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Abstract

Sparse finite mixture of regression models arise in several scientific applications and

testing hypotheses concerning regression coefficients in such models is fundamental to data

analysis. In this paper, we describe an approach for hypothesis testing of regression coeffi-

cients that take into account model selection uncertainty. The proposed methods involve (i)

estimating the active predictor set of the sparse model using a consistent model selector and

(ii) testing hypotheses concerning the regression coefficients associated with the estimated

active predictor set. The methods asymptotically control the family wise error rate at a

pre-specified nominal level, while accounting for variable selection uncertainty. Additionally,

we provide examples of consistent model selectors and describe methods for finite sample

improvements. Performance of the methods are also illustrated using simulations. A real

data analysis is included to illustrate the applicability of the methods.

KEY WORDS: Adjusted p-value, bic-enhanced tuning parameter, Data splitting, Family-

wise error rate, Model selection consistency.
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1 INTRODUCTION

Finite mixture of regression (fmr) models (McLachlan and Peel, 2000) arise in a vari-

ety of scientific disciplines and are used to account for hidden subgroups present within a

heterogeneous population; for instance, when studying the relationship between a response

variable Y and a vector of covariates x = (x1, x2, . . . , xd)
>.

Despite their flexibility and usefulness, these models can be challenging to fit to a given

dataset when the number of covariates d is large compared to the sample size. To address

this issue, Khalili and Chen (2007) and Städler et al. (2010) introduced sparse modeling

frameworks and developed regularization approaches for simultaneous parameter estimation

and variable selection in fmr models. However, inferential problems such as hypothesis

testing concerning regression coefficients have not received much attention in the literature.

The primary purpose of this paper is to address this shortcoming and develop an approach

for testing statistical hypotheses accounting for variable selection uncertainty.

For a motivation towards problems investigated in this paper, consider a data set con-

taining a set of covariates potentially associated with a response variable, modeled using a

mixture distribution. Assuming a sparse fmr model, one may be interested in (a) identifying

the covariates associated with the response within each subgroup, and (b) testing whether

their effects are significant within each subgroup or between subgroups.

As an example, in functional genomics several candidate motifs (xj’s) are examined to find a

small subset that contributes substantially to variations in gene expression (y). It is known

that the set of regulating motifs differ from one subgroup of genes to another (Conlon et al.,

2003). Here, it is of interest to evaluate the statistical significance of the selected motifs

within/between subgroups of genes. As a second example, in market segmentation research

a goal is to identify different groups of consumers to target products and services for each

segment separately. The attributes of products and services (xj’s) along with the preferences

(y) of consumers can be modeled by a sparse fmr model and the statistical significance of

the attributes between and within segments of the market is an important problem for the

industry (Wedel and Kamakura, 2000). Beyond the works of Redner and Walker (1984) and
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Chen (2016), inferential aspects of fmr models are largely unknown. This paper will provide

rigorous statistical methodologies to address such questions.

Turning to sparse fmrs, while sparsification is useful in obtaining parsimonious models,

current method for joint estimation and variable selection are fraught with multiple chal-

lenges. Specifically, due to the uncertainty inherited from variable selection, one encounters

a “random model” when performing hypothesis tests; this must be distinguished from the

case when a model is pre-specified, as is typical in classical statistical theory. By a “random

model”, we mean an fmr model whose active covariate set is chosen using a data-driven

method. This randomness needs to be taken into account for further inference and the is-

sue is part of a general post-model selection inference problem (Danilov and Magnus, 2004;

Dijkstra and Veldkamp, 1988; Leeb and Pötscher, 2003; Kabaila, 1995).

For testing in sparse fmrs, the hypotheses of interest can only be formulated using an

estimated sparse model. Hence, in our approach we split the data into two parts D1n and

D2n, where we use D1n to select a sparse model via a consistent selector Tn yielding an

estimated active predictor set (eaps), Ŝ(Tn). The idea of data splitting has been used in

the statistics literature and in the context of high-dimensional regression by Wasserman and

Roeder (2009) who coined the term “Screen and Clean”. It is pertinent to notice that our

methods do not involve any screening or cleaning. Alternative approaches for inference are

developed in Lockhart et al. (2014), Zhang and Zhang (2014), Berk et al. (2013), Efron

(2014) and Van de Geer et al. (2014).

Tests of hypotheses are performed using D2n based on student-type statistics. To provide

p-values, we establish asymptotic normality of the estimated regression coefficients with

indices in the eaps. To address multiple testing problems encountered, we show that the

family-wise error rate (fwer), the probability of rejecting at least one hypothesis when it is

true, is asymptotically controlled at a given level α, say. We summarize our contributions:

1. We develop a new hypothesis testing framework for selected (random) sparse fmrs

which, to the best of our knowledge, is the first work in the field. To address tech-

nical challenges due to random number of parameters, we introduce a new dimension
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matching technique. The proposed framework also applies to linear and generalized

linear regression models.

2. We establish theoretical guarantees concerning the asymptotic control of fwer at a

level α. Our simulations show that the empirical fwer is controlled at the nominal

5% level as signal-to-noise ratio varies from strong to low.

3. Our third contribution is in the implementation of the proposed methodology (Algo-

rithm 1) via the em algorithm. Additionally, we also describe approaches that enhance

finite sample performance of the proposed methods (Algorithm 2).

The rest of the paper is organized as follows: Section 2 describes fmr models and the

variable selection problem. Section 3 deals with hypothesis testing problems, while Section 4

is devoted to numerical strategies for implementation, simulations and a real data analysis.

Section 5 contains a summary and concluding remarks. Regularity conditions and proofs are

provided in Appendices A and B, respectively. Additional numerical and theoretical results

are given in the Supplementary Material.

2 DEFINITIONS, NOTATIONS AND TERMINOLOGY

Consider a response variable Y whose probability density or mass function is postulated

to depend on a potential vector of covariates X = (X1, · · · , Xd)
> with its observed value

denoted by x ∈ Rd.

Definition 1 A pair (X, Y ) is said to follow an fmr model of order K if the conditional

density (or mass) function of Y given X = x is

f(y;x,ΨF) =
K∑
j=1

πjh(y; θj(x), φj), (1)

where πj > 0 are mixing probabilities with
∑K

j=1 πj = 1, and h(·; θj(x), φj) belongs to a

parametric family of density (or mass) functions, such that θj(x) = g(βj0 + x>βj) for a

known link function g(·); βj0, βj = (βj1, βj2, · · · βjd)>, and φj are respectively the intercepts,

regression coefficients and dispersion parameters. In this paper we assume that K is known.
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The vector of parameters in (1) is represented by ΨF = (π,φ,β0,B) with the sub-vectors

π = (π1, π2, . . . , πK)>, φ = (φ1, φ2, . . . , φK)>, β0 = (β10, β20, . . . , βK0)>, and regression

coefficients B = (β1,β2, . . . ,βK). Notice that ΨF ∈ Θ ⊂ RK(d+3)−1, where Θ is the

parameter space. We assume throughout the paper that 0 < π1 ≤ π2 ≤ . . . ≤ πK < 1.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a random sample of observations from the fmr model

(1). The log-likelihood function of ΨF is given by

`n(ΨF) =
n∑
i=1

log

[
K∑
j=1

πjh(yi; θj(xi), φj)

]
. (2)

When h(·; θj(xi), φj) is Gaussian and the component variances φj’s are different, (2) becomes

unbounded when some φj tends to zero. In practice, this can be avoided by introducing a

positive lower bound on the smallest ratios of variances as in Hathaway (1985) or by adding

a penalty on φj as in Chen et al. (2008).

When the number of regression coefficients is large compared to n, the maximum likeli-

hood estimator (mle) of ΨF can be unstable and have large variance. It is then preferable

to fit sparse fmr models, which involves the concepts of active and inactive predictor sets.

Definition 2 (i) For each 1 ≤ j ≤ K, the inactive and active predictor sets of the jth

component of an fmr are Nj =
⋃d
l=1{(j, l) : βjl = 0} and Sj =

⋃d
r=1{(j, r) : βjr 6= 0}

respectively. Let qj = |Sj| be the active number of regression coefficients in the jth component.

(ii) The inactive and active predictor sets of an fmr are given by N =
⋃K
j=1 Nj and S =⋃K

j=1 Sj respectively. The active number of regression coefficients is q = |S| =
∑K

j=1 qj.

An fmr is said to be sparse if q < Kd, where Kd is the total number of regres-

sion coefficients of the full model. We refer to any such sparse model as a candidate

fmr sub-model and denote it by MC . Also, we represent the full model by MF with

the corresponding inactive and active predictor sets NF and SF such that NF = ∅ and

SF =
⋃K
j=1{(j, 1), (j, 2), . . . , (j, d)}. The collection of all candidate sub-models is denoted by

A =

{
MC : S =

K⋃
j=1

Sj , Sj ⊆ {(j, 1), (j, 2), . . . , (j, d)}, 1 ≤ j ≤ K

}
. (3)
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We note that A includes MF . It is clear that the active set of any sub-model is a subset

of that of the full model, and with the abuse of notation we also write MC ⊆ MF when

referring to a sub-model. We denote the size of the active set of MC by q(MC).

Analogous to Definition 1, we denote by ΨC the parameter vector corresponding to sub-

modelMC . More specifically, we may express the regression vector of the jth component of

MC as βj = (βj1,βj2), for 1 ≤ j ≤ K, where without loss of generality βj1 = (βj1, . . . , βj,qj)
>

is a vector of non-zero regression coefficients whose indices belong to the active set Sj, and

βj2 = (βj,qj+1, . . . , βjd)
> is a vector of zero coefficients, corresponding to the indices in

the inactive set Nj. We notice that the active predictor set and consequently the above

partitioning for each vector βj may be different across the mixture components. Now,

by setting B1 = (β11,β21, · · · ,βK1) and B2 = (β12,β22, · · · ,βK2), an fmr sub-model

is characterized by the parameter vector ΨC = (π,φ,β0,B1). Note that B2 = 0 and

dim(B2) = Kd− q(MC).

In this paper, we denote the true sparse fmr sub-model by M0 ∈ A, and the cor-

responding parameter vector is given by Ψ0 = (π0,φ0,β
0
0,B10), whose dimension equals

κ0 = q0 + 3K − 1, where q0 ≡ q(M0) =
∑K

j=1 q
0
j and dim(β0

j1) = q0
j . We denote by N0

j and

S0
j , respectively, the inactive and active predictor sets of the jth component of the model

M0. Consequently, N0 =
⋃K
j=1N

0
j and S0 =

⋃K
j=1 S

0
j are respectively the inactive and active

predictor sets of M0. In the rest of the paper, we use P (·) to denote the probability distri-

bution associated with M0, which has a probability density or mass function (from now on

referred to as pdf)

f(y;x,Ψ0) =
K∑
j=1

π0
jh(y; θ0

j (x), φ0
j), (4)

where θ0
j (x) = g(β0

j0 +
∑

(j,l)∈S0
j
xlβ

0
jl). As explained in the Introduction, estimation of the

active predictor set S0 (i.e., variable selection) is the first step towards formulating hypotheses

concerning the regression coefficients of M0 which is described in the next section together

with our testing procedure.
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3 HYPOTHESIS TESTING ACCOUNTING FOR MODEL SELECTION UN-

CERTAINTY

In this section, we study hypothesis testing in sparse fmr models. However, since the

true active predictor set is unknown, formulation of hypotheses concerning the regression co-

efficients is unclear. Specifically, consider the problem of testing if the regression coefficients

corresponding to S0 are zero. Assigning p-values to such tests is a formidable problem and

mostly ad hoc solutions have been provided. It is natural, as in Meinshausen et al. (2009),

to assign p-values for all the variables under study. However, rigorous statistical justifica-

tion of such an approach raises fundamental questions about the meaning of the underlying

true model. In this section, we address this issue and develop an approach to test various

hypotheses of interest. Our methodology involves a dimension matching technique and com-

bines it with a data splitting idea which facilitates hypotheses formulation. Incidentally, it

also accounts for variable selection uncertainty.

3.1 Data splitting method

As a first step, we divide the data (x1, y1), (x2, y2), . . . , (xn, yn) randomly into two parts,

D1n and D2n, of approximately equal size n
2
. We may refer to D1n and D2n respectively as

the training and testing data, even though there are subtle differences in the terminology as

used in machine learning literature. Using D1n and a model selection method, we estimate

the active predictor set and set-up hypotheses of interest. We then use D2n to perform tests.

