 1|M =
1, F = 2, C = 1) is similar as P (D = 1|M = 1, F = 2, C = 2), then the combination
is again almost non-informative. On the other hand, most of child-parent genotype com-
binations are informative for detecting imprinting e↵ect for both (17) and (18). This is
consistent with the result from the simulation that the power to detect maternal e↵ect
is very low when only such discordant sibpairs without additional siblings are recruited,
whereas when additional siblings are also recruited, the power will increase, as no term can
be canceled.

S5. DSP design with missing father genotypes

In LIME proposed by Yang and Lin (2013), nuclear families with father’s genotype missing
can still contribute to the estimation of the parameters. However, as we elaborate in the
following, LIME

DSP

cannot be generalized to the discordant sibpairs design with father’s
genotype missing. Following the same idea as in complete data, denote n1

mc

as the count
of a↵ected proband-mother pairs with genotype M = m and C1 = c, and n0

mc

as the

11



count of una↵ected proband-mother pairs with genotype M = m and C2 = c. Let n
p

denote the count of independent families. To keep it focused, we assume there are no
additional siblings. Thus, the likelihood can be written as follows, where ✓ and � denote
the parameters of interest and the nuisance parameters, respectively. That is,

L(✓,�)p =
Y

m,c

[p
n1
mc

mc (1� pmc)
n0
mc ]
Y

m,c

S
n1
mc+n0

mc
mc (19)

⇥
npY

j=1

P (Mj = mj , Cj1 = cj1, Cj2 = cj2)

P (Mj = mj , Cj1 = cj1)P (Mj = mj , Cj2 = cj2)

P (D1 = 1, D2 = 0)

P (D1 = 1|mj , cj2)P (D2 = 0|mj , cj1)
,

where the j represents the jth DSP in the data, and

p
mc

=
P (M = m,C1 = c|D1 = 1, D2 = 0)

P (M = m,C1 = c|D1 = 1, D2 = 0) + P (M = m,C2 = c|D1 = 1, D2 = 0)
,

and the denominator is denoted as S
mc

. However, we can rewrite the probability as

p
mc

=
1

1 + P (M=m,C1=c,D1=1,D2=0)
P (M=m,C2=c,D1=1,D2=0)

.

Then, as we can see from Supplementary Table S7, p
mc

still involves nuisance parameters,
thus we cannot extract out a partial likelihood component to estimate parameters.

S6. Relative E�ciency of LIMEDSP vs. LIME

To compare the relative e�ciency of the LIME and LIME
DSP

study designs, we compare
the “per individual” information when LIME

DSP

is applied to a D+2 design, with LIME to
a T+3 study design, where a T+3 design refers to a case-parent/control-parent study design
in which each family (either a case family or a control family) has 3 additional siblings. We
chose to compare these two designs as the total number of individuals per family is equal
to 6 in both designs. We vary the proportion of case families for the T+3 design from
0.025 to 0.975 by 0.025. Figures S18-25 are for disease model 1-8 under scenario 8, where
the horizontal line is the information per individual for the D+2 design, while the circles
represent that for the T+3 data. We can see that, as expected, a balanced setting, the
proportion of case families being 0.5, is generally the most informative, in which case the
D+2 design is not as e�cient as the T+3 design. However, when such a balanced setting
is not available, the D+2 design can be more e�cient. This is especially true for making
inference about association and imprinting e↵ects. However, the T+3 design typically has
more power than D+2 for inference about maternal e↵ect, as we discussed earlier.

We further conducted a simulation study to illustrate empirically that LIME
DSP

can
indeed be more powerful than LIME in settings in which there are very few control families.
Specifically, for model 6 under scenario 8 (Table 2 in main text), we first applied LIME
to 300 simulated T+3 families with the proportion of case families being 96.7% (i.e. 290
case families and 10 control families), and then applied LIME

DSP

to 300 simulated D+2
families. Note that both designs use the same number of families and each family contains

12



the same numbers of children and parents. In this case, LIME
DSP

achieves a higher power
than LIME: 0.957 versus 0.856. This result is consistent with our theoretical calculation in
this section. When balanced case-control family data are not available, using LIME

DSP

to
analyze discordant sibpair data can be more e�cient, and in fact necessary in the extreme
situation when no control families are available at all.
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SupplementaryTable S1. Top-20 SNPs having the smallest p-values for association with
club foot using LIME

DSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs1023913 9 23003004 TOX3 4.7633
2 rs6040798 20 11602357 4.7631
3 rs1870488 6 63933078 WDR55 4.2773
4 rs292202 5 73582314 FAM53A 4.137
5 rs12523740 6 32897704 3.8777
6 rs10484209 4 37074039 3.8774
7 rs2953299 2 51852092 3.8746
8 rs1327992 6 4310124 CTB-32H22.1 3.7614
9 rs11594622 10 72580602 3.6976
10 rs17712426 10 83563646 3.6968
11 rs17035675 4 106457953 3.6754
12 rs6933121 6 79856243 3.6512
13 rs17141297 10 17580107 3.6244
14 rs12512863 4 24134430 3.6105
15 rs2650703 10 63236710 LOC101928781 3.5965
16 rs3115763 2 138763552 HNMT 3.5646
17 rs11980754 7 4408130 3.5394
18 rs1568717 15 61362446 RORA 3.5223
19 rs915895 6 32190216 KCND3 3.5093
20 rs2384549 12 115349867 4.9359
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Supplementary Table S2. Top-20 SNPs having the smallest p-values for imprinting e↵ect
on club foot using LIME

DSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs1079295 5 5165951 MT1A 13.4218
2 rs2405941 18 73740843 13.2871
3 rs2320214 18 4420249 DLGAP1 12.4824
4 rs13384546 2 185616127 ZNF804A 12.2454
5 rs2145214 20 42237066 IFT52 11.9946
6 rs213134 17 32823258 11.7425
7 rs7162435 15 56121333 NEDD4 11.5518
8 rs6151826 5 80080680 MSH3 11.4768
9 rs2520121 16 26577301 11.4644
10 rs1224524 6 67250007 11.3491
11 rs10413941 19 49347707 PLEKHA4 11.1828
12 rs11610123 12 47500730 PCED1B 11.1069
13 rs11048527 12 26604100 ITPR2 11.1035
14 rs6785520 3 170991646 TNIK 10.9721
15 rs17117977 11 115130709 10.7654
16 rs13228877 7 34199973 10.6878
17 rs3743308 15 69563185 DRAIC 10.6850
18 rs11789529 9 130164412 10.5804
19 rs908296 2 9814639 10.4491
20 rs12223323 11 26298810 ANO3 10.3638
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Supplementary Table S3. Top-20 SNPs having the smallest p-values for maternal e↵ect on
club foot using method LIME

DSP

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs2384549 12 115349867 4.9359
2 rs3781503 10 121571506 INPP5F 4.9039
3 rs9446305 6 71598570 B3GAT2 4.5466
4 rs10224932 7 31035681 4.515
5 rs11766624 7 69887084 AUTS2 4.4982
6 rs585157 13 99045319 FARP1 4.467
7 rs9540648 13 34951551 4.3431
8 rs10499527 7 21243187 4.3245
9 rs1005391 4 16386448 4.2718
10 rs6711382 2 152531076 NEB 4.2556
11 rs7801891 7 17133513 4.2536
12 rs9818949 3 197683750 IQCG 4.2419
13 rs723636 6 160580493 SLC22A1 4.2334
14 rs2018193 1 153079071 4.215
15 rs10066164 5 13945188 DNAH5 4.2147
16 rs7546648 1 152931206 4.2143
17 rs17559561 4 132367852 4.1886
18 rs1529557 2 37898991 4.1799
19 rs12550249 8 13140608 DLC1 4.1429
20 rs17712426 10 83563646 3.6968
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Supplementary Table S4. Top-20 SNPs having the smallest p-values for association with
hypertension using LIME

D+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs16892095 4 15518356 CC2D2A 15.65
2 rs11128437 3 75447270 15.48
3 rs4125931 4 49489497 15.35
4 rs2405219 18 731439945 SMIM21 15.26
5 rs2229188 7 92134309 CYP51A1 15.11
6 rs4702048 5 14750799 ANKH 14.44
7 rs12626631 21 45001813 HSF2BP 14.22
8 rs3734815 6 29694680 HLA-F 14.08
9 rs13202088 6 163174689 PACRG 13.64
10 rs52828135 15 unknown 13.50
11 rs6485742 11 12454075 PARVA 12.82
12 rs11843435 13 69479766 11.17
13 rs4707557 6 90362782 MDN1 11.16
14 rs7032988 9 91837409 9.93
15 rs2013347 17 22171189 8.73
16 rs11672918 19 8943393 ZNF558 8.62
17 rs13255458 8 41636070 ANK1 8.61
18 rs2272487 3 126733094 CHCHD6 8.41
19 rs2947658 3 125607009 8.07
20 rs12256916 10 38344894 ZNF33A 7.99
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Supplementary Table S5. Top-20 SNPs having the smallest p-values for imprinting e↵ect
on hypertension using LIME

