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Abstract

We consider sparse Markov regime-switching vector autoregressive (MSVAR) mod-
els in which the regimes are governed by a latent homogeneous Markov chain. In
practice, even for moderate values of the number of Markovian regimes and data di-
mension, the associated MSVAR model has a large parameter dimension compared to
a typical sample size. We provide a unified penalized conditional likelihood approach
for estimating sparse MSVAR models. We show that our proposed estimators are
consistent and recover the sparse structure of the model. We also show that, when
the number of regimes is correctly or over-specified, our method provides consistent
estimation of the predictive density. We develop an efficient implementation of the
method based on a modified expectation-maximization (EM) algorithm. We discuss
strategies for estimation of the number of regimes. We evaluate finite-sample perfor-
mance of the method via simulations, and further demonstrate its utility by analyzing
a real dataset. Supplementary materials for this paper are available online.
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1 Introduction

Markov regime-switching vector auto-regressive (MSVAR) models are ubiquitous in mod-

elling heterogeneous and complex relationships between the variables of interest in multi-

variate time series analysis (Krolzig, 1997). The two stochastic components of an MSVAR

are the observable time series vectorYt ∈ Rd, and the latent Markov chain St ∈ {1, . . . ,M},

for some finite M ∈ N. The process St determines the VAR regime under which the condi-

tional distribution of Yt|(St = st) evolves as a function of lagged Yt−j, j = 1, . . . , p ∈ N. In

this work, we focus on Gaussian MSVARs where the noise component in each VAR regime

follows a zero-mean, d-dimensional Gaussian distribution. These models are applicable in a

wide range of disciplines. For example, in macroeconomic time series such as manufactur-

ing activities, consumer price indices, and housing and asset prices (Yt), we typically see

the effect of business cycles and the volatility clustering effect, which can be captured by

St (Hamilton, 1988; Kim et al., 1998; Ang and Timmermann, 2012). In time series data re-

lated to natural phenomena such as wind power generation (Yt) across geographic regions,

there are periods of high and low measurements that depend on wind speed (St) (Pinson

and Madsen, 2012); similarly, there are periods of high and low temperature measurements

that depend on annual meteorological cycles (St) corresponding to different seasons with

warm and cold months (Monbet and Ailliot, 2017).

Maximum likelihood estimation (MLE) is the most common frequentist method of in-

ference in MSVAR models. However, a limitation often encountered with MLE is the

potentially large number of parameters to be estimated. In an MSVAR model with M

regimes and autoregressive order p, the total number of parameters is K = M
(
d + pd2 +
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d(d+1)/2
)
+M(M−1), which can be large even for moderate values of (d, p,M), compared

to a typical sample size. For instance, in our case study each observation is 10-dimensional,

and for an MSVAR model with AR-order p = 1 and the number of regimes M ranging from

1 to 5, there are 165 ≤ K ≤ 845 parameters to estimate based on a sample of size 481.

Therefore, besides an obfuscated model interpretation, it can also be difficult to perform

stable MLE in large-dimensional parameter spaces. It thus becomes essential to consider

strategies that enable more stable and interpretable parameter estimation. With this mo-

tivation, we perform parameter estimation using regularization techniques that have been

successful in both high-dimensional VAR and covariance estimation problems (Basu and

Matteson, 2021; Lam, 2020). These techniques arise from the assumption that many of

the model parameters are null. In the context of MSVAR models, we assume that both

VAR coefficient matrices and the noise covariance–or precision–matrices are sparse, that is,

many of their entries are zero. This also results in more meaningful model interpretations.

There has been a huge surge in research on estimation in sparse VAR models (Basu and

Michailidis, 2015; Nicholson et al., 2020, and references therein), and sparse covariance and

precision matrix estimation (Friedman et al., 2008; Shojaie and Michailidis, 2010; Bien and

Tibshirani, 2011; Lam, 2020, and references therein). This has been led by the development

of penalized methods such as the lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006),

scad (Fan and Li, 2001) and mcp (Zhang, 2010). However, to the best of our knowledge,

there are only a few works on regularized estimation for MSVARs. In the context of hidden

Markov models (HMMs)–which are MSVARs with AR-order p = 0–Städler and Mukherjee

(2013) studied the graphical lasso algorithm for estimation of sparse precision matrices in
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high-dimensions. Fiecas et al. (2017) proposed a shrinkage, rather than sparsity, approach

to obtain stable covariance matrix estimates in high-dimensional HMMs. To simulate

temperature data using a sparse MSVAR with a non-homogeneous Markov chain, Monbet

and Ailliot (2017) performed simultaneous VAR coefficient and precision matrix estimation.

In this work, we focus on a general sparse estimation framework for MSVAR models,

which is not available in the reviewed literature. We propose a penalized conditional

likelihood approach that allows for sparse estimation of the regime-specific VAR coefficients

and covariance/precision matrices. We condition on the initial state of the Markov chain St,

which avoids the estimation of its initial distribution and thus simplifies the problem. We

show that, irrespective of the initial state conditioning, our method consistently recovers

the sparse MSVAR model. We also provide an estimator for the h-step-ahead predictive

density, and show that as long as the true number of AR regimes is not under-specified,

this estimator is consistent for the true predictive density. All of our theoretical results are

provided in the Supplement, Section A2. We implement the proposed method by using a

modified EM algorithm, combined with a generalized gradient descent method in the M-

step. We investigate strategies for estimation of the number of AR regimes. We study finite-

sample performance of the proposed methods via simulations, and further demonstrate their

utility by analyzing a Canadian macroeconomic dataset.