While the above approach seems natural and plausible, several subtle issues arise. First,

we seek a consistent model selection mechanism; that is, as n → ∞, the selected model

estimates the true model M0 with probability approaching one. However, for an estimated

model, the dimension of the parameter vector is random. Hence, direct comparison of the

estimates of the parameter vector of a selected model to that of the “true model” is not

feasible. To address this issue, we introduce a dimension matching technique.

Definition 3 A mapping Tn from the sample space X into A is a consistent selector if

lim
n→∞

P (Tn =M0) = 1.
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Examples of such Tn are provided in Section 3.2. We apply Tn to D1n and obtain an

fmr sub-model with estimated active predictor set (eaps) Ŝ(Tn) =
⋃n
j=1 Ŝj(Tn), where

Ŝj(Tn) represents the set of indices selected by Tn in the jth mixture component. The fmr

sub-model associated with this eaps is given by

f(y;x,Ψ(Ŝ(Tn))) =
K∑
j=1

πjh(y; θ̃j(x), φj), (5)

where Ψ(Ŝ(Tn)) is a sub-vector of ΨF, and θ̃j(x) = g(βj0 +
∑

(j,l)∈Ŝj(Tn) xlβjl). In the follow-

ing, we use Ψ̃ to denote Ψ(Ŝ(Tn)). We focus on the following sets of hypotheses:

(1) For all 1 ≤ j ≤ K and l ∈ Ŝj(Tn), consider testing

H0,jl : βjl = 0. (6)

(2) For any fixed 1 ≤ j ≤ K, let Gj ⊆ Ŝj(Tn). For all l ∈ Gj, consider testing

H0,jl : βjl = 0. (7)

(3) Let G = ∪Kj=1Gj, where Gj ⊆ Ŝj(Tn). For all (j, l) ∈ G we may also test

H0,jl : βjl = 0. (8)

Next, we use D2n to fit (5) using the maximum likelihood method. The mle of Ψ̃,

denoted by Ψ̃n, is obtained by maximizing

`n(Ψ̃) =
∑
i∈D2n

log

[
K∑
j=1

πjh(yi; θ̃j(xi), φj)

]
.

Turning to (6), we consider the student-type statistic

tjl,n = ¯̃βjl/se( ¯̃βjl), (9)

where se( ¯̃βjl) is obtained from the observed “information matrix”. Details on the compu-

tation of se( ¯̃βjl) are provided in Section 4.1. Note that tjl,n also depends on D1n, since

(j, l) ∈ Ŝj(Tn).
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We establish in Theorem 1 that the asymptotic distribution of Ψ̃n can be approximated

by a Normal distribution with appropriate mean and covariance matrix; from this it follows

that, for small sample sizes, the distribution of (9) can be approximated by a t-distribution

with n
2
− q̂n− (3K−1) degrees of freedom, where q̂n = |Ŝ(Tn)|. Also, we account for multiple

comparisons using a Bonferroni-type adjustment.

Given D1n, let pjl be the p-value associated with the test in (6) which is of size α/q̂n,

for some α ∈ (0, 1). The size of the above test is random, but conditioned on D1n it is

deterministic; additionally, conditioned on D1n, tjl,n is independent of q̂n. Define

S∗n(D1n,D2n) =
⋃

(j,l)∈Ŝ(Tn)

{(j, l) : pjl ≤ α/q̂n}

to be the set of all indices (j, l) ∈ Ŝ(Tn) for which the hypothesis H0,jl is rejected. Theorem

1 establishes that for testing (6) the fwer is asymptotically controlled at level α. Let

E(D1n,D2n) = N0

⋂
S∗n(D1n,D2n) (10)

denote the set of indices of regression coefficients of the selected covariates whose correspond-

ing null hypothesis H0,jl is rejected when it is true.

Theoretical Justification:

To study the asymptotic properties of Ψ̃n with respect to the true sparse fmr model in

(4), we need to compare it to Ψ0 which is of dimension κ0 = q0 +3K−1 (potentially different

from dim(Ψ̃n) ≡ κ̂n = q̂n + 3K−1). To address this issue, suppose (j, l) ∈ Ŝ(Tn)
⋂
N0, then

set β0
jl = 0; otherwise, if (j, l) ∈ Ŝ(Tn)

⋂
S0, then the true value is β0

jl. Thus for every (j, l) ∈

Ŝ(Tn), the true value of βjl is defined. This yields a new regression coefficients vectorB10(q̂n)

which we refer to as the dimension-adjusted true regression coefficients vector. Now, we

denote the new dimension-adjusted true parameter vector by Ψ0(q̂n) = (π0,φ0,β
0
0,B10(q̂n)).

Denote the joint pdf of Z = (X, Y ) by f ∗(·; ·) assumed to satisfy the regularity conditions

(RC1)-(RC5) in Appendix A; additionally let

I1(ΨC) = E

{[
∂

∂ΨC

log f ∗(Z; ΨC)

] [
∂

∂ΨC

log f ∗(Z; ΨC)

]T}
. (11)
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Assume Wn and W are constant matrices of dimensions m × κ̂n and m × κ0 (for some

fixed m ≥ 1) respectively and satisfying, as n→∞,

Wn[I1(Ψ0(q̂n))]W>n
p−→W [I1 (Ψ0)]W>, (12)

where I1(·) is the Fisher information matrix defined in (11) with ΨC replaced by Ψ0 or

Ψ0(q̂n). The validity of (12) is guaranteed by the consistency property of the model selector

Tn. It is worth noticing here that Ψ0(q̂n) corresponds to the true value of Ψ̃. Furthermore, if

q̂n = q0 it follows thatWn =W . The matricesWn andW facilitate convergence (as n→∞)

of elements of the information matrix which is of random dimension for any fixed n.

We now state our results concerning the asymptotic distribution of Ψ̃n and the asymptotic

control of fwer.

Theorem 1 Let Tn be a consistent model selector and α ∈ (0, 1) be a nominal significance

level. Under the regularity conditions (RC1)-(RC5) in Appendix A, the following hold:

(i) asymptotic normality:√
n

2

{
Wn

(
Ψ̃n −Ψ0(q̂n)

)}
d−→ Nm

(
0, [WI1 (Ψ0)W>]−1

)
as n→∞;

(ii) fwer control:

lim sup
n→∞

P

(
E(D1n,D2n) 6= ∅

)
≤ α.

We now provide two examples of the selectors Tn that allow the student-type inference

described above.

3.2 Examples of Consistent Model Selectors

It is folklore amongst statisticians that parsimonious models yield stable inference. In

the context of regression problems, parsimonious modelling amounts to identifying a set of

active predictors that influence the response variable Y of interest. Here we outline two

approaches that yield consistent model selectors as described in Definition 3.

10



1. BIC-based selector: One of the well-known methods for variable selection in regres-

sion consists in choosing that sub-model for which an information criterion is minimized. In

the context of our problem, for any candidate modelMC ∈ A, the criterion based on bic is

bic(MC) = −2`n(Ψn,C) + q(MC) log n, (13)

where `n(·) is the log-likelihood associated with the sub-modelMC , Ψn,C is the mle of ΨC ,

and q(MC) is the size of the active predictor set of MC . Let

Tn = argmin
MC∈A

bic(MC). (14)

In the proposed method, we apply Tn to the data D1n (with log n replaced by log(n/2))

yielding an fmr sub-model with eaps Ŝ(Tn). It is well-known that, under the regularity

conditions (RC1)-(RC5), Tn is a consistent model selector (Konishi and Kitagawa, 2008).

In practice, bic requires searching through 2Kd fmr sub-models in the model space A,

which is computationally manageable for moderate values of (K, d). However, the bic is not

numerically feasible for large model spaces A and thus alternative methods are required.

2. Adaptive regularization-based selector: This approach involves maximization

of the penalized log-likelihood function

p`n(ΨF;γ) = `n(ΨF)− pn(ΨF;γ),

where `n(ΨF) is the log-likelihood in (2), and the penalty function is

pn(ΨF;γ) =
K∑
j=1

πj

d∑
l=1

pn(βjl; γj), (15)

where γ = (γ1, . . . , γK)>. Examples of pn(βjl; γj) are adaptive lasso (adlasso), scad, and

mcp. Given γ, the maximum penalized likelihood estimator (mple) of ΨF is defined to be

Ψ̂F,n(γ) ≡ Ψ̂n(γ) = argmax
ΨF∈Θ

p`n(ΨF;γ). (16)

By the properties of the penalty in (15) and tuning γ, one can encourage estimates of some

regression coefficients to be zero. Hence, using (16) we obtain an fmr sub-model with eaps

Ŝ(γ) =
K⋃
j=1

Ŝj(γ),

11



where Ŝj(γ) =
⋃d
r=1{(j, r) : β̂jr(γ) 6= 0}; and the corresponding sub-model is Mγ ∈ A.

Since the candidate sub-models are indexed by γ, the variable selection problem involves

identifying an appropriate value for it. To this end, we adopt a data adaptive strategy which

is analogous to the bic approach described in Example 1 above; see also Zhang et al. (2010).

Specifically, we choose the tuning parameter γ̂n as

γ̂n = argmin
γ∈[0,γ∗n]K

bic(γ), (17)

bic(γ) = −2`n(Ψ̂n(γ)) + q(γ) log n. (18)

The role of γ∗n is to ensure that the selected γ̂n satisfies conditions (RCP1)-(RCP3) in

Appendix A, in probability. Notice that q(γ) ≡ q(Mγ) =
∑K

j=1

∑d
l=1 I(β̂jl(γ) 6= 0). Let

Mγ̂n
be the corresponding sub-model with eaps Ŝ(γ̂n). We refer to γ̂n as the bic-enhanced

tuning parameter. Our next result establishes that the selector Tn =Mγ̂n
is consistent.

Proposition 1 Under the regularity conditions in Appendix A, lim
n→∞

P (Mγ̂n
=M0) = 1.

Proposition 1 implies that if some rough properties of γn = (γn1, γn2, . . . , γnK) are known,

such as those indicated by (RCP1)-(RCP4), then they can be input into (17) to find the

“optimal” (bic-enhanced) sequence, which in turn yields a consistent model selector.

Returning to our proposed method, we apply the above model selector to the data D1n

with log n replaced by log(n/2) in (18). We now describe Algorithm 1 that summarizes the

steps for hypothesis testing using either of the selectors Tn described above.

Algorithm 1

Step 1: Divide the data randomly into (D1n,D2n) of approximately equal size n/2.

Step 2: Using D1n and a consistent mode selector Tn, obtain the eaps Ŝ(Tn).

Step 3: Using D2n, obtain the mle Ψ̃n of the parameter Ψ̃ of the selected fmr sub-

model corresponding to Ŝ(Tn) in Step 2.

Step 4: Perform hypothesis testing using student-type statistics for the regression coef-

ficients of the estimated sparse fmr model using D2n.
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What happens if we do not account for model selection uncertainty?

It is a legitimate to wonder how the inference about the regression coefficients would be

affected if we do not account for model selection uncertainty when using (16). To this end,

we partition Ψ̂n(γ̂n) in (16) into (Ψ̂1,n(γ̂n), Ψ̂2,n(γ̂n)) such that dim(Ψ̂1,n(γ̂n)) = dim(Ψ0).

This partitioning is based on the oracle’s perspective. By Proposition 1, Ψ̂2,n(γ̂n) = 0 with

probability tending to one as n→∞. As for the limit distribution of Ψ̂1,n(γ̂n), we have

Theorem 2 Assume that the conditions of Proposition 1 hold. Then, as n→∞, we have

√
n

{[
I1 (Ψ0)− p

′′
n(Ψ0; γ̂n)

n

](
Ψ̂1,n(γ̂n)−Ψ0

)
+
p′n(Ψ0; γ̂n)

n

}
d−→ N (0, I1 (Ψ0)) .

Theorem 2 may suggest a hypothesis testing procedure for the regression coefficients of

the selected model, as is typically carried out in conventional data analysis. However, such a

procedure will not account for model selection uncertainty since Theorem 2 is obtained from

an oracle’s perspective. A standard approach is to use an estimate of the model from the

data (called selected model); this then leads to variability due to the model selection that

needs to be taken into account in data analysis. We address this issue in Theorem 1 using

data splitting and dimension matching techniques. Returning to Theorem 2, we observe that

the estimator involves a bias term and a normalization factor which are explicit functions

of the first and second derivatives of the penalty. While the effects of some penalties vanish

asymptotically, they persist in finite samples which is confirmed in our simulations (Table

S4 and Table S5 of the Supplementary Material). Also, due to the heterogeneity structure of

the model, we observe accumulation of the false positives (see Section 4.3) across the mixture

components which in turn results in high false positive in the overall model.