D+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs16892095 4 15518356 CC2D2A 15.65
2 rs11128437 3 75447270 15.48
3 rs4125931 4 49489497 15.35
4 rs2405219 18 731439945 SMIM21 15.26
5 rs2229188 7 92134309 CYP51A1 15.11
6 rs4702048 5 14750799 ANKH 14.44
7 rs12626631 21 45001813 HSF2BP 14.22
8 rs3734815 6 29694680 HLA-F 14.08
9 rs13202088 6 163174689 PACRG 13.64
10 rs52828135 15 unknown 13.50
11 rs6485742 11 12454075 PARVA 12.82
12 rs11843435 13 69479766 11.17
13 rs4707557 6 90362782 MDN1 11.16
14 rs7032988 9 91837409 9.93
15 rs2013347 17 22171189 8.73
16 rs11672918 19 8943393 ZNF558 8.62
17 rs13255458 8 41636070 ANK1 8.61
18 rs2272487 3 126733094 CHCHD6 8.41
19 rs2947658 3 125607009 8.07
20 rs12256916 10 38344894 ZNF33A 7.99
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Supplementary Table S6. Top-20 SNPs having the smallest p-values for maternal e↵ect on
hypertension using LIME

D+

Rank SNP Chr Position(BP) Gene -log10(P-value)
1 rs2272487 3 126451936 CHCHD6 8.44
2 rs9852584 3 126445456 CHCHD6 6.26
3 rs13230531 7 6114558 CHCHD6 5.52
4 rs17631957 14 81755544 STON2 5.49
5 rs820866 5 73978700 5.43
6 rs6086342 20 8096104 5.23
7 rs7741727 6 132069916 ENPP3 5.19
8 rs1370656 2 178607997 PDE11A 5.18
9 rs7133914 12 40702910 LRRK2 5.16
10 rs17601580 6 132061419 ENPP3 5.07
11 rs3856154 1 225565014 DNAH14 5.03
12 rs2165661 11 100142833 CNTN5 4.99
13 rs12368599 12 12908793 GPRC5A 4.92
14 rs17158657 15 84405464 ADAMTSL3 4.90
15 rs16832191 3 120944943 STXBP5L 4.88
16 rs3205144 3 172349215 NCEH1 4.82
17 rs4813864 20 8515840 PLCB1 4.78
18 rs17460330 4 36338943 DTHD1 4.76
19 rs10209069 2 153384254 FMNL2 4.71
20 rs390878 4 103213241 SLC39A8 4.67
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Supplementary Table S7. Joint probabilities of P (M = m,C1 = c,D1 = 1, D2 = 0) and
P (M = m,C2 = c,D1 = 1, D2 = 0)

Type m c P (M = m,C1 = c,D1 = 1, D2 = 0)
1 0 0 µ00(1� �)� + 1

4µ01�(2� � � �r1)a

2 0 1 1
4µ01�r1(2� �r1 � �) + µ02(1� �r1)�r1

3 1 0 1
4µ10�s1(2� �s1 � �s1r1rim)
+ 1

16µ11�s1(4� �s1 � �s1r1(1 + r
im

)� �s1r2)
4 1 1 1

4µ10�s1r1rim(2� �s1 � �s1r1rim)
+ 1

16µ11�s1r1(1 + r
im

)(4� �s1 � �s1r1 � �s1r1rim� �r2s1)
+1

4µ12�r1s1(2� �r1s1 � �r2s1)
5 1 2 1

16µ11�s1r2(4� �s1 � �s1r1(1 + r
im

)� �s1r2)
+1

4µ12�s1r2(2� �s1r1 � �s1r2)
6 2 1 µ20(1� �s2r1rim)�s2r1rim

+1
4µ21�s2r1rim(2� �s2r1rim � �s2r2)

7 2 2 1
4µ21�s2r2(2� �s2r1rim � �s2r2) + µ22(1� �s2r2)�r2s2

Type m c P (M = m,C2 = c,D1 = 1, D2 = 0)
1 0 0 µ00(1� �)� + 1

4µ01(1� �)�(1 + r1)
2 0 1 1

4µ01(1� �r1)�(1 + r1) + µ02(1� �r1)�r1
3 1 0 1

4µ10(1� �s1)�s1(1 + r1rim)
+ 1

16µ11(1� �s1)�s1(1 + r2 + r1(1 + r
im

))
4 1 1 1

4µ10(1� �s1r1rim)�s1(1 + r1rim)
+ 1

16µ11[2� �r1s1(1� r
im

)]�s1(1 + r1(1 + r
im

) + r2)
+1

4µ12(1� �r1s1)�s1(r1 + r2)
5 1 2 1

16µ11(1� �s1r2)�s1(1 + r2 + r1(1 + r
im

))
+1

4µ12(1� �s1r2)�s1(r1 + r2)
6 2 1 µ20(1� �s2r1rim)�s2r1rim

+1
4µ21(1� �s2r1rim)�s2(r2 + r1rim)