Section 2 presents sparse MSVAR models. Section 3 describes the proposed estimation

methods and their numerical implementation. We discuss the computation of predictive

densities in Section 4. Section 5 presents a simulation study, and Section 6 contains a case

study on a Canadian macroeconomic dataset to demonstrate the usage of our methodology.
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2 Sparse Markov regime-switching vector auto-regressives

Let {St ∈ {1, . . . ,M}, t = 1, 2, . . .} be a latent homogeneous Markov chain for some finite

M ∈ N. We denote its M ×M transition probability matrix by P with the (i, j)-th entry

P(St = j|St−1 = i, St−2 = st−2, . . . , S1 = s1) = P(St = j|St−1 = i) = αij,

which is the probability of entering state j at time t from state i at time t − 1, and∑M
j=1 αij = 1, i = 1, . . . ,M . Further, let {Yt ∈ Rd, t = 1, 2, . . .} be an observable time

series with observed values {yt, t = 1, 2, . . .}. For any t > p, we assume that conditional

on Y1:t−1 = y1:t−1 and Sp:n = sp:n, the distribution of Yt only depends on the lagged

Yt−p:t−1 = yt−p:t−1 and St = st. In a Gaussian MSVAR with M regimes and AR-order

p, the conditional distribution of Yt given St = m and Yt−j = yt−j, j = 1, . . . , p, is a

state-dependent multivariate Gaussian with covariance matrix Σ(m) = (σ
(m)
ij ) ∈ Rd×d and

time-dependent mean vector

µ
(m)
t := ν(m) +A

(m)
1 yt−1 + . . .+A(m)

p yt−p, (1)

where ν(m) = (ν
(m)
1 , . . . , ν

(m)
d )T ∈ Rd, and A

(m)
l = (a

(m)
l,ij ) ∈ Rd×d, l = 1, . . . , p, are the AR

coefficient matrices. In simple terms, the behaviour of Yt within each regime–determined

by the latent process St–over time is modeled by a Gaussian VAR with AR-order p.

The parameters of interest are the transition probability matrix P , the AR inter-

cepts ν(1:M) := vec([ν(1), . . . ,ν(M)]), the AR coefficients A(1:M) := vec([A(1), . . . ,A(M)]),

with A(m) := vec([A
(m)
1 , . . . ,A(m)

p ]), m = 1, . . . ,M , the covariance matrices Σ(1:M) :=

vec([Σ(1), . . . ,Σ(M)]), and the precision matrices Ω(1:M) := vec([Ω(1), . . . ,Ω(M)]), where

Ω(m) = (Σ(m))−1 = (ω
(m)
ij ). Let θ ∈ Θ ⊆ RK be the vector of all parameters with

5



K = M
(
d + pd2 + d(d + 1)/2

)
+ M(M − 1). In our estimation procedure, we directly

estimate either Σ(m) or Ω(m), and the parameter θ includes either Σ(1:M) or Ω(1:M).

Conditional likelihood: Let y1:n := {y1, . . . ,yn} be observations from a Gaussian

MSVAR model with M regimes and AR-order p. We consider the joint conditional density

of Yp+1:n given (y1:p, Sp = sp). By the total probability rule, we have

fθ(yp+1:n|y1:p, sp) =
M∑

sn=1

. . .

M∑
sp+1=1

f(yp+1:n|y1:p, Sp:n = sp:n)P(Sp+1:n = sp+1:n|y1:p, sp). (2)

By the homogeneity of St, conditional independence ofYt’s, and the Gaussianity, we obtain

P(Sp+1:n = sp+1:n|y1:p, Sp = sp) = P(Sp+1:n = sp+1:n|Sp = sp) =
n∏

t=p+1

αst−1,st ,

f(yp+1:n|y1:p, Sp:n = sp:n) =
n∏

t=p+1

f(yt|y1:t−1, Sp:n = sp:n) =
n∏

t=p+1

f(yt|yt−p:t−1, St = st)

=
n∏

t=p+1

ϕ
(
yt;µ

(st)
t ,Σ(st)

)
,

where ϕ(·;µ,Σ) is the d-dimensional Gaussian density. Therefore, the density (2) becomes

fθ
(
yp+1:n|y1:p, sp

)
=

M∑
sn=1

. . .
M∑

sp+1=1

( n∏
t=p+1

αst−1,st

)( n∏
t=p+1

ϕ
(
yt;µ

(st)
t ,Σ(st)

))
,

where µ
(st)
t is given in (1). The conditioning on y1:p is standard in time series when fitting

AR-type models. We also condition on Sp = sp to avoid specification of the initial distri-

bution of St which is an intricate issue in itself. The effect of conditioning on Sp dissipates

asymptotically (Douc et al., 2004). Thus, for any fixed sp, the conditional log-likelihood is

ln(θ; sp) := log
(
fθ
(
yp+1:n|y1:p, sp

))
. (3)

One could obtain the (conditional) MLE of θ by maximizing (3) with respect to θ. However,

as discussed in the introduction, even for moderate values of (d, p,M), the parameter θ
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has a large dimension which can result in an unstable estimation. Hence, to attain a

more stable and meaningful estimation of θ, we assume that the data-generating model is

sparse so that the number of parameters to estimate is much less than K. We develop an

estimation framework based on penalization of the conditional likelihood (3) in Section 3.