4 NUMERICAL STRATEGIES AND DATA ANALYSES

In this section, we provide computational strategies for implementing Algorithm 1. In

Section 4.1, we focus on the em algorithm for identifying the eaps and the mles of the

selected model. We then use these estimates to obtain the p-values described in Section 3.1.

Additionally, in this section we describe methods for finite sample improvements.
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4.1 Implementation via em algorithm

Step 2 of Algorithm 1 involves identifying the eaps. Depending on the choice of the

selector Tn, the implementation of em algorithm varies. We start with the bic-based selector.

Consider the log-likelihood function for a candidate sub-model MC ∈ A with the cor-

responding parameter vector ΨC , using D1n. To obtain the mle of ΨC , we apply the em

algorithm as follows. The complete data log-likelihood function is given by

`cn(ΨC) =
K∑
j=1

∑
i∈D1n

Zij {log πk + log h(yi; θj(xi), φj)} , (19)

where θj(x) = g(βj0 +
∑

(j,l)∈Sj
xlβjl), and Zij are latent indicator variables representing

mixture-component membership of observations in D1n. At the (m + 1)th iteration of the

algorithm, the expected value of the complete log-likelihood is given by

Q1(ΨC ; Ψ
(m)
C ) =

K∑
j=1

∑
i∈D1n

ω
(m)
ij {log πk + log h(yi; θj(xi), φj)} ,

where ω
(m)
ij = E{Zij|(Yi,xi) ∈ D1n,Ψ

(m)
C }. The parameter estimates are updated as follows:

E-step: In this step compute the function Q1(·) or equivalently the weights

ω
(m)
ij =

π
(m)
j h(yi; θ

(m)
j (xi), φ

(m)
j )∑K

k=1 π
(m)
k h(yi; θ

(m)
k (xi), φ

(m)
k )

; j = 1, 2, . . . , K, i ∈ D1n.

M-step: Here, obtain the updated parameter estimates by

Ψ
(m+1)
C = argmax

ΨC

Q1(ΨC ; Ψ
(m)
C ). (20)

The two steps are repeated until convergence, yielding a numerical approximation to the

mle Ψn,C . We repeat the em steps for every candidate model MC ∈ A and compute the

bic in (13) using Ψn,C . Finally, the eaps is Ŝ(Tn), where Tn is given in (14).

While the above algorithm is useful if the model space A is not large, one could alter-

natively use the computationally more efficient adaptive regularization technique which we

now describe. Here, we consider the penalized log-likelihood

p`n(ΨF;γ) =
∑
i∈D1n

log

[
K∑
j=1

πjh(yi; θj(xi), φj)

]
− pn(ΨF;γ),
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where θj(x) = g(βj0 + x>βj), and the penalty is given in (15). As before, by the em

principles, the complete penalized log-likelihood function is

p`cn(ΨF;γ) =
K∑
j=1

∑
i∈D1n

Zij {log πk + log h(yi; θj(xi), φj)} − pn(ΨF;γ).

For a fixed γ, at the (m+ 1)th iteration of the algorithm, the conditional expected value

of the complete penalized log-likelihood is given by

pQ(ΨF; Ψ
(m)
F ,γ) =

K∑
j=1

∑
i∈D1n

τ
(m)
ij {log πk + log h(yi; θj(xi), φj)} − pn(ΨF;γ),

where τ
(m)
ij = E{Zij|(Yi,xi) ∈ D1n,Ψ

(m)
F }. The parameter estimates are updated as follows:

E-step: In this step compute the function pQ(·) or equivalently the weights

τ
(m)
ij =

π
(m)
j h(yi; θ

(m)
j (xi), φ

(m)
j )∑K

k=1 π
(m)
k h(yi; θ

(m)
k (xi), φ

(m)
k )

; j = 1, 2, . . . , K, i ∈ D1n.

M-step: Here, obtain the updated parameter estimates by

Ψ
(m+1)
F = argmax

ΨF

pQ(ΨF; Ψ
(m)
F ,γ). (21)

The two steps are repeated until convergence, yielding a numerical approximation to the

mple Ψ̂F,n(γ) ≡ Ψ̂n(γ) in (16). To solve the optimization problem in (21) (and also in (20)),

depending on the form of h(y; θk(xi), φk), one may use Newton-like methods to approximate

the leading terms by quadratic functions of (βj0, φj, βjl) and then perform the optimization.

Now to identify the eaps, we obtain (using (17)) the bic-enhanced tuning parameter

by applying the above algorithm to a sequence of tuning parameter values, say, γ1, . . . ,γM .

This yields the eaps Ŝ(γ̂n), which is indeed Ŝ(Tn).

In summary, having applied either of the above em algorithms we arrive at a sub-model

with eaps Ŝ(Tn), and the parameter vector Ψ̃. This completes the Step 2 of Algorithm 1.

For Step 3, to obtain the mle of Ψ̃ we use the em algorithm based on the complete

log-likelihood function (19) with (D1n,ΨC) replaced by (D2n, Ψ̃). This yields the mle Ψ̃n.

Finally, for Step 4, we describe the calculation of the standard errors for computing the

t-ratios tjl,n in (9). We use the empirical observed information matrix to approximate the
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observed information matrix (McLachlan and Peel, 2000). For fmrs this matrix is given by

Ie(Ψ̃n) =
∑
i∈D2n

s(yi,xi; Ψ̃n)s>(yi,xi; Ψ̃n), (22)

where s(·) is the gradient of the complete log-likelihood and

s(yi,xi; Ψ̃) =
K∑
j=1

ωij
∂

∂Ψ̃

{
log πk + log h(yi; θ̃j(xi), φj)

}
, i ∈ D2n

and ωij = E{Zij|(Yi,xi) ∈ D2n, Ψ̃n}. Square root of the diagonal elements of the inverse

matrix I−1
e (Ψ̃n) are used as the approximate standard errors.

4.2 Finite Sample Improvements

The eaps obtained from a single split of the data may not be a good representative of

the true active predictor set due to the randomness in the split. Hence, a natural option

is to split the data into two parts B times obtaining (D1
1n,D1

2n), (D2
1n,D2

2n), · · · , (DB1n,DB2n).

Common choices for B are 25 or 50.

If one were to use the bic-based selector Tn on each split, even for a moderately sized d

the algorithm becomes computationally prohibitive, unless additional structures are assumed

on the elements of the model space A in (3). Hence, in this case we recommend using the

adaptive regularization-based selector and we focus on this approach in the rest of this

section. Accordingly, the eaps for the bth split is given by Ŝb(γ̂nb), b = 1, 2, . . . , B, where

γ̂nb is the bic-enhanced tuning parameter obtained from Db1n; also set

SB,n =
B⋃
b=1

Ŝb(γ̂nb).

Note that SB,n is the set of all pairs (j, l) selected in various splits, where j is the index

of the mixture component and l is the index of the selected covariate. By Proposition 1,

as n → ∞, with probability tending to one, SB,n = S0, for any fixed B. In finite samples,

it is possible that SB,n equals the set of indices of regression coefficients in the full fmr

model. Even though we have used the unions of eaps from every split to construct SB,n, it

is possible to retain only those covariates that appear a certain percentage of times amongst

the B splits.
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We refer to the above procedure as the “Msplit” (multiple split) which we now use to

test hypotheses analogous to (6) using the covariates associated with the indices in SB,n; for

instance, consider

H0,jl : βjl = 0, for all (j, l) ∈ SB,n. (23)

As described previously in (9), we use the test statistic

tbjl,n = ¯̃βjl,b/se( ¯̃βjl,b), (24)

where the index b represents the split, for testing H0,jl at level α. Let pbjl denote the corre-

sponding p-value obtained by using the student-t approximation to the distribution of tbjl,n.

Hence for every split b, we have q̂n,b = |Ŝb(γ̂nb)| p-values. For those indices in SB,n but not

in Ŝb(γ̂nb) we assign p-value to be 1. Let S̃B,n denote this extended version of SB,n. Let

rn = |SB,n|, and r∗n = max1≤j≤K,1≤b≤B q̂n,b,j, where q̂n,b,j is the size of the estimated active set

of the jth component in the bth split. Let p(b) denote the matrix of the p-values associated

with the hypotheses (23), corresponding to the bth split, as

p(b) =


pb11 pb12 . . . pb1,r∗n
...

...
. . .

...

pbK1 pbK2 . . . pbK,r∗n

 , b = 1, 2, . . . , B. (25)

Since the p-values in (25) are not adjusted for multiple testing, as described in Section 4.1,

we define the multiplicity adjusted p-value for the bth split for testing (23) to be

p̄bjl = min(pbjl × q̂n,b, 1), j = 1, . . . , K; l = 1, . . . , r∗n; (26)

we represent the corresponding matrix of the adjusted p-values by p̄(b), b = 1, . . . , B.

Turning our attention to the the random variables {tbjl,n, b = 1, 2, · · ·B} and their limit

distributions, it is obvious that they are correlated. However, the correlation structure is

unknown. Evidently, the p-values {pbjl, b = 1, 2 · · ·B} are also correlated. Thus, one needs a

method to aggregate dependent p-values.

Aggregating p-values from several independent and dependent tests have long been con-

sidered in the literature. Indeed, if the p-values were independent, Fisher’s approach suggests
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combining them by considering -2 times the sum of the logarithm of the p-values. Since this

quantity would have a χ2
2B distribution, the aggregate p-value for the hypothesis can be

obtained by calibrating this distribution. However, if the p-values are dependent Fisher’s

approach will not yield a χ2
2B distribution and alternative methods are required. While this

has also been studied in the literature, we describe two of the recently suggested methods

(Meinshausen et al., 2009; Vovk, 2012).

For b = 1, 2, · · ·B, let p̃bjl be any p-value for the bth split. A typical choice for p̃bjl is (26)

without the multiplicity adjustment factor q̂n,b. Indeed, this would be a p-value for testing a

single hypothesis concerning a regression coefficient whose index belongs to the eaps.

1. Aggregation using quantiles: For any δ ∈ (0, 1), the aggregated p-value across B

splits corresponding to the hypothesis H0,jl is given by

Qjl(δ;D1:B
1n ,D1:B

2n ) = Qδ(δ−1p̃bjl : b = 1, ..., B), (27)

where Qδ(·) is the δth empirical quantile function. Since the choice of δ is arbitrary,

one needs to identify an appropriate value for it in practice, which frequently can be

challenging. As an alternative one can find the minimum value of the function Qδ(·)

over an interval not including 0, viz. (δmin, 1), for a pre-specified value of δmin; however,

this does not yield fwer control, and hence an adjustment factor is required. Thus,

the modified quantile-based p-value is given by

Q∗jl(δmin;D1:B
1n ,D1:B

2n ) = min{1, (1− log δmin) inf
δ∈(δmin,1)

Qjl(δ;D1:B
1n ,D1:B

2n )}, (28)

where δmin ∈ (0, 1) acts as a calibration parameter.

2. Averaging: Even though the simplest approach to aggregation is averaging, it is

known that the average of p-values is not always a p-value. To define a p-value using

the averaging, let Q̄jl(D1:B
1n ,D1:B

2n ) = B−1
∑B

b=1 p̃
b
jl and set

Q̄∗jl(D1:B
1n ,D1:B

2n ) = min(2Q̄jl(D1:B
1n ,D1:B

2n ), 1). (29)

Below when there is no scope for confusion, we will denote the left hand side of (27),

(28), and (29) respectively, by Qjl(δ), Q
∗
jl(δmin), and Q̄∗jl. Note that the averaging method
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does not involve any calibration parameter such as δmin needed in the quantile method, and

hence it is easy to use in practice. For a further comparison of the two methods see Section

4.3. Proposition 2, which is of independent interest, establishes that the above aggregation

methods yield quantities which are p-values.

Proposition 2 Let p1, p2, · · · pB denote B p-values (possibly dependent) for testing a null

hypothesis H0 at level α ∈ (0, 1). Let Qδ(·) be the empirical quantile function as in (27),

QB(δ) = Qδ(δ−1pb; b = 1, 2, . . . B) and Q∗B(δmin) = min{1, (1 − log δmin) infδ∈(δmin,1)QB(δ)},

where 0 < δ, δmin < 1. Additionally, let Q̄∗B = min{2Q̄B, 1} where Q̄B = B−1
∑B

b=1 pb. Then,

the quantities Q(δ), Q(δmin), and Q̄B are p-values.