7 2 2 1
4µ21(1� �s2r2)�s2(r1rim + r2) + µ22(1� �s2r2)�r2s2

Note: ar1: relative risk of carrying one variant allele; r2: relative risk of carry ing two
variant alleles; r

im

: imprinting e↵ect parameter with a single variant allele from mother;
s1: maternal e↵ect with mother carrying one variant allele; s2: maternal e↵ect with mother
carrying two variant allele. In addition, mating type probability of (M,F ) = (m, f) is
denoted by µ

ij

.
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Supplementary Figure S1. Information content per family for 8 disease models and two
PREVs when HWE holds and MAF is 0.3. Each curve provides the information for esti-
mating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S2. Information content per individual for 8 disease models and
two PREVs when HWE holds and MAF is 0.1. Each curve provides the information for
estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S3. Information content per individual for 8 disease models and two
PREVs when HWE does not hold and MAF is 0.3. Each curve provides the information
for estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S4. Information content per individual for 8 disease models and two
PREVs when HWE does not hold and MAF is 0.1. Each curve provides the information
for estimating one of the 5 parameters, for data types D, D + 1 and D + 2.
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Supplementary Figure S5. Type I error rate and power of LIME
DSP

under 8 disease models
and scenario 2 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting e↵ect and
maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S6. Type I error rate and power of LIME
DSP

under 8 disease models
and scenario 3 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting e↵ect and
maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S7. Type I error rate and power of LIME
DSP

under 8 disease models
and scenario 4 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting e↵ect and
maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S8. Type I error rate and power of LIME
DSP

under 8 disease models
and scenario 5 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting e↵ect and
maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S9. Type I error rate and power of LIME
DSP

under 8 disease models
and scenario 6 as given in Table 2. Three rows represent three data types: D, D + 1 and
D + 2. The bars of color white, red and green refer to association, imprinting e↵ect and
maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S10. Type I error rate and power of LIME
DSP

under 8 disease
models and scenario 7 as given in Table 2. Three rows represent three data types: D,
D + 1 and D + 2. The bars of color white, red and green refer to association, imprinting
e↵ect and maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S11. Type I error rate and power of LIME
DSP

under 8 disease
models and scenario 8 as given in Table 2. Three rows represent three data types: D,
D + 1 and D + 2. The bars of color white, red and green refer to association, imprinting
e↵ect and maternal e↵ect. The horizontal line marks the nominal a level of 0.05.
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Supplementary Figure S12. Manhattan plot of -log10(p-value) for tests of association e↵ect
on club foot.
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Supplementary Figure S13. Manhattan plot of -log10(p-value) for tests of imprinting e↵ect
on club foot.
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Supplementary Figure S14. Manhattan plot of -log10(p-value) for tests of maternal e↵ect
on club foot.
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Supplementary Figure S15. Manhattan plot of -log10(p-value) for tests of association e↵ect
on FHS.
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Supplementary Figure S16. Manhattan plot of -log10(p-value) for tests of imprinting e↵ect
on FHS.
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Supplementary Figure S17. Manhattan plot of -log10(p-value) for tests of maternal e↵ect
on FHS.
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Supplementary Figure S18. Plot of the �log10(p-values) for the imprinting e↵ect of SNP
rs1562705 versus replication index for proband designations from the FHS data.
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Supplementary Figure S19. Information content per individual for inference of parameters
under disease model 1 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S20. Information content per individual for inference of parameters
under disease model 2 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S21. Information content per individual for inference of parameters
under disease model 3 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S22. Information content per individual for inference of parameters
under disease model 4 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S23. Information content per individual for inference of parameters
under disease model 5 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S24. Information content per individual for inference of parameters
under disease model 6 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S25. Information content per individual for inference of parameters
under disease model 7 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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Supplementary Figure S26. Information content per individual for inference of parameters
under disease model 8 and scenario 8. The horizontal line refers the information content
per individual for LIME

DSP

applying to the D+2 design. The small circles represent
information content per individual for LIME when applied to the T+3 design, with the
proportion of case families varying from 0.025 to 0.975 by 0.025.
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