Sparsity: Different sparsity structures on the AR coefficients {A(m)
l ,m = 1, . . . ,M, l =

1, . . . , p} can be assumed for specific applications, for example, those in Nicholson et al.

(2020). For generality, we do not assume any specific sparsity structure. Nonetheless,

our method can be adapted to obtain structured sparse AR coefficients’ estimates by an

appropriate modification of the penalty function in Section 3.

Estimation of the covariance Σ(m) or precision Ω(m) matrices when the dimension d is

large is even more challenging, as their MLE estimates can be particularly unstable. To

circumvent this, one could either assume a sparse structure on these matrices, or use a

shrinkage-based approach to estimate them (Fiecas et al., 2017). We focus on the former

approach, and assume that the aforementioned matrices have many off-diagonal zero en-

tries. The sparsity assumption on covariance or precision matrices is application-dependent

(Friedman et al., 2008; Bien and Tibshirani, 2011), and we study both scenarios separately.

Figure 5 illustrates an example of a sparse 3-regime MSVAR model for macroeconomic

variables and the estimated sparse MSVAR parameters and regimes (Section 6).

3 Maximum penalized likelihood estimation

We estimate θ by penalizing the conditional log-likelihood in (3) using an appropriate

penalty function. This results in more stable parameter estimates. Specifically, we obtain
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the maximum penalized conditional likelihood estimate (MPLE) of θ as

θ̂n ∈ argmax

{
Ln(θ; sp) :=

1
n−p

ln(θ; sp)−R
(
θ;λ1, λ2

)}
, (4)

with R
(
θ;λ1, λ2

)
:=

M∑
m=1

p∑
l=1

d∑
i,j=1

rλ1

(
a
(m)
l,ij

)
+

M∑
m=1

d∑
i,j=1
j ̸=i

rλ2

(
γ
(m)
ij

)
,

where a
(m)
l,ij are the AR coefficients, and γ

(m)
ij correspond to either σ

(m)
ij or ω

(m)
ij . The rλ

is a penalty function with tuning parameter λ > 0 that determines the severity of the

penalty and consequently the level of sparsity of θ̂n. In our numerical studies, we use the

well-known penalties lasso, adaptive lasso (adalasso), mcp and scad, which are given

in the Supplement, Section A1.1. General assumptions on the choice of rλ are given in the

Supplement, Section A2. By design, many entries of θ̂n corresponding to Â
(1:M)

and Σ̂
(1:M)

or Ω̂
(1:M)

are zero, resulting in an estimated sparse MSVAR. Theorem 1 (Supplement,

Section A2) states that under the correct specification of M and appropriate choices of (rλ,

λ), there exists a local maximizer θ̂n of the penalized conditional likelihood Ln(θ; sp) that

is a consistent and sparse estimator of the true parameter θ⋆. As there is no closed-form

solution to the optimization in (4), we provide a numerical algorithm to approximate θ̂n.

3.1 Modified EM algorithm

The EM algorithm is commonly used to perform MLE in a wide range of latent variable

models, including MSVAR (Krolzig, 1997). The main advantage of this algorithm compared

to a direct gradient ascent method for maximizing Ln(θ; sp) is its ease of implementation

in the presence of the latent regime-governing St. Nevertheless, we use gradient ascent

method in the maximization (M-) step of the EM algorithm for obtaining the estimates

of AR coefficient and covariance/precision matrices. We adapt the EM algorithm to our
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penalization method by first introducing a so-called penalized complete-data likelihood.

For each St, we introduce a vector ξt := (ξt1, . . . , ξtM)T, where ξti = 1{St=i} represents

the membership of yt to regime i, so that
∑M

i=1 ξti = 1. We denote the complete data as

{(yt, ξt), t = p+ 1, . . . , n}, and the penalized complete conditional log-likelihood is

Lc
n(θ; sp) :=

M∑
i,j=1

n∑
t=p+1

ξ(t−1)iξtj logαij

n− p
+

M∑
i=1

n∑
t=p+1

ξti log ϕ
(
yt;µ

(i)
t ,Σ(i)

)
n− p

−R
(
θ;λ1, λ2

)
.

Clearly, the function Lc
n cannot be used directly to estimate θ since ξt are non-observable.

Instead, at the (k + 1)-th iteration, the algorithm proceeds in two steps as follows.

E-step: It computes the conditional expectation of Lc
n with respect to ξt given y1:n and

the current update θ(k). This results in

Q(θ;θ(k), sp) := E(Lc
n|y1:n,θ

(k), sp) =
1

n− p

M∑
i,j=1

n∑
t=p+1

ζ
(k)
t,ij logαij

− 1

n− p

M∑
i=1

n∑
t=p+1

ζ
(k)
ti

(
log |Σ(i)|+ 1

2
(yt − µ

(i)
t )TΩ(i)(yt − µ

(i)
t )

)
−R

(
θ;λ1, λ2

)
,

where, for t = p+ 1, . . . , n and i, j = 1 . . . ,M , the weights

ζ
(k)
t,ij = P(ξ(t−1)i = 1, ξtj = 1|y1:n,θ

(k), sp), ζ
(k)
ti = P(ξti = 1|y1:n,θ

(k), sp), (5)

are computed using a recursive forward-backward procedure as follows.