As an immediate corollary of Proposition 2, it follows that expressions in (27), (28), and

(29) are asymptotically p-values. We next investigate the behavior of the fwer for testing

(23). To this end, let

S∗B,n(δ) =
⋃

(j,l)∈SB,n

{(j, l) : Qjl(δ) ≤ α} , (30)

where Qjl(δ) is defined using p̄bjl as in (26). Finally, let E(δ;D1:B
1n ,D1:B

2n ) = N0 ∩ S∗B,n(δ). Re-

placingQjl(δ) byQ∗jl(δmin) and Q̄∗jl in (30), we obtain E∗(δmin;D1:B
1n ,D1:B

2n ) and E∗∗(D1:B
1n ,D1:B

2n ),

respectively. We consider testing the hypotheses in (23), for any given 0 < α, δ, δmin < 1.

Theorem 3 Assume that the conditions of Proposition 1 hold. We have that

(i) lim sup
n→∞

P

(
E(δ;D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α;

(ii) lim sup
n→∞

P

(
E∗(δmin;D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α;

(iii) lim sup
n→∞

P

(
E∗∗(D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α.

Remark 1. The Bonferroni adjustment used in the computation of the adjusted p-values

in (26) is split-dependent. It is possible to replace it by r∗n, described in the paragraph after

equation (24), and the conclusions of Theorem 3 will continue to hold.

19



While Theorem 3 is concerned with the hypotheses in (23), the assertions of the Theorem

continue to hold for hypotheses analogous to (7) and (8) (based on SB,n) if the adjustment

factor q̂n,b in (26) is replaced by split-dependent versions of |Gj| and |G|, respectively. In

particular, the proposed method facilitates testing further hypotheses concerning regression

coefficients of the selected covariates within and between the mixture components. For exam-

ple, a local test of the effect of a selected covariate is concerned with the question: is its effect

present in at least one mixture component? i.e., testing H0 : βjl = 0, for some 1 ≤ j ≤ K.

Furthermore, a global test of a selected covariate is concerned with the question: is its ef-

fect present in all the mixture components? i.e., testing H0 : βjl = 0, for all 1 ≤ j ≤ K.

Algorithm 2 summarizes the Msplit method for testing (23).

Algorithm 2 ( The Msplit Method for Hypothesis Testing)

Step 1: Divide the data set randomly into two parts of approximately equal size n/2,

B times; call the resulting data (D1
1n,D1

2n), (D2
1n,D2

2n), · · · , (DB1n,DB2n).

Step 2: For each 1 ≤ b ≤ B, using Db1n, the regularization method and the bic tuning

parameter selector, obtain the eaps Ŝb(γ̂nb), and set SB,n =
⋃

1≤b≤B Ŝb(γ̂nb).

Step 3: Using D1:B
2n , obtain the mle of all the βjl of the selected covariates in Step 2.

Step 4: Using the mles in Step 3, calculate the student-type statistics using (24).

Obtain the p-value matrix in (25) and the corresponding adjusted p-values in (26).

Step 5: Use one of the aggregation methods to find the overall p-values.

We now provide the details for implementing Algorithm 2. First, note that Steps 2

through 4 of Algorithm 2 involve running the em algorithms described in Section 4.1 for

each split (Db1n,Db2n), b = 1, 2, . . . , B. The procedure is exactly the same as in Algorithm

1 but repeated for each split. This results in the eaps SB,n =
⋃

1≤b≤B Ŝb(γ̂nb). Now, to

compute the t-ratios in (24), we use the (approximate) standard errors given in (22) for each

split, and thus obtain the matrix of p-values. Finally, in Step 5, we use one of the p-value

aggregation methods to obtain a single p-value corresponding to each covariate whose index

belongs to the eaps SB,n.
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4.3 Numerical Experiments and Data Analysis

In this section we evaluate the finite sample performance of the proposed methods via

simulations. The methods are compared with the standard regularization techniques based

on adlasso and scad penalties, using the following three criteria:

1. Empirical family-wise error rate (efwer): the empirical probability of including at

least one covariate with a true zero regression coefficient;

2. Empirical expected number of true positives, E(tp): average number of correctly

estimated non-zero regression coefficients;

3. Empirical expected number of false positives, E(fp): average number of incorrectly

estimated non-zero regression coefficients.

In the implementation of all methods, we use the bic-enhanced tuning parameter selector

described in Section 3.2. Due to the dimensions (d) considered in our simulations, we choose

the adaptive regularization-based selector Tn. We emphasize here that while our methods

provide p-values by accounting for variable selection uncertainty, the other two methods only

yield a sparse fmr model and no valid inference is feasible without additional work.

The vector of covariates X = (X1, X2, . . . , Xd)
>, with realized value x, is generated from

a multivariate normal with mean zero and a variance-covariance matrix Σ whose diagonal

elements equal one and the off-diagonal elements have an autoregressive-type correlation

structure; that is, corr(Xi, Xj) = .5|i−j|. Once x is generated it remains fixed throughout

the simulations. We have considered fmr models with K = 2 mixture components and three

covariate dimensions d = 30, 50, 70. The intercepts are set to β10 = 1, β20 = 2.

The results are based on 200 simulated random samples of size n = 300 from Gaussian

and Binomial fmrs. We present results for the above mentioned criteria for each of the

mixture components, Com1 and Com2, and the entire mixture, Both. These are provided

in Table 1 (Gaussian fmr) and Table S1 of the Supplementary Material (Binomial fmr)

using the quantile-based aggregation; Table S2 and Table S3 of the Supplementary Material

contain the corresponding results using the average-based aggregation. The Msplit results

are based on B = 50 and δmin = .125, and scad was used in the first-stage of Msplit; finally,
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all the hypothesis tests were carried out at a significance level of 0.05. The numerical results

for single split are not included but, some discussion is provided at the end of this Section.

The computational codes for all numerical work in this paper are written in C++ and R

software and are placed in the Supplementary Material.

Gaussian fmr. Given xi, the response Yi is generated from the mixture

πN(β10 + x>i β1, σ
2) + (1− π)N(β20 + x>i β2, σ

2)

with π = .45, and variances σ2 = 1, 4, 9, 25, 36 which yield the signal-to-noise ratio (snr)

values: 25.8, 6.45, 2.87, 1.03, 0.72. The d-dimensional vector of regression coefficients are

β>1 = (1.8, 1.6, 2.3, 0.0, 2.5, 1.7, 0.0, . . . , 0.0) and β>2 = (−1.7, 0.0, 2.5,−2.5,−2.0, 0.0, . . . , 0.0)

which contain q1 = 5 and q2 = 4 non-zero regression coefficients, respectively.

From Table 1 we observe that the efwer for adlasso and scad increases from 0 to

1.00 as the signal becomes weaker while the Msplit remains stable at the significance level

α = 0.05 with a maximum efwer .015 for the weakest signal (snr = 0.72) and Kd = 140.

Next, when considering the (average) empirical number of false positives E(fp), we note

that for the Msplit method it is almost zero (varies between .000 and .015) in all cases. The

adlasso and scad also perform reasonably well by including, respectively, between .000 to

4.16 and .065 to 2.85 number of false positives as the signal changes from strong (snr=25.8)

to medium (snr = 2.87) across different dimensions. However, as the signal becomes very

weak, adlasso, on average, includes between 6.64 to 24, while scad, on average, includes

8.49 to 17.2 additional covariates with true zero coefficients.

Finally, we compare the three methods in terms of the (average) empirical number of

true positives E(tp): we notice that for relatively strong signals (snr = 25.8, 6.45), all three

methods perform well, led by scad and closely followed by adlasso and the Msplit. For the

medium signal (snr = 2.87), the scad and adlasso are still able to pick most of the true

non-zero coefficients while the Msplit misses, on average, one true active covariate in each

of the mixture components. However, as the signal becomes weaker the task of identifying

true non-zero regression coefficients becomes challenging for all three methods.
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Table 1 and Table S1 were obtained using the quantile-based aggregation methods wherein

the choice of δmin is critical. In Table S2 and Table S3 we provide a comparison of the

quantile- and averaging-based aggregation methods. We notice that for strong signals in

both the Gaussian and Binomial fmrs, the averaging works as well as the modified quantile

method with a carefully chosen δmin. Indeed, in our simulations we noticed that if one were

to use the recommended δmin = .05 in Meinshausen et al. (2009), the resulting efwer ex-

ceeds the nominal 5% level. Thus, if the goal of the experiment is to be conservative in the

identification of covariates or if the signal is known to be strong, then the averaging method

may be desirable due to ease of implementation.

It is well-known that fwer control yields a conservative testing procedure, as is also seen

from Table 1 and Table S1. Additionally, turning to E(tp), it is clear that both adlasso

and scad (with the bic-enhanced tuning parameter) yield higher true positive rates within

each mixture component than the splitting methods. Thus, if the goal is to only identify

possible covariates affecting a response in each mixture component, it may be worthwhile to

use adlasso and/or scad with the bic-enhanced tuning parameter selector. However, if

the goal is to test the significance of an important effect in an fmr model then controlling

fwer may be a better option.

Finally, regarding the single split method our analysis showed that (not presented here)

efwer exhibited high variability between splits, specially when the signal was weak.

Boston Housing data. The data for this example is posted on the UC Irvine Machine

Learning Repository and concerns housing values in the suburbs of Boston (also available

in the Supplementary Material). There are 506 observations on 14 variables: Per capita

crime rate by town (x1); proportion of residential land zoned for lots over 25,000 sq.ft. (x2);

proportion of nonretail business acres per town (x3); Charles River dummy variable (x4);

nitric oxide concentration (parts per 10 million; x5); average number of rooms per dwelling

(x6); proportion of owner occupied units built prior to 1940 (x7); weighted distances to

five Boston employment centres (x8); index of accessibility to radial highways (x9); full-

value property-tax rate per 10,000 (x10); pupil-teacher ratio by town (x11); 1000(Bk - 0.63)2
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where Bk is the proportion of blacks by town (x12); a numeric vector of percentage values of

lower status population (x13); and the median value of owner occupied homes in thousands

(medv).

Figure 1 in the Supplementary Material shows the histogram of a response variable

y = medv/sd(medv). The histogram seems to suggest that a certain proportion of houses

have relatively high y values. This motivated us to investigate a 2-component Gaussian fmr

model for analyzing the data. Our goal is to identify the set of covariates that are associated

with y within the two components, namely the houses with high median value and those

that do not have high value. We also would like to test whether the selected covariates are

significantly associated with the response variable y.

We used the Msplit (based on scad penalty) with B = 50 random splits of the data

where each split contains two sub-samples each of size n/2 = 253. The average estimated

value of π over B = 50 splits was approximately .36. Thus in the rest of our analysis

we refer to the smaller component of the fmr model, which probably describes the higher

priced houses, as Com1 and the second component as Com2. The calibration parameter for

the aggregated p-values in (28) is δmin = .125. The Msplit resulted in the eaps: SB,n =

{(1, 2), (1, 4), (1, 6), (1, 8), (1, 9), (1, 11), (1, 12), (1, 13)}
⋃
{(2, 1), (2, 6), (2, 7), (2, 10), (2, 11),

(2, 12), (2, 13)}. We retained only those covariates that occurred at least 10% of the time

over B = 50 splits. The set of covariates with p-values less than .05 are Com1: {x6, x9, x13}

and Com2: {x6, x11, x13}. One possible interpretation of the results of the analysis is as

follows: the average number of rooms in a house (x6, positive effect) and the lower status

population (x13, negative effect) are significant factors affecting both high and low priced

houses. In addition, for the high priced houses access to highway (x9, positive effect) is

another significant factor whereas for the lower priced houses pupil-teacher ratio by town

(x11, negative effect) is a significant factor.
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5 SUMMARY AND CONCLUSION

There has been much recent work on post-selection inference problems in sparse linear

and generalized linear regression models. In this paper, we have addressed this problem and

proposed a new methodology for general hypothesis tests concerning regression coefficients

of a selected sparse fmr model. The method naturally accounts for variable selection un-

certainty. Our theoretical developments show that under model selection consistency, the

family-wise error rate (fwer) can be controlled at a pre-specified nominal level and thus

providing sound statistical underpinnings to a practical problem of data analysis using sparse

fmr models. Numerical results support our theoretical findings.

Our work opens up opportunities for several research problems concerning post-selection

inference in sparse fmrs. Specifically, our methods are not immediately applicable in the

high-dimensional settings when the number of parameters increases with the sample size.

This is a challenging problem in the context of mixture models and hence new ideas may be

needed to provide stable inferential methods. Additionally, computational algorithms in this

context needs to be developed since routine application of the EM algorithm described in the

paper may not be feasible in high-dimensional settings. These issues are further complicated

when the number of mixture components K is unknown.
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APPENDIX A: REGULARITY CONDITIONS

In this section we provide the regularity conditions that facilitate our theoretical study.

For any candidate model MC ∈ A, where A is given in (3), with corresponding parameter

vector ΨC ∈ ΘC ⊆ R[q(MC)+3K−1], consider the random vector Z = (X, Y ) with a joint pdf
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f ∗(z; ΨC) such that the conditional distribution of (Y |X = x) follows the fmr sub-model

with parameter ΨC . Here we assume that the marginal distribution of the covariates X does

not depend on ΨC . Also, we assume that Ψ0 is an interior point of the parameter space.

Regularity Conditions (RC):

(RC1) The support of f ∗(z; ΨC) does not depend on ΨC , for any candidate modelMC ∈ A.

Further, f ∗(z; ΨC) is identifiable up to the mixture components permutation.

(RC2) For all ΨC ∈ ΘC , f ∗(z; ΨC) is three times continuously differentiable w.r.t ΨC for

almost all z.

(RC3) For any sub-model MC ∈ A, the Kullback-Leibler distance

KL(ΨC ; Ψ0) = E0

{
log

f ∗(Z; Ψ0)

f ∗(Z; ΨC)

}
=

∫ [
log

f ∗(z; Ψ0)

f ∗(z; ΨC)

]
f ∗(z; Ψ0)dz

is well defined. Further, Ψ0
C which is the minimizer of the KL with respect to ΨC ,

satisfies ∫ [
∂ log f ∗(z; ΨC)

∂ΨC

]
f ∗(z; Ψ0)dz = 0.

(RC4) For any Ψ0
C ∈ ΘC , and ΨC ∈ N(Ψ0

C) (where N(Ψ0
C) is a neighborhood around Ψ0

C),

there exist functions M1(z),M2(z), and M3(z) (possibly depending on Ψ0
C) such that∣∣∣∣∂f ∗(z; ΨC)

∂ψj

∣∣∣∣ ≤M1(z) ,

∣∣∣∣∂2f ∗(z; ΨC)

∂ψj∂ψk

∣∣∣∣ ≤M2(z) ,

∣∣∣∣∂3f ∗(z; ΨC)

∂ψj∂ψk∂ψl

∣∣∣∣ ≤M3(z)

where ψj represents the elements of the parameter vector ΨC , such that E0{M3(Z)} <

∞, and
∫
Mi(z)dz <∞, for i = 1, 2.

(RC5) The matrices

I1(ΨC) = E0

{[
∂

∂ΨC

log f ∗(Z; ΨC)

] [
∂

∂ΨC

log f ∗(Z; ΨC)

]>}

J1(ΨC) = −E0

{[
∂2

∂ΨC∂ΨC

log f ∗(Z; ΨC)

]}
are finite and positive definite for each ΨC ∈ ΘC .
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These are standard conditions that one adopts when studying the asymptotic properties

of the mles in parametric models. (RC1) is an identifiability condition on the true model

and possible candidate sub-models MC . Additionally, the common support condition facil-

itates interchanging differentiation and integration operations on the log-likelihood. (RC2)

is a smoothness condition on the density required for asymptotic analyses while (RC3) guar-

antees the asymptotic existence of the mles of the parameters of a sub-model. (RC4) allows

interchanging of the expectation and the limits while (RC5) posits the finiteness of the Fisher

information for the considered models.

Regularity Conditions on the Penalty (RCP):

We now state the regularity conditions on pn(x; γnj). First, define

an = max
j,l

{
pn(β0

jl; γnj)/
√
n : β0

jl 6= 0
}

(31)

bn = max
j,l

{
p′n(β0

jl; γnj)/
√
n : β0

jl 6= 0
}

(32)

cn = max
j,l

{
p′′n(β0

jl; γnj)/n : β0
jl 6= 0

}
(33)

where p′(·; γ) and p′′n(·; γ) are the first and second derivatives of pn(x; γ) with respect to x.

(RCP1) For all n and γ, the penalty function pn(x; γ) is symmetric, nonnegative, nondecreasing

and it has first derivative for all x ∈ (0,∞). The function is also continuously twice

differentiable for all x ∈ (cγ,∞), and some constant c > 0. In addition, pn(0; γ) = 0.

(RCP2) lim
n→∞

an
1+bn

= 0, and lim
n→∞

cn = 0.

(RCP3) Define Nn = {x|0 < x < log n/
√
n}. Then lim

n→∞
inf
x∈Nn

p′n(x;γnj)√
n

= +∞.

(RCP4) Assume that, for all 1 ≤ j ≤ K, γnj ∈ [0, γ∗n], and that γ∗n → 0 as n→∞.

(RCP1) is a standard smoothness condition on the penalty which facilitates obtaining es-

timators by differentiating the objective function and for studying the asymptotic properties

of the estimators of the true non-zero regression coefficients. (RCP2) is required to obtain the
√
n-consistency of the estimators of the true non-zero regression coefficients while (RCP3) is

required for sparsistency of the estimators. (RCP4) ensures that the data-dependent choice

(17) of the tuning parameter satisfies the conditions (RCP1)-(RCP3).
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APPENDIX B: PROOFS.

Proof of Theorem 1. (i) asymptotic normality: Let Ln ≡
√

n
2

{
Wn

(
Ψ̃n −Ψ0(q̂n)

)}
and x ∈ Rm. Define the two events An and Bn as follows:

An = [Ln ≤ x] and Bn =
[
Ŝ(Tn) = S0

]
,

where for two vectors x and y, we say x ≤ y if and only if every component of x is less than

or equal to every component of y. Now,

P (An) = P (An|Bn)P (Bn) + P (An ∩Bc
n). (34)

Notice that

P (An|Bn) = P

(
Ln ≤ x

∣∣∣∣Ŝ(Tn) = S0

)
. (35)

Under the conditioning Ŝ(Tn) = S0, the dimension of Wn reduces to q0 + 3K − 1 and hence

Wn = W . Furthermore, the dimension of Ψ̃n and Ψ0(q̂n) also reduce to q0 + 3K − 1, and

Ψ0(q̂n) = Ψ0. Thus, writing Ψ̃n as Ψ̃n(D2n), (35) becomes

P

(√
n

2
W
(
Ψ̃n(D2,n)−Ψ0

)
≤ x

∣∣∣∣Ŝ(Tn) = S0

)
. (36)

Now, observing that Ŝ(Tn) depends on D1n, it follows from the independence of D1n and

D2n that (36) reduces to

P

(√
n

2
W
(
Ψ̃n(D2,n)−Ψ0

)
≤ x

)
.

Now, under the regularity conditions (RC1)-(RC5), it follows upon noticing that Ψ̃n(D2n) is

the mle of Ψ0, that the expression in (36) converges to P (Nm (0, [WI1(Ψ0)Wτ ]−1) ≤ x) , as

n→∞. Also, limn→∞ P (Bn) = 1 by consistency of the model selector Tn. Thus, combining

the results and taking limits in (34), the proof of (i) follows.
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(ii) fwer control: By the definition of the event E(D1n,D2n) in (10),

P

{
E(D1n,D2n) 6= ∅

}
= E0

{
1[E(D1n,D2n)6=∅]

}
= E0

[
E0

{
1[E(D1n,D2n)6=∅]

∣∣∣∣D1n

}]

≤ E0

 K∑
j=1

∑
l∈Ŝj(Tn)

P

{
(j, l) : pjl ≤ α/q̂n and H0,jl : β0

jl = 0 is true

∣∣∣∣D1n

}
= E0

 K∑
j=1

∑
l∈Ŝj(Tn)

P

{
(j, l) : pjl ≤ α/q̂n

∣∣∣∣D1n,H0,jl

}
≤ E0

 K∑
j=1

∑
l∈Ŝj(Tn)

α

q̂n

 = α E0

q̂−1
n

K∑
j=1

∑
l∈Ŝj(Tn)

1

 ≤ αE0

[
q̂−1
n × q̂n

]
= α,

where we used the fact that pjl is independent of D1n and that it is a p-value. �

Proof of Proposition 1. Before we embark on the proof, we introduce the following

definition which is concerned with the concepts of under-fitted, over-fitted, and exactly-fitted

fmr models. We state two lemmas that play a critical role in the proof of the proposition.

Definition 4 A candidate fmr sub-modelMC ∈ A is said to be: (i) under-fitted if Sj 6⊃ S0
j

for at least one 1 ≤ j ≤ K, and we write MC 6⊃ M0. (ii) over-fitted if Sj ⊇ S0
j for all

1 ≤ j ≤ K, and Sj ⊃ S0
j for at least one 1 ≤ j ≤ K, and we write MC ⊃ M0. (iii)

exactly-fitted if Sj = S0
j , for all 1 ≤ j ≤ K, and we write MC =M0.

Lemma 1 below is critical to remove condition C4 in Theorem 1 of Zhang et al. (2010).

We note that it is hard to verify condition C4 in practice.

Lemma 1 Assume that the regularity conditions (RC1)-(RC5) are satisfied. As n→∞,

(i) for any candidate sub-model MC ∈ A, there exists a maximizer Ψn,C of the log-

likelihood ln(ΨC) given in (2), such that Ψn,C
a.s−→ Ψ0

C, and furthermore,

√
n(Ψn,C −Ψ0

C)
d−→ N (0,V (Ψ0

C)),

where V (Ψ0
C) = J−1

1 (Ψ0
C)I1(Ψ0

C)J−1
1 (Ψ0

C). Also, if MC = M0 then I1(Ψ0) =

J1(Ψ0).
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(ii) let MC ∈ A be any under-fitted sub-model. Then,

1

n

[
`n(Ψn,C)− `n(Ψn,0)

]
a.s−→ E0[log f ∗(Zi; Ψ

0
C)]− E0[log f ∗(Zi; Ψ0)] < 0,

where Ψn,0 is the mle of Ψ0.

(iii) let MC ∈ A be any over-fitted sub-model. Then,

2

[
`n(Ψn,C)− `n(Ψn,0)

]
d−→ χ2

[q(MC)−q0].

Proof of Lemma 1. (i) Under the regularity conditions (RC1)-(RC5), the existence and

strong consistency of a maximizer Ψn,C of the log-likelihood ln(ΨC) satisfying

`′n(Ψn,C) =
∂`n(ΨC)

∂ΨC

∣∣∣∣
ΨC=Ψn,C

= 0 (37)

follows from Chanda (1954) and White (1982). Also, by the central limit theorem, the

score function `′n(Ψ0
C)/
√
n has an asymptotic normal distribution with mean zero and the

variance-covariance matrix V (Ψ0
C) = J−1

1 (Ψ0
C)I1(Ψ0

C)J−1
1 (Ψ0

C). By a third-order Taylor’s

expansion of the right hand side of (37) around Ψ0
C , the strong consistency of Ψn,C , and the

boundedness condition of the third-order derivative in RC3,
√
n(Ψn,C−Ψ0

C) has a mean-zero

asymptotic normal distribution with variance-covariance matrix V (Ψ0
C).

(ii) As n→∞, by part (i), for any candidate model MC and the true model M0 we have

that Ψn,C
a.s−→ Ψ0

C and Ψn,0
a.s−→ Ψ0, respectively. By (RC2), (RC3), and the strong law of

large numbers, it follows that as n→∞

1

n
`n(Ψn,C)− 1

n
`n(Ψn,0)

a.s−→ E0{log f ∗(Zi; Ψ
0
C)} − E0{log f ∗(Zi; Ψ0)} < 0.

(iii) Since the candidate model MC is over-fitted, the true model M0 is nested in MC .

Hence, by a verification of the conditions of Corollary 3.4 of Vuong (1989), it follows that

the likelihood ratio statistic comparing these two models, viz. 2

[
`n(Ψn,C) − `n(Ψn,0)

]
, has

a chi-squared distribution with degrees of freedom q(MC)− q0. �

Lemma 2 Assume that the regularity conditions (RC1)-(RC5) and (RCP1)-(RCP3) hold.

Also assume that γ∗n satisfies (RCP4). Then, lim
n→∞

P{q(γn) = q0} = 1, where q(γn) is defined

below.
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Proof of Lemma 2. The proof essentially follows from the estimation and selection con-

sistency of the mple. Specifically, consider the mple Ψ̂n(γn) corresponding to the tuning

parameter γn satisfying (RCP1)-(RCP4). Note that q(γn) =
∑K

j=1

∑d
l=1 I(β̂jl(γn) 6= 0) is

the total number of estimated non-zero regression coefficients β̂jl(γn) contained in the mple

Ψ̂n(γn). On the other hand, there are q0 non-zero regression coefficients in the true sparse

model. Under the regularity conditions (RC1)-(RC5) and (RCP1)-(RCP3), by Theorems 1

and 2 of Khalili and Chen (2007), for all (j, l) such that β̂jl(γn) 6= 0, β̂jl(γn) −→ β0
jl 6= 0,

with probability tending to one, as n→∞. Hence, the Lemma follows. �

We now turn to the proof of Proposition 1. The main idea of the proof is to show that

the bic(γ) in (18) will not choose γ that corresponds to the under-fitted and over-fitted fmr

models as described in Definition 4, and hence selects the true model. We divide the proof

into three main steps.