We define the vectors ηt :=
(
ϕ
(
yt;µ

(1)
t ;Σ(1)), . . . , ϕ

(
yt;µ

(M)
t ;Σ(M))

)T
and ξ̂t|τ := E(ξt|y1:τ ) =(

P(ξt1 = 1|y1:τ ), . . . ,P(ξtM = 1|y1:τ )
)T
, for p ≤ τ ≤ t and t ≥ p+ 1. We first compute ξ̂t|t

(forward recursion) and use them to obtain ξ̂t|n (backward recursion). By Bayes’ rule,

P(ξtm = 1|y1:t) = P(ξtm = 1|yt,y1:t−1) =
P(yt|ξtm = 1,y1:t−1)P(ξtm = 1|y1:t−1)

P(yt|y1:t−1)
. (6)
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The first term in the numerator of (6) is them-th entry of ηt, m = 1, . . . ,M . For the second

term in the numerator, using the total probability rule and the homogeneity assumption,

P(ξtm = 1|y1:t−1) =
M∑
i=1

P(ξtm = 1|ξ(t−1)i = 1,y1:t−1)P(ξ(t−1)i = 1|y1:t−1)

=
M∑
i=1

αimP(ξ(t−1)i = 1|y1:t−1), m = 1, . . . ,M (7)

or, in its vector form, ξ̂t|t−1 = P Tξ̂t−1|t−1. For the denominator in (6), we thus have

P(yt|y1:t−1) =
M∑

m=1

P(yt|ξ(t−1)m = 1,y1:t−1)P(ξ(t−1)m = 1|y1:t−1)

= ηT
t P

Tξ̂t−1|t−1 = ηT
t ξ̂t|t−1. (8)

Using the definition of ηt, (7) and (8), we then compute (6). Next, we compute the elements

of ξ̂t|n as follows. By Bayes’ rule and the model assumptions, for m = 1, . . . ,M ,

P(ξtm = 1|y1:n) =
M∑
i=1

P(ξtm = 1, ξ(t+1)i = 1|y1:n)

=
M∑
i=1

αmi P(ξtm = 1|y1:t)P(ξ(t+1)i = 1|y1:n)

P(ξ(t+1)i = 1|y1:t)
, (9)

which, as shown in Section A1.2 of the Supplement, uses that

P(ξtm = 1, ξ(t+1)i = 1|y1:n) =
P(ξ(t+1)i = 1|ξtm = 1)P(ξtm = 1|y1:t)P(ξ(t+1)i = 1|y1:n)

P(ξ(t+1)i = 1|y1:t)
. (10)

Letting ⊙ and ⊘ be the element-wise vector product and division, respectively, we write

(6) and (9) in their vector forms,

• Forward recursion (filtering): for t = p+ 1, . . . , n,

ξ̂t|t =
ηt ⊙ ξ̂t|t−1

1T
M

(
ηt ⊙ ξ̂t|t−1

) =
ηt ⊙ P (k)ξ̂t−1|t−1

1T
M

(
ηt ⊙ P (k)ξ̂t−1|t−1

) . (11)
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• Backward recursion (smoothing): for t = n− 1, . . . , p+ 1,

ξ̂t|n =
[
P (k)T

(
ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t|t. (12)

Finally, we set ζ
(k)
ti = P(ξti = 1|y1:n,θ

(k), sp) in (5) as the i-th entry of the vector ξ̂t|n, for

i = 1, . . . ,M . The joint probabilities ζ
(k)
t,ij = P(ξ(t−1)i = 1, ξtj = 1|y1:n,θ

(k), sp) in (5), for

i, j = 1, . . . ,M , are the ((j − 1)M + i)-th entries of the vector

ξ̂
joint

t|n := (ζ
(k)
t,11, . . . , ζ

(k)
t,MM)T = vec(P (k))⊙

[(
ξ̂t|n ⊘ ξ̂t|t−1

)
⊗ ξ̂t−1|t−1

]
, (13)

which are computed using (10), for t = p+1, . . . , n. Here, ⊗ denotes the Kronecker product.

The details of all the above derivations are given in Section A1.2 of the Supplement.

M-step: It maximizes Q with respect to θ, resulting in the updates θ(k+1). Due to the

structure ofQ, we separately maximize it with respect to P , {ν(m)}Mm=1, and {A(m),Σ(m)}Mm=1.

The updates for the transition probabilities αij and the intercepts ν(m) are given by

α
(k+1)
sp,j

=

∑n
t=p+1 ζ

(k)
t,sp,j∑M

l=1

∑n
t=p+1 ζ

(k)
t,sp,l

, α
(k+1)
ij =

∑n
t=p+2 ζ

(k)
t,ij∑M

l=1

∑n
t=p+2 ζ

(k)
t,il

, i, j = 1 . . . ,M , i ̸= sp;(14)

ν(m,k+1) =

∑n
t=p+1 ζ

(k)
tm (yt −

∑p
i=1A

(m,k)
i yt−i)∑n

t=p+1 ζ
(k)
tm

, m = 1, . . . ,M. (15)

Regarding the AR coefficients, we first updateA(m), and then Σ(m) or Ω(m), for each regime

m = 1, . . . ,M . The optimization problems for these updates are, respectively,

min
{A(m)

l }pl=1

1

2(n− p)

n∑
t=p+1

ζ
(k)
tm

(
yt − µ̄

(m)
t

)T
Ω̂

(m,k)(
yt − µ̄

(m)
t

)
+

p∑
l=1

d∑
i,j=1

rλ1

(
a
(m)
l,ij

)
, (16)

min
Σ(m)≻0

1

2(n− p)