Step 1: (Lower bound for bic(γ)). For any γ the bic is given by

bic(γ) =
1

n

{
−2`n(Ψ̂n(γ)) + q(γ) log n

}
, (38)

where Ψ̂n(γ) is the mple. Note thatMγ denotes the fmr sub-model dictated by the mple;

let the corresponding parameter vector be ΨMγ ≡ Ψ(γ). Further, let Ψn,Mγ ≡ Ψn(γ)

be the mle of the parameters of the sub-model Mγ , which maximizes the log-likelihood

`n(Ψ(γ)). Thus,

`n(Ψn(γ)) ≥ `n(Ψ̂n(γ)). (39)

Now by plugging (39) in (38), for any γ

bic(γ) ≥ 1

n

[
−2`n(Ψn(γ)

]
. (40)

Step 2: (Oracle-type property for bic(γn)). Turning to the mple Ψ̂n(γn), where

γn is chosen according to the regularity conditions (RCP1)-(RCP3), by Lemma 2, q(γn)

equals to q0 with probability tending to one, as n →∞. Denote by Ψ̂A(γn) the sub-vector

of Ψ̂n(γn), with dimension equal to dim(Ψ0) = q0 + 3K − 1, which contains the estimated
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non-zero regression coefficients, mixing probabilities and dispersion parameters. Then, for

large n, with a probability close to one, the following normal equations hold;

∇ΨA

[
1

n
`n(Ψ̂A(γn))− 1

n
pn(Ψ̂A(γn);γn)

]
= 0.

For the mle Ψn,0, the following normal equations

∇ΨA

[
1

n
`n(Ψn,0)

]
= 0

hold. For simplicity in notation we replace the gradient operator ∇ by ′. By subtracting the

two normal equations we have that, for large n,

1

n

[
`′n(Ψ̂A(γn))− `′n(Ψn,0)

]
=

1

n

[
p′n(Ψ̂A(γn);γn)

]
.

Using a first-order Taylor’s expansion of the left hand side of the above equation,

Ψ̂A(γn)−Ψn,0 =

[
1

n
`′′(Ψ̃A)

]−1

×
[

1

n
p′n(Ψ̂A(γn);γn)

]
,

where Ψ̃A is on a line segment joining Ψ̂A(γn) and Ψn,0. By the regularity condition (RC4)

and the consistency of the estimator Ψ̂A(γn) it follows that, as n→∞,

‖Ψ̂A(γn)−Ψn,0‖2 = Op(‖p′n(Ψ̂A(γn);γn)/n‖2) = Op(‖p′n(Ψ0;γn)/n‖2).

On the other hand, by the structure of the penalty function in (15), and its dependence on

the regression coefficients and the mixing proportions only,

‖p′n(Ψ0;γn)/n‖2 = ‖∇B1pn(Ψ0;γn)/n‖2 +
K−1∑
j=1

 q0j∑
l=1

pn(β0
jl; γnj)/n

2

.

Therefore, combining the last two equations, as n→∞, by (RCP2),

‖Ψ̂A(γn)−Ψn,0‖2 = Op

(
b2
n

n
+
a2
n

n

)
= op(n

−1), (41)

where the quantities an and bn are defined in (31) and (32), respectively.

Also, using a second-order Taylor’s expansion, and by (41), for large n, with a probability

close to one,

0 >
1

n

[
`n(Ψ̂A(γn))− `n(Ψn,0)

]
= −1

2

(
Ψ̂A(γn)−Ψn,0

)> [
− 1

n
`′′(Ψ̃A)

](
Ψ̂A(γn)−Ψn,0

)
≥ −ρ2

2
‖Ψ̂A(γn)−Ψn,0‖2,
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where ρ2 is the largest eigen-value of the information matrix I1(Ψ0), which by (RC5) is

positive and finite. Hence, by (41), as n→∞, with probability tending to one,

1

n

[
`n(Ψ̂A(γn))− `n(Ψn,0)

]
= o(1). (42)

Now consider the classical bic∗κ0 evaluated based on the mle of parameters of the true model

M0, viz.,

bic∗κ0 =
1

n

{
−2`n(Ψn,0) + κ0 log n

}
,

where κ0 = q0 + 3K − 1. Thus, by (42),

lim
n→∞

P

{
2

n
`n(Ψ̂A(γn))− 2

n
`n(Ψn,0) +

log n

n
(q(γn)− κ0) = 0

}
= 1

which implies that

lim
n→∞

P
{
bic(γn) = bic∗κ0

}
= 1. (43)

Hence, it follows that if γn is chosen according to the regularity conditions (RCP1)-(RCP4),

then the difference between the bic evaluated at the mple and the bic evaluated at the mle

based on the true fmr model M0 equals zero, with probability tending to one, as n→∞.

Step 3: (Selection consistency ofMγ̂n
). We next show that the γ that fail to identify

the true model cannot be selected by the bic. That is, such a γ cannot be the minimizer of

bic(γ) in (18). To this end, let

Γ−n = {γ ∈ [0, γ∗n]K :Mγ 6⊃ M0},

Γ+
n = {γ ∈ [0, γ∗n]K :Mγ ⊃M0 , Mγ 6=M0}, and

Γ0
n = {γ ∈ [0, γ∗n]K :Mγ =M0}

denote the collection of those γ whose mple Ψ̂n(γ) yields respectively under-fitted, over-

fitted, and exactly-fitted fmr sub-models as described in Definition 4, and γ∗n is chosen

according to condition (RCP4). We will show that

lim
n→∞

P

(
inf
γ∈Γ−n

bic(γ) > bic(γn)

)
= 1, and (44)

lim
n→∞

P

(
inf
γ∈Γ+

n

bic(γ) > bic(γn)

)
= 1. (45)
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This will then imply that γ̂n /∈ Γ−n ∪ Γ+
n for sufficiently large n, where γ̂n is defined in (17).

Hence, γ̂n ∈ Γ0
n for large n, and this completes the proof of Proposition 1.

We next turn to the proof of (44). For γ and γn satisfying (40) and (43), with probability

tending to one, as n→∞,

bic(γ)− bic(γn) ≥ − 2

n
`n(Ψn(γ)) +

2

n
`n(Ψn,0)− log n

n
× κ0.

Now, by taking the infimum over γ ∈ Γ−n it follows that

inf
γ∈Γ−n

bic(γ)− bic(γn) ≥ 2

n
× inf
γ∈Γ−n

[
−`n(Ψn(γ))

]
+

2

n
`n(Ψn,0)− log n

n
× κ0.

Since d <∞, the number of under-fitted models corresponding to γ ∈ Γ−n is finite, and thus

the infimum in the above can be replaced by the minimum over the candidate under-fitted

models. Hence, for large n,

inf
γ∈Γ−n

bic(γ)− bic(γn) ≥ 2

n
min

M0 6⊂MC∈A

[
−`n(Ψn,C)

]
+

2

n
`n(Ψn,0)− log n

n
× κ0.

By Lemma 1-(ii), for any candidate under-fitted model MC ∈ A, as n → ∞, the right

hand side of the above inequality converges to

2 min
M0 6⊂MC∈A

{
E0[log f ∗(Zi; Ψ0)− E0[log f ∗(Zi; Ψ

0
C)]
}
> 0

with probability tending to one. This completes the proof of (44).

We now prove (45). For any γ ∈ Γ+
n , by Lemma 2 for large n, it follows that q(γ)−q(γn) >

η + op(1), for some η > 0. Thus by (39), for large n,

n

[
bic(γ)− bic(γn)

]
= −2`n(Ψ̂n(γ)) + 2`n(Ψ̂n(γn)) + log n

[
q(γ)− q(γn)

]
≥ −2`n(Ψn(γ)) + 2`n(Ψn,0) + log n

[
q(γ)− q(γn)

]
≥ −2[`n(Ψn(γ))− `n(Ψn,0)] + (η + op(1)) log n.

By taking the infimum over γ ∈ Γ+
n on both sides of the above inequality,

inf
γ∈Γ+

n

n

[
bic(γ)− bic(γn)

]
≥ inf
γ∈Γ+

n

{
−2
[
`n(Ψn(γ))− `n(Ψn,0)

]}
+ (η + op(1)) log n.
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Once again, since d <∞ the number of over-fitted models is also finite, we can write

inf
γ∈Γ+

n

n

[
bic(γ)−bic(γn)

]
≥ min
M0(MC∈A

{
−2
[
`n(Ψn,C)− `n(Ψn,0)

]}
+(η+op(1)) log n. (46)

By Lemma 1-(iii), for any over-fitted candidate fmr model M0 ( MC , as n → ∞,

2
[
`n(Ψn,C)− `n(Ψn,0)

] d−→ χ2
[q(MC)−q0]. Hence,

min
M0(MC

{
−2
[
`n(Ψn,C)− `n(Ψn,0)

]}
= Op(1) , as n→∞.

Thus, the right hand side of the inequality in (46) diverges to +∞, as n→∞. Hence,

lim
n→∞

P{ inf
γ∈Γ+

n

n[bic(γ)− bic(γn)] > 0} = 1

and this completes the proof of (45). �

Proof of Proposition 2. To establish the claim, it is sufficient to show that under H0 the

following hold:

(i) P (QB(δ) ≤ α) ≤ α;

(ii) P (Q∗B(δmin) ≤ α) ≤ α;

(iii) P (Q̄∗B ≤ α) ≤ α.

We begin with the proof of Part (i). Using the definition of QB(δ), note that

[QB(δ) ≤ α] = [µB(αδ) ≥ δ] , where µB(x) =
1

B

B∑
b=1

1[pb≤x] (47)

is the empirical distribution of the given p-values. Now, by using the Markov’s inequality

P (QB(δ) ≤ α) = P (µB(αδ) ≥ δ) ≤ 1

δ
E (µB(αδ)) = δ−1P (pb ≤ αδ) ≤ α

where, in the last step, we have used that pb for all 1 ≤ b ≤ B is a p-value.

Turning to Part (ii), we notice that it is sufficient to establish that

P

(
inf

δ∈(δmin,1)
QB(δ) ≤ α

)
≤ α(1− log δmin).
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To this end, again using (47) and Markov’s inequality it follows that

P

(
inf

δ∈(δmin,1)
QB(δ) ≤ α

)
= P

(
inf

δ∈(δmin,1)
δ−1µB(αδ) ≥ 1

)
(48)

≤ E

(
sup

δ∈(δmin,1)

µB(αδ)

δ

)
(49)

≤ E

(
sup

δ∈(δmin,1)

1[p1≤αδ]

δ
)

)
. (50)

Now, to deal with (50) (see also Meinshausen et al. (2009)), note that for any random variable

taking values in (0,1) the following holds:

sup
δ∈(δmin,1)

1[U≤αδ]

δ
=


0 if U ≥ α

α
U

if αδmin ≤ U < α

1
δmin

if U ≤ αδmin.

(51)

Hence for a uniform (0, 1) valued random variable using (51) we obtain

E

[
sup

δ∈(δmin,1)

1[U≤αδ]

δ

]
≤ α(1− log δmin).

Now, Part (ii) follows from the fact that p1 in (50) is a p-value.

Finally, Part (iii) follows from Theorem 1 of Vovk (2012). �

Proof of Theorem 3. For the ease of notation, we set Qjl = Qjl(δ;D1:B
1n ,D1:B

2n ), Q∗jl =

Q∗jl(δmin;D1:B
1n ,D1:B

2n ), and E(D1:B
1n ,D1:B

2n ) = E(δ;D1:B
1n ,D1:B

2n ), E∗(D1:B
1n ,D1:B

2n ) = E∗(δmin;D1:B
1n ,D1:B

2n ).

We start with the proof of Part (i). Note that

P

{
E(D1:B

1n ,D1:B
2n ) 6= ∅

}
= E0

{
1[E(D1:B

1n ,D1:B
2n ) 6=∅]

}
= E0

[
E0

{
1[E(D1:B

1n ,D1:B
2n )6=∅]

∣∣∣∣D1:B
1n

}]

≤ E0

 ∑
(j,l)∈SB,n

P

{
Qjl ≤ α and H0,jl : β0

jl = 0 is true

∣∣∣∣D1:B
1n

} .
Now, as in the proof of Proposition 2, for any (j, l) ∈ SB,n by letting

µjl,B(x) = B−1

B∑
b=1

1[p̄bjl≤x]
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be the empirical distribution of the adjusted p-values p̄bjls in (26), it follows that

P

{
E(D1:B

1n ,D1:B
2n ) 6= ∅

}
≤ E0

 ∑
(j,l)∈SB,n

P

{
µjl,B(αδ) ≥ δ and H0,jl : β0

jl = 0 is true

∣∣∣∣D1:B
1n

}
≤ δ−1E0

 ∑
(j,l)∈SB,n

E

[
µjl,B(αδ)

∣∣∣∣H0,jl : β0
jl = 0 is true,D1:B

1n

] , (52)

where the last inequality is obtained by applying the conditional Markov’s inequality. Now,

using the definition of µjl,B(·) and p̄bjl notice that

E

[
µjl,B(αδ)

∣∣∣∣H0,jl : β0
jl = 0 is true,D1:B

1n

]
=

1

B

B∑
b=1

P

(
pbjl ≤ q̂−1

n,bαδ

∣∣∣∣H0,jl : β0
jl = 0 is true,D1:B

1n

)

≤ 1

B

B∑
b=1

q̂−1
n,bαδ. (53)

Using (53) in (52) it follows that

P

{
E(D1:B

1n ,D1:B
2n ) 6= ∅

}
≤ α

B

B∑
b=1

E0

 ∑
(j,l)∈SB,n

q̂−1
n,b

 = E0

[
α

B

B∑
b=1

rnq̂
−1
n,b

]
.

By taking the limit superior as n → ∞ on both sides and using rn → q0 and q̂n,b → q0 in

probability as n→∞, it follows using the boundedness of rnq̂
−1
n,b that

lim sup
n→∞

P

(
E(δ;D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α.

We turn to the proof of Part (ii). Note that,

P

{
E∗(D1:B

1n ,D1:B
2n ) 6= ∅

}
= E0

{
1[E∗(D1:B

1n ,D1:B
2n )6=∅]

}
= E0

[
E0

{
1[E∗(D1:B

1n ,D1:B
2n )6=∅]

∣∣∣∣D1:B
1n

}]

≤ E0

 ∑
(j,l)∈SB,n

P

{
Q∗jl ≤ α and H0,jl : β0

jl = 0 is true

∣∣∣∣D1:B
1n

}
≤ E0

 ∑
(j,l)∈SB,n

P

{
inf

δ∈(δmin,1)
Qjl(δ) ≤ η and H0,jl : β0

jl = 0 is true

∣∣∣∣D1:B
1n

} ,
where η = α(1− log δmin)−1. Using (48)–(50) we obtain

P

{
E∗(D1:B

1n ,D1:B
2n ) 6= ∅

}
≤ E0

 ∑
(j,l)∈SB,n

1

B

B∑
b=1

η(1− log δmin)q̂−1
n,b

 ≤ E0

[
αrn

min1≤b≤B q̂n,b

]
.
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Taking the limit superior as n → ∞ on both sides and using rn → q0 and q̂n,b → q0 in

probability as n→∞, it follows using the boundedness of rnq̂
−1
n,b that

lim sup
n→∞

P

(
E∗(D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α.

The proof of Part (iii) uses Proposition 1 of Vovk (2012). Note that,

P

{
E∗∗(D1:B

1n ,D1:B
2n ) 6= ∅

}
= E0

{
1[E∗∗(D1:B

1n ,D1:B
2n )6=∅]

}
= E0

[
E0

{
1[E∗∗(D1:B

1n ,D1:B
2n )6=∅]

∣∣∣∣D1:B
1n

}]

≤ E0

 ∑
(j,l)∈SB,n

P

{
Q̄∗jl ≤ α and H0,jl : β0

jl = 0 is true

∣∣∣∣D1:B
1n

}
≤ E0

 ∑
(j,l)∈ŜB,n

α

min1≤b≤B q̂n,b

 ≤ E0

[
αrn

min1≤b≤B q̂n,b

]
.

Finally, taking the limit superior as n→∞ on both sides and using rn → q0 and q̂n,b → q0

in probability as n→∞, it follows using the boundedness of rnq̂
−1
n,b that

lim sup
n→∞

P

(
E∗∗(δ;D1:B

1n ,D1:B
2n ) 6= ∅

)
≤ α. �
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Table 1: Simulation results for the Gaussian fmr model.

E(TP) E(FP) EFWER

SNR K × d Mixture Msplit scad adlasso Msplit scad adlasso Msplit scad adlasso

25.8 Com1 5.00 5.00 5.00 .000 .050 .000 .000 .045 .000
60 Com2 4.00 4.00 4.00 .000 .015 .000 .000 .015 .000

Both 9.00 9.00 9.00 .000 .065 .000 .000 .060 .000

Com1 5.00 5.00 5.00 .000 .095 .000 .000 .075 .000
100 Com2 4.00 4.00 4.00 .000 .030 .000 .000 .025 .000

Both 9.00 9.00 9.00 .000 .125 .000 .000 .100 .000

Com1 5.00 5.00 5.00 .000 .115 .005 .000 .095 .005
140 Com2 4.00 4.00 4.00 .000 .030 .000 .000 .025 .000

Both 9.00 9.00 9.00 .000 .145 .005 .000 .120 .005

6.45 Com1 4.84 5.00 5.00 .000 .520 .335 .000 .345 .275
60 Com2 4.00 4.00 4.00 .000 .355 .175 .000 .295 .165

Both 8.84 9.00 9.00 .000 .875 .510 .000 .510 .395

Com1 4.80 5.00 5.00 .000 1.04 .700 .000 .555 .495
100 Com2 4.00 4.00 4.00 .000 .680 .320 .000 .440 .270

Both 8.80 9.00 9.00 .000 1.72 1.02 .000 .715 .620

Com1 4.71 5.00 4.95 .000 1.58 1.27 .000 .685 .660
140 Com2 4.00 4.00 4.00 .000 .975 .615 .000 .505 .420

Both 8.71 9.00 8.94 .000 2.55 1.89 .000 .780 .795

2.87 Com1 3.27 4.82 4.89 .000 .770 .955 .000 .485 .575
60 Com2 3.63 4.00 4.00 .000 .510 .580 .000 .335 .405

Both 6.90 8.82 8.89 .000 1.28 1.54 .000 .620 .740

Com1 3.27 4.76 4.75 .000 1.21 1.56 .000 .560 .740
100 Com2 3.63 3.99 3.97 .000 .915 .940 .000 .480 .540

Both 6.89 8.75 8.72 .000 2.12 2.50 .000 .695 .850

Com1 3.44 4.74 4.56 .000 1.61 2.65 .000 .655 .875
140 Com2 3.60 3.99 3.91 .000 1.24 1.51 .000 .565 .695

Both 7.03 8.73 8.47 .000 2.85 4.16 .000 .770 .960

1.03 Com1 1.43 3.93 4.08 .000 4.67 3.85 .000 .970 .955
60 Com2 1.33 3.46 3.46 .000 3.83 2.79 .000 .980 .935

Both 2.76 7.39 7.53 .000 8.49 6.64 .000 .995 .995

Com1 1.55 3.45 3.91 .000 4.41 6.42 .000 .950 .995
100 Com2 1.58 3.09 3.36 .000 3.29 5.09 .000 .975 .990

Both 3.13 6.53 7.27 .000 7.70 11.5 .000 1.00 1.00

Com1 1.90 3.36 3.78 .010 5.69 8.39 .010 .985 1.00
140 Com2 1.97 3.04 3.28 .000 4.76 7.29 .000 .985 1.00

Both 3.86 6.40 7.06 .010 10.45 15.7 .010 1.00 1.00

0.72 Com1 .905 3.67 3.77 .000 7.09 5.65 .000 1.00 1.00
60 Com2 .810 3.19 3.21 .000 6.14 4.75 .000 .995 1.00

Both 1.72 6.85 6.97 .000 13.22 10.4 .000 1.00 1.00

Com1 1.12 3.14 3.61 .000 6.94 9.12 .000 1.00 1.00
100 Com2 .970 2.82 3.16 .000 5.78 8.19 .000 .990 1.00

Both 2.09 5.96 6.76 .000 12.7 17.3 .000 1.00 1.00

Com1 1.47 2.95 3.41 .010 9.23 12.7 .010 1.00 1.00
140 Com2 1.40 2.67 3.04 .005 7.98 11.3 .005 1.00 1.00

Both 2.87 5.62 6.45 .015 17.2 24.0 .015 1.00 1.00
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1 PROOF OF THEOREM 2

Consider the penalized log-likelihood function l̃n(ΨA; γ̂n) as function of the active pa-

rameters ΨA = (π,φ,β0,B1) where γ̂n is the tuning parameter selected by the bic. We

divide the proof into two steps.

Step 1: Existence of a root-n local maximizer. Let rn = n−1/2(1 + bn), where bn is given

in the regularity condition (RCP2). It suffices to show that for any ε > 0, there exists a

large number Cε such that

lim
n→∞

P

{
sup
‖u‖=Cε

p`n(Ψ0 + rnu; γ̂n) < p`n(Ψ0; γ̂n)

}
≥ 1− ε

where Ψ0 is the true vector of parameters.

∗Corresponding author.
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Recall the quantities

ân = max
j,l

{
pnj(β

0
jl; γ̂nj)/

√
n : β0

jl 6= 0
}

b̂n = max
j,l

{
p′nj(β

0
jl; γ̂nj)/

√
n : β0

jl 6= 0
}

ĉn = max
j,l

{
p′′nj(β

0
jl; γ̂nj)/n : β0

jl 6= 0
}
,

which are random sequences due to the randomness of γ̂n. The non-random version of these

quantities are given in (31)-(33) of the main paper. Consider the difference

Dn(u) = p`n(Ψ0 + rnu; γ̂n)− p`n(Ψ0; γ̂n)

= [`n(Ψ0 + rnu)− `n(Ψ0)]− [pn(Ψ0 + rnu; γ̂n)− pn(Ψ0; γ̂n)]

By the regularity conditions (RC1)-(RC5), and a second-order Taylor’s expansion, for large

n, we have that

`n(Ψ0 + rnu)− `n(Ψ0) =
√
nrn

{
l′n(Ψ0)/

√
n
}>
u− nr2n

2

{
u>I1 (Ψ0)u

}
(1 + op(1))

= Op(1)(1 + bn)‖u‖ − (1 + b2n)

2

{
u>I1 (Ψ0)u

}
(1 + op(1)).

Now turning to the difference in the penalty terms, by a second-order Taylor’s expansion we

have that

|pn(Ψ0 + rnu; γ̂n)− pn(Ψ0; γ̂n)| ≤ ( max
1≤j≤K

q0j )(
√
nrnb̂n)‖u‖+

1

2
(nr2nĉn)‖u‖2 +

√
K(
√
nrnân)‖u‖

= q0mb̂n(1 + bn)‖u‖+
1

2
(1 + bn)2ĉn‖u‖2 +

√
K(1 + bn)ân‖u‖,

where q0m = max1≤j≤K q
0
j .

Now by comparing the orders of the above two expressions and using (RCP2) it follows

that, for large n,

Dn(u) ≤ −(1 + b2n)

2

{
u>I1 (Ψ0)u

}
(1 + op(1)) < 0.

This completes the proof of Step 1.

Step 2: Asymptotic normality. By (RCP2) bn = O(1), and hence using Step 1, there

exists a local maximizer Ψ̂1,n(γ̂n) of the penalized log-likelihood p`n(ΨA; γ̂n) that is root-n

2



consistent estimator of Ψ0 and it satisfies the normal equation

∂p`n(ΨA; γ̂n)

∂ΨA

∣∣∣∣
ΨA=Ψ̂1,n(γ̂n)

≡ p`′n(Ψ̂1,n(γ̂n); γ̂n) = `′n(Ψ̂1,n(γ̂n))− p′n(Ψ̂1,n(γ̂n)) = 0.

Now using the first-order Taylor’s expansion it follows that

`′n(Ψ̂1,n(γ̂n)) = `′n(Ψ0) + {`′′n(Ψ0) + op(n)}
(
Ψ̂1,n(γ̂n)−Ψ0

)
and

p′n(Ψ̂1,n(γ̂n)) = p′n(Ψ0; γ̂n) + {p′′n(Ψ0; γ̂n) + op(n)}
(
Ψ̂1,n(γ̂n)−Ψ0

)
.