(
n̂m log |Σ(m)|+ tr

(
Ω(m)S(m)

))
+

d∑
i ̸=j=1

rλ2

(
γ
(m)
ij

)
, (17)

where µ̄
(m)
t is (1) with ν(m) replaced by ν(m,k+1). Further, we let n̂m :=

∑n
t=p+1 ζ

(k)
tm ,

S(m) := UTΞ(m)U , with Ξ(m) = diag{ζ(k)p+1,m, . . . , ζ
(k)
n,m}, and U =

(
yp+1−µ

(m,k+1)
p+1 , . . . ,yn−

µ
(m,k+1)
n

)T
. The term µ

(m,k+1)
t is (1) with (ν(m),A(m)) replaced by (ν(m,k+1),A(m,k+1)).
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We decouple the problem (16) coordinate-wise to alleviate the computation. Then both

optimization problems in (16) and (17) can be written in a general form as argminx{f(x)+

R(x)}, where f is differentiable and R is a penalty function. Using a generalized gradient

descent, the solution is obtained via the updates

x(j+1) ∈ argmin
x

1
2
∥x− (z(j) − 1

uj+1
∇f(z(j)))∥2 + 1

uj+1
R(x),

where z(j) interpolates between x(j) and x(j−1), and 1/uj+1 is the descent step size. Since

the penalty function R in (4) is decomposable, the updates have an analytical form for

all the penalty functions we consider. Full details are given in the Supplement, Sections

A1.3-A1.5, including an initialization of the EM algorithm and a data-dependent selection

of tuning parameters (λ1, λ2). Algorithm 1 summarizes the estimation steps.

Algorithm 1 Modified EM algorithm for maximum penalized likelihood estimation

1: Initialize: k = 0, α
(k)
ij , ν(m,k), {A(m,k)

l }pl=1, Σ
(m,k), for i, j,m = 1, . . . ,M , λ1, λ2 ≥ 0, ε > 0;

2: E-step: Compute ζti
(k), ζ

(k)
t,ij in (5), for i, j = 1, . . . ,M , using (11), (12), and (13);

M-step: For i, j = 1, . . . ,M , update α
(k+1)
ij using (14);

For m = 1, . . . ,M , update ν(m,k+1) using (15);

Form = 1, . . . ,M , update {A(m,k+1)
l }pl=1 andΣ(m,k+1) or Ω(m,k+1) solving (16)-(17);

3: If ∥θ(k) − θ(k+1)∥/∥θ(k)∥ < ε, return θ(k+1), else k = k + 1 and go to 2;

3.2 Selection of the number of regimes M

We use information-based criteria to estimate M when it is unknown. For a fitted MSVAR

with M regimes and MPLE θ̂n, we compute the regime-specific degrees of freedom as

Dm(θ̂n) =

p∑
l=1

d∑
i,j=1

1{(â(m)
l,ij )̸=0} +

d∑
i,j=1

1{γ̂(m)
ij ̸=0}, m = 1, . . . ,M,
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and let Em(M) = M − 1 +Dm(θ̂n). We denote the information criterion as

C(M) = −2ln(θ̂n; sp) +
M∑

m=1

cmEm(M), (18)

for some cm > 0. The common choices for cm are 2 (AIC) and log(n−p) (BIC). Städler and

Mukherjee (2013) introduced the mixture minimum description length (MDL) for HMMs

by setting cm = log(n̂m), where n̂m =
∑n

i=p+1 ζ̂im is the estimated sample size for regime

m and ζ̂im are given in (5). We select the number of regimes over a set of candidate

values M = {1, 2, . . . ,Mmax} as M̂ ∈ argmin
M∈M

C(M), for some pre-specified upper bound

Mmax ∈ N. Selection of the AR-order p is discussed in the Supplement, Section A1.6.

4 Prediction

Prediction is a highly relevant task in time series analysis. In stationary VAR models, an

optimal prediction at time n + 1 given the observations y1:n, in terms of the minimum

mean squared prediction error, is equal to the conditional expectation (Lütkepohl, 2007);

h-step-ahead prediction is performed similarly. In this section, we compute the predictive

density in MSVARs that can also be used to obtain the conditional expectations. For a

fixed h ∈ N, we compute the h-step-ahead predictive density fM(yn+1:n+h|y1:n) as follows.

The one-step-ahead predictive density (h = 1) is

fM(yn+1|y1:n) =
M∑

m=1

P(Sn+1 = m|y1:n)ϕ
(
yn+1;µ

(m)
n+1,Σ

(m)
)
, (19)

where the mean µ
(m)
n+1 is given in (1), and the conditional probabilities P(Sn+1 = m|y1:n) =∑M

j=1 αjmP(Sn = j|y1:n) can be readily computed using the forward-backward procedure

(Supplement, Section A1.2). An initial conditional distribution P(Sp = j|y1:p) is also re-
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quired to complete the computation. Since its effect on predictive density dissipates geomet-

rically as n grows (Douc et al., 2004), and given the homogeneity of St, any non-informative

distribution such as the discrete uniform P(Sp = j|y1:p) = 1/M, j = 1, . . . ,M , suffices.

Similarly, for h ≥ 2, by the model assumptions, the predictive density is

fM(yn+1:n+h|y1:n) =
M∑

m1:h=1

{
P(Sn+1 = m1, . . . , Sn+h = mh|y1:n)f(yn+1:n+h|y1:n, Sn+1:n+h = m1:h)

}
=

M∑
m1:h=1

P(Sn+1 = m1|y1:n)
( h∏
t=2

αmt−1,mt

)( h∏
t=1

ϕ
(
yn+t;µ

(mt)
n+t ,Σ

(mt)
))

.(20)

Given the MPLE θ̂n for a model with M regimes, the estimated predictive density

f̂M(yn+1:n+h|y1:n) is computed for h ≥ 1, using either (19) or (20). The optimal h-step

ahead predictor ŷn+h in terms of minimum mean squared error is then the conditional

expected value of Yn+h, given y1:n. For h = 1, the predicted value is

ŷn+1 =
M∑

m=1

P̂(Sn+1 = m|y1:n)
(
ν̂(m) +

p∑
l=1

Â
(m)

l yn+1−l

)
.

For h ≥ 2, predictions are obtained recursively by computing the predictions for yn+j,

j = 1, . . . , h− 1 (Lütkepohl, 2007; Krolzig, 1997). More specifically,

ŷn+h =
M∑

m=1

P̂(Sn+h = m|y1:n)
(
ν̂(m) +

p∑
l=1

Â
(m)

l ỹn+h−l

)
,

with ỹn+h−l = ŷn+h−l, if (h− l) > 0 or yn+h−l, if (h− l) ≤ 0.

Theorem 2 (Supplement, Section A2) states that, if M is not under-specified, the es-

timated predictive density of the over-fitted model based on MPLE consistently estimates

the h-step ahead predictive density (20) of the true MSVAR model. As a consequence, in

practice when the true number of regimes is unknown, a rather conservative choice of M

considering the sample size n can guarantee a reliable estimate of (20), and of the optimal

predictor in the sense of minimum mean squared prediction error.
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5 Simulation study

Simulation design. We consider MSVAR models with p = 1, M = 2, 3, dimensions

d = 20, 40, 100, and sample sizes n between 200 and 800. For these values of d, the

parameter vector θ⋆ of the data-generating MSVAR models has 104, 202 and 504 nonzero

entries, respectively, and is designed as follows. We set the number of nonzero entries per

matrix to be ⌈d/4⌉, randomly scattered on each matrix, and thus not assuming a specific

sparsity structure in the AR and covariance or precision matrices. We set the true non-

zero AR coefficients for each regime m = 1, . . . ,M as: ν
(m)
i

⋆
∼ N (m− 2, 0.01), (a

(m)
l

⋆
)ij ∼

N ((−1)m, 0.01). We ensure that the resulting MSVAR is stationary. Note that a VAR

process with AR coefficients A1, . . . ,Ap is stationary if the matrix A1 · · ·Ap−1 Ap

Id(p−1)×d(p−1) 0d(p−1)×d

 (21)

has all its eigenvalues inside the unit circle (Lütkepohl, 2007, Section 9.1). In all of our

simulations, to ensure stationarity of the VAR process for each Markov regime, we scale

the AR matrices with entries (a
(m)
l

⋆
)ij (generated as described above) to ensure that the

modulus of each eigenvalue of the matrix in (21) is at most 0.75.

For the covariance matrices, we first sample γ
(m)
ij ∼ N ( (−1)m

2
, 0.01), i ̸= j, γ

(m)
ii ∼

N (0, 0.01), and subsequently use one of the following formulas to obtain the nonzero el-

ements, depending on the scenario, either covariance or precision matrices, under study:

σ
(m)
ij

⋆
= 1

2
(γ

(m)
ij + γ

(m)
ji ), ω

(m)
ij

⋆
= 1

2
(γ

(m)
ij + γ

(m)
ji ). To ensure positive-definiteness and nu-

merical stability, if necessary, we shift the eigenvalues of matrices by adding a multiple of

the identity matrix. This also aids in controlling the condition number (Rothman et al.,
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2008). We denote scenarios S1 and S2 respectively corresponding to sparse covariance and

precision matrices, along with sparse AR coefficients.

The transition probability matrix P ⋆ forM = 2 is set to: α⋆
11 = 0.75, α⋆

22 = 0.60; and for

M = 3 to: α⋆
11 = 0.5, α⋆

12 = 0.25, α⋆
21 = 0.2, α⋆

22 = 0.6, α⋆
32 = 0.25, α⋆

33 = 0.5. These choices

test the estimation performance for an unequal number of data points in each regime.

Performance measures. Recall the MPLE θ̂n ≡ θ̂ of θ⋆, and let θ̃n ≡ θ̃ be the

maximum likelihood estimate of θ⋆ knowing its zero entries a priori. For a subvector v of

θ⋆, let v̂ and ṽ be the corresponding subvectors of θ̂ and θ̃, respectively. Furthermore, let

M̂ be the estimate of the true number of regimes M using either BIC or MDL introduced

in Section 3.2. We consider the following performance measures:

• relative estimation error: REE(v̂, ṽ) = EE(v̂)/EE(ṽ) = ||v̂−v||
||v|| / ||ṽ−v||

||v|| ∈ [0,∞);

• true positive rate: TPR(v̂) =
∑

i 1{|v̂i|>0}1{|vi|>0}∑
i 1{|vi|>0}

∈ [0, 1];

• true negative rate: TNR(v̂) =
∑

i 1{|v̂i|=0}1{|vi|=0}∑
i 1{|vi|=0}

∈ [0, 1];

• correctly selected number of regimes: 1{M̂=M} ∈ {0, 1},

where || · || represents the Euclidean norm and 1{·} is the indicator function. We compute

EE, REE, TPR and TNR for different subvectors v corresponding to the AR coefficients

and the covariance or precision matrices. We exclude the AR intercepts and the diagonals

of the covariance or precision matrices when computing TPR and TNR.

Since in the computation of θ̃ we use the knowledge of the true zero parameters, in

general, we expect θ̃ to outperform θ̂ which estimates the zero parameters through pe-

nalization. Thus, we focus on the REE to quantify the performance of our estimation

methodology relative to θ̃, and seek to obtain the empirical mean or median of all the per-

formance measures, except EE, close to 1. However, in the case of estimation of precision
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matrices, we observe REE < 1 which occurs due to the way we compute θ̃ without directly

using the knowledge of the true zero parameters in the precision matrices. More details

are provided in the Supplement, Section A3.

Our results are based on 50 simulated samples from each MSVAR model with a fixed

parameter setting as described in the Simulation design. We start recording the gener-

ated observations at t = 401, to allow for a simulation burn-in. The first state is always set

as s−399 = 1. For the estimation stage, we condition on sp = 1. We analyze the results for

scenario S1 (sparse covariance matrix) here; those for scenario S2 (sparse precision matrix)

are given in the Supplement, Section A3, along with additional simulation designs on spar-

sity structure. We use BIC for selection of the tuning parameters (λ1, λ2) using the method

described in the Supplement, Section A1.5, as we find that AIC chooses over-parameterized

models and therefore has a decreased performance.

The algorithms are implemented in C using the GNU Scientific Library (GSL) (Galassi

et al., 2009) v2.7. The optimization procedure is implemented in parallel so that the

estimation is done for all the regimes in an MSVAR model simultaneously.

5.1 Parameter estimation and sparsity

We fixM = 2, p = 1, and consider dimensions d = 20 with sample sizes n ∈ {200, 300, 400},

d = 40 with n ∈ {300, 400, 500}, and d = 100 with n ∈ {600, 700, 800}. For these values

of d, the parameter vector θ to be estimated by our method has dimensions K = M
(
d +

pd2+d(d+1)/2
)
+M(M−1) = 1262, 4922 and 30302, respectively. Thus, even though the

change from d = 20 to 100 may appear moderate, the corresponding number of parameters

to be estimated is very large. The results for d = 40, 100 are discussed below, and those
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for d = 20 are given in Section A3 of the Supplement; see also the end of this section.

Figure 1 shows the REE boxplots. We observe that for the AR coefficients, the

adalasso and scad attain a performance close to θ̃, followed by mcp and the lasso.

For covariance matrices, scad and mcp outperform the other penalties, and the medians

reveal that they are comparable to θ̃. Overall, scad and mcp attain a performance close

to θ̃, followed by the lasso and adalasso. Estimation of covariance matrices is more

difficult, as the medians depart from 1.0 more noticeably. In computing the overall REE,

the estimation errors of the transition probabilities are included.

Figure 2 shows the TPR boxplots. We observe that the MPLE performs well under

this measure. At least one penalty function attains an overall median TPR above 0.90 for

the dimensions and sample sizes considered. The lasso, scad and mcp perform similar

to each other, while adalasso is less accurate. In terms of TNR (omitted), we find that

for any setting, the median is at least 0.95 for both the AR and covariance matrices.

In summary, even though our theoretical results are proved in the setting of fixed dimen-

sion and large sample size, we conclude from the above experiments that our methodology

has a good performance in finite-sample and moderate- to large-dimensions.

In Section A3 of the Supplement, we also provide the simulation results in terms of the

EE and TPR for d = 20 and a wider range of sample sizes n to demonstrate the consistency

and sparsity recovery property (Theorem 1) of the MPLE as n grows.
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Figure 1: Relative estimation error (REE) based on 50 samples: (a) d = 40,K = 4922 (b) d = 100,K =

30302, where d and K are resp. the data and parameter dimensions.
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Figure 2: True positive rate (TPR, nonzero parameter detection) based on 50 random samples: (a)

d = 40,K = 4922 (b) d = 100,K = 30302, where d and K are resp. the data and parameter dimensions.
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5.2 Predictive density estimation and number of regime selection

We use models with M ∈ {2, 3}, p = 1, and generate samples of size n+h. We take d = 20,

n = 800, and h = 8. We estimate the model parameters using n observations, setting the

number of regimes M as either correctly or under/over-specified, ranging from 1 to 5. For

the remaining h observations, we compute the estimated predictive densities in (20).
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−300

−250

Lo
g-

pr
ed

. d
en

si
ty

LASSO ALASSO SCAD MCP

1 2 3* 4 5 1 2 3* 4 5 1 2 3* 4 5 1 2 3* 4 5

−280

−240

Figure 3: h-step-ahead log-predictive density (20) based on 50 random samples, for the true number of

regimes M = 2∗ (top), 3∗ (bottom), d = 20, n = 800, h = 8. The x-axis shows M values used in estimation.

Figure 3 shows boxplots of the estimated h-step ahead log-predictive density of yn+1:n+h,

for different values of M . The results are based on 50 generated samples. We observe

that the median values for the models with over-specified M fall within the inter-quantile

range of the values for the model with correct M , which is expected as per the result of

our Theorem 2 on the predictive density. The median for the under-specified M clearly

deviates from the other medians, attaining a lower value. This is true for all the penalties.
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Next, we examine the performance of the criterion (18) for estimating M when the AR-

order p is fixed. The results for estimating p are given in the Supplement, Section A1.6.

We consider d = 20 and n ∈ {400, 600, 800}. We generate the data using models with true

number of regimes M = 1, 2, 3, and estimate M using the BIC over the candidate values

ranging from 1 to 5 for all the penalties. The mean of the performance measure 1{M̂=M},

with M̂ being the estimated number of regimes, is reported in Figure 4. The adalasso

outperforms other penalties and estimates the true M with a mean rate of at least 80%

for any sample size. The performance for n = 600, 800 is very good with rates above 95%.

The lasso also appears more stable than scad and mcp. The performance of the MDL is

not as accurate and omitted, which can be attributed to the small sample size per regime.

M = 1 M = 2 M = 3
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Figure 4: Proportion of correctly selected M using BIC based on 50 random samples for d = 20.

6 Case study: Identification of a recessionary regime

We consider a large-scale dataset of Canadian national and provincial macroeconomic indi-

cators of observations from 1981 to 2022, containing 481 observations on 386 variables. The

indicators belong to several categories, such as labour market, housing, construction and
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manufacturing. Fortin-Gagnon et al. (2018) analyzed a part of this dataset using probit and

logit lasso models to identify the turning points of three economic recession events, and

predict recession probabilities. As MSVARs have been used to successfully model business

cycles (Hamilton, 1988), our aim is to fit a model to this data and identify the recessionary

regimes. The effects of manufacturing decline and house boom on US non-employment

levels have been studied before (Charles et al., 2019). With this motivation, we consider

housing price index (HPI) and manufacturing index (MI) for the top 5 Canadian provinces

in terms of population1, hence the time series Yt has dimension d = 10. We fit MSVARs

with M = 1, 2, 3, 4, p = 1, 2, 3, each penalty, and scenarios of sparse covariance and pre-

cision matrices. We use BIC and MDL, and the AR-order selection method based on the

hierarchical group-lasso, to choose the final model based on the adalasso with M̂ = 3,

p̂ = 1 and sparse covariance matrices; see Supplement, Section A4 for all the details.

Figure 5 displays the estimated AR coefficients and covariance matrices for each regime,

with transition probabilities (α̂11, α̂12) = (0.81, 0.13), (α̂21, α̂22) = (0.23, 0.69), and (α̂31, α̂32) =

(0.40, 0.40). We also show the estimated regime for each observation at time t as argmaxm P̂(st =

m|yp+1:n). In the same figure, we also mark the recession periods of the Canadian economy,

which took place over the periods: June 1981 to October 1982, March 1990 to April 1992,

and October 2008 to May 2009.

The logit model used in Fortin-Gagnon et al. (2018) provided smooth estimates of the

predictive recession probabilities, which overlapped with the actual recessionary periods.

From Figure 5, our fitted MSVAR is also able to identify a regime whose occurrence prob-

1Statistics Canada, Table 17-10-0009-01; DOI: https://doi.org/10.25318/1710000901-eng
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Figure 5: (a) Time series of d = 10 Canadian province macroeconomic indicators: 5 housing price (HPI)

and 5 manufacturing (MI) indices. (b) Estimated most probable membership of each observation to any of

M̂ = 3 regimes, and recession periods of Canadian economy. (c) Absolute value of estimated regime-AR

coefficients, AR-order p̂ = 1. (d) Absolute value of estimated regime-covariance matrix entries.
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ability is substantially high before and during the recession periods. This corresponds to

regime 2, and agrees with the general definition of a recession as a persistent decline in an

economy with a specified minimum duration. The plot also shows that regime 3 captures

particularly extreme values of some variables (HPI-Ont., HPI-Man., HPI-B.C., MI-Que.,

MI-Ont., MI-Alb.) and seems to appear more often around the recessionary periods. A

proportion of 5% (25) observations are classified to regime 3. Figure 5(b) suggests that

our method is able to detect the recession periods based on 2 indicators from 5 provinces,

compared to 368 national and provincial variables used in Fortin-Gagnon et al. (2018).

Prediction. We consider the 8-month recessionary period over October 2008 to May

2009, and the subsequent non-recessionary 8-month period over June 2009 to January 2010,

for a total of 16 test observations. We fit a sparse MSVAR model (M̂ = 3, p̂ = 1) using all

the data up to the month prior to a test point under consideration, and perform an out-

of-sample one-step-ahead regime-membership prediction. For a test point, we determine

that it belongs to a recession if its predicted maximum regime probability corresponds to

regimes either 2 or 3.
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Figure 6: Out-of-sample one-step-ahead predicted regime membership probabilities for the Canadian

province macroeconomic test data. The first 8 points correspond to the third Canadian recession, the

last 8 points are non-recessionary.
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Figure 6 shows the predicted probabilities for the 16 test observations. Note that even

though we correctly identify the regimes for 14 test points, caution must be taken to predict

recessions using the method since, as stated by Fortin-Gagnon et al. (2018), the presence

of a recession is rather a rare event in the dataset.

7 Conclusion

We introduce a general penalized conditional likelihood method for fitting sparse MSVARs.

It provides both sparse regime-specific AR coefficients and covariance or precision matrices,

along with estimation of transition probabilities of the Markov chain. We prove consistency

and sparsity properties of the proposed estimators. We also discuss estimation of the number

of regimes and predictive density. We implement the method via an efficient modified

EM algorithm. We examine the performance of the method via simulation and real data

analysis. Simulations indicate that our method is reliable