Therefore,

√
n

{[
1

n
`′′n(Ψ0)−

1

n
p′′n(Ψ0; γ̂n) + op(1)

](
Ψ̂1,n(γ̂n)−Ψ0

)
− 1

n
p′n(Ψ0; γ̂n)

}
= −`

′
n(Ψ0)√
n

.

By the regularity conditions (RC1)-(RC5) it follows that as n→∞,

1

n
`′′n(Ψ0)

p−→ I1(Ψ0) , − `′n(Ψ0)√
n

d−→ N(0, I1(Ψ0)) (A.1)

Finally, using Slutsky’s theorem and (A.1) it follows that

√
n

{[
I1 (Ψ0)−

p′′n(Ψ0; γ̂n)

n

](
Ψ̂1,n(γ̂n)−Ψ0

)
+
p′n(Ψ0; γ̂n)

n

}
d−→ N (0, I1 (Ψ0)) .

This completes the proof of Theorem 2. �

2 ADDITIONAL NUMERICAL RESULTS

Binomial fmr. Given xi, the response Yi is generated from the mixture

π Bin(15, p(xi; β10,β1)) + (1− π) Bin(15, p(xi; β20,β2))

with π = .45, and the probability of success within each component is modelled as

logit{p(xi; βj0,βj)} = βj0 + x>i βj, j = 1, 2. The sparse vector of regression coefficients

are

M1 : β1 = (1.0, 0.0,−1.5, 1.8, 1.5, 0.0, 0.0, 1.2, 0.0, . . . , 0.0)/
√

2 and

β2 = (−1.0, 1.0, 0.0, 0.0,−1.5, 1.3, 0.0,−1.3, 1.4, 0.0, . . . , 0.0)/
√

2.

3



These vectors contain q1 = 5 and q2 = 6 non-zero regression coefficients respectively. We also

consider a second Binomial model, that we call M2, by setting β∗1 = β1/
√

2 and β∗2 = β2/
√

2.

Model M2 has a sparsity structure similar to M1 but with a weaker signal.

From Table S1 we see that the efwer of Msplit is controlled at 5% for both models

M1 and M2 while the corresponding values for adlasso vary between 5.5% and 35.5%

and that for scad, vary between 8% and 20%. It is worthwhile to notice that in M1,

which has a stronger signal, the efwer of adlasso and scad are less than 5% in one of

the components (Com1 or Com2) but not for the entire mixture model (Both). In terms of

E(fp), the performance of all three methods is similar and very good; the Msplit leads the

performance. Finally, concerning E(tp) all three methods identify most of the true non-zero

regression coefficients in M1, whereas in M2 for dimension Kd = 140, on average, Msplit

misses one additional true non-zero coefficient relative to adlasso and scad.

 

y

D
en

si
ty

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 1: Histogram of y = medv/sd(medv) in Example 3 of the main paper.
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Table S1: Simulation results for the Binomial fmr model using Theorem 1.

E(TP) E(FP) EFWER

Model K × d Mixture Msplit scad adlasso Msplit scad adlasso Msplit scad adlasso

Com1 4.99 5.00 4.99 .000 .130 .050 .000 .040 .035
60 Com2 5.92 5.97 6.00 .000 .075 .030 .000 .040 .020

Both 10.9 11.0 11.0 .000 .205 .080 .000 .080 .055

Com1 4.98 5.00 4.99 .000 .430 .270 .000 .070 .145
M1 100 Com2 5.90 5.93 6.00 .000 .060 .060 .000 .025 .060

Both 10.9 10.9 11.0 .000 .490 .330 .000 .095 .185

Com1 4.99 4.98 4.97 .010 .515 .685 .010 .080 .305
140 Com2 5.87 5.92 5.96 .000 .015 .185 .000 .015 .105

Both 10.8 10.9 10.9 .010 .530 .870 .010 .095 .355

Com1 4.72 4.92 4.97 .005 .120 .045 .005 .055 .030
60 Com2 4.66 5.51 5.80 .005 .165 .045 .005 .085 .045

Both 9.38 10.4 10.8 .010 .285 .090 .010 .135 .070

Com1 4.63 4.74 4.87 .010 .525 .190 .010 .100 .120
M2 100 Com2 4.50 4.95 5.52 .005 .330 .140 .005 .105 .100

Both 9.12 9.68 10.4 .015 .855 .330 .015 .200 .210

Com1 4.61 4.73 4.76 .040 .440 .390 .040 .085 .180
140 Com2 4.34 4.80 5.31 .005 .480 .275 .005 .100 .140

Both 8.95 9.53 10.1 .045 .920 .655 .045 .170 .290

Table S2: Comparison of the aggregation methods for the Gaussian fmr model.

E(TP) E(FP) EFWER

SNR Kd Mixture Quantile Average Quantile Average Quantile Average

25.8 Com1 5.00 4.94 .000 .000 .000 .000
60 Com2 4.00 4.00 .000 .000 .000 .000

Both 9.00 8.94 .000 .000 .000 .000

Com1 5.00 5.00 .000 .000 .000 .000
100 Com2 4.00 4.00 .000 .000 .000 .000

Both 9.00 9.00 .000 .000 .000 .000

Com1 5.00 4.99 .000 .000 .000 .000
140 Com2 4.00 4.00 .000 .000 .000 .000

Both 9.00 8.99 .000 .000 .000 .000

6.45 Com1 4.84 3.37 .000 .000 .000 .000
60 Com2 4.00 3.84 .000 .000 .000 .000

Both 8.84 7.21 .000 .000 .000 .000

Com1 4.80 3.09 .000 .000 .000 .000
100 Com2 4.00 3.86 .000 .000 .000 .000

Both 8.80 6.95 .000 .000 .000 .000

Com1 4.71 1.97 .000 .000 .000 .000
140 Com2 4.00 3.34 .000 .000 .000 .000

Both 8.71 5.31 .000 .000 .000 .000
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Table S3: Comparison of the aggregation methods for the Binomial fmr model.

E(TP) E(FP) EFWER

Model K × d Mixture Quantile Average Quantile Average Quantile Average

Com1 4.99 4.49 .000 .000 .000 .000
60 Com2 5.92 4.72 .000 .000 .000 .000

Both 10.9 9.21 .000 .000 .000 .000

Com1 4.98 4.24 .000 .000 .000 .000
M1 100 Com2 5.90 4.07 .000 .000 .000 .000

Both 10.9 8.31 .000 .000 .000 .000

Com1 4.99 3.77 .010 .000 .010 .000
140 Com2 5.87 3.56 .000 .000 .000 .000

Both 10.8 7.33 .010 .000 .010 .000
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Table S4: Hypothesis testing results for the Gaussian fmr model using Theorem 2.

E(TP) E(FP) Pr(FP > 0)

SNR Kd Mixture Msplit scad adlasso Msplit scad adlasso Msplit scad adlasso

25.8 Com1 5.00 5.00 5.00 .000 .000 .000 .000 .000 .000
60 Com2 4.00 4.00 4.00 .000 .005 .000 .000 .005 .000

Both 9.00 9.00 9.00 .000 .005 .000 .000 .005 .000

Com1 5.00 5.00 5.00 .000 .000 .000 .000 .000 .000
100 Com2 4.00 4.00 4.00 .000 .020 .000 .000 .015 .000

Both 9.00 9.00 9.00 .000 .020 .000 .000 .015 .000

Com1 5.00 5.00 5.00 .000 .010 .005 .000 .010 .005
140 Com2 4.00 4.00 4.00 .000 .015 .000 .000 .015 .000

Both 9.00 9.00 9.00 .000 .025 .005 .000 .025 .005

6.45 Com1 4.84 4.96 5.00 .000 .170 .335 .000 .150 .275
60 Com2 4.00 4.00 4.00 .000 .230 .175 .000 .200 .165

Both 8.84 8.96 9.00 .000 .400 .510 .000 .325 .350

Com1 4.80 4.96 5.00 .000 .395 .700 .000 .330 .295
100 Com2 4.00 4.00 4.00 .000 .490 .320 .000 .370 .270

Both 8.80 8.96 9.00 .000 .885 1.02 .000 .580 .620

Com1 4.71 4.95 4.95 .000 .680 1.26 .000 .485 .655
140 Com2 4.00 4.00 4.00 .000 .630 .615 .000 .435 .420

Both 8.71 8.95 8.94 .000 1.31 1.87 .000 .670 .790

2.87 Com1 3.27 4.15 4.89 .000 .280 .955 .000 .240 .575
60 Com2 3.63 3.96 4.00 .000 .295 .580 .000 .235 .405

Both 6.90 8.11 8.89 .000 .575 1.54 .000 .395 .740

Com1 3.27 4.19 4.75 .000 .650 1.56 .000 .445 .740
100 Com2 3.63 3.97 3.97 .000 .635 .940 .000 .450 .540

Both 6.89 8.16 8.72 .000 1.29 2.50 .000 .625 .850

Com1 3.44 4.20 4.56 .000 .950 2.65 .000 .545 .875
140 Com2 3.60 3.97 3.91 .000 1.03 1.51 .000 .545 .695

Both 7.03 8.17 8.47 .000 1.98 4.16 .000 .725 .960

1.03 Com1 1.43 2.23 4.08 .000 1.11 3.85 .000 .690 .955
60 Com2 1.33 2.56 3.46 .000 1.23 2.79 .000 .715 .935

Both 2.76 4.79 7.53 .000 2.33 6.64 .000 .880 .995

Com1 1.55 2.32 3.91 .000 2.35 6.42 .000 .885 .995
100 Com2 1.58 2.55 3.36 .000 2.29 5.09 .000 .925 .990

Both 3.13 4.86 7.27 .000 4.63 11.5 .000 1.00 1.00

Com1 1.90 2.41 3.78 .010 3.20 8.39 .010 .950 1.00
140 Com2 1.97 2.48 3.28 .000 3.21 7.29 .000 .945 1.00

Both 3.86 4.89 7.06 .010 6.40 15.7 .010 1.00 1.00

0.72 Com1 .905 1.79 3.77 .000 1.60 5.65 .000 .825 1.00
60 Com2 .810 1.82 3.21 .000 1.68 4.75 .000 .805 1.00

Both 1.72 3.61 6.97 .000 3.28 10.4 .000 .955 1.00

Com1 1.12 1.97 3.61 .000 3.08 9.12 .000 .940 1.00
100 Com2 .970 1.75 3.16 .000 3.09 8.19 .000 .965 1.00

Both 2.09 3.72 6.76 .000 6.17 17.3 .000 1.00 1.00

Com1 1.47 2.04 3.41 .010 4.52 12.7 .010 .970 1.00
140 Com2 1.40 1.90 3.04 .005 4.39 11.3 .005 .995 1.00

Both 2.87 3.94 6.45 .015 8.91 24.0 .015 1.00 1.00
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Table S5: Hypothesis testing results for the Binomial fmr model using Theorem 2.

E(TP) E(FP) Pr(FP > 0)

Model K × d Mixture Msplit hscad hadlasso Msplit hscad hadlasso Msplit hscad hadlasso

Com1 4.99 4.97 4.97 .000 .010 .010 .000 .005 .005
60 Com2 5.92 5.94 5.98 .000 .010 .005 .000 .010 .005

Both 10.9 10.9 10.9 .000 .020 .015 .000 .015 .010

Com1 4.98 4.97 4.98 .000 .115 .110 .000 .035 .065
M1 100 Com2 5.90 5.91 5.98 .000 .030 .040 .000 .010 .040

Both 10.9 10.9 11.0 .000 .145 .150 .000 .045 .095

Com1 4.99 4.96 4.95 .010 .205 .280 .010 .035 .175
140 Com2 5.87 5.90 5.93 .000 .010 .120 .000 .010 .070

Both 10.8 10.9 10.9 .010 .215 .400 .010 .045 .230

Com1 4.72 4.67 4.80 .005 .010 .010 .005 .010 .010
60 Com2 4.66 5.06 5.31 .005 .115 .005 .005 .040 .005

Both 9.38 9.73 10.1 .010 .125 .015 .010 .050 .015

Com1 4.63 4.60 4.78 .010 .215 085 .010 .075 .045
M2 100 Com2 4.50 4.68 5.23 .005 .175 .060 .005 .075 .060

Both 9.12 9.28 10.0 .015 .390 .145 .015 .150 .105

Com1 4.61 4.62 4.68 .040 .215 .215 .040 .070 .100
140 Com2 4.34 4.53 5.03 .005 .335 .180 .005 .075 .125

Both 8.95 9.14 9.70 .045 .550 .395 .045 .135 .200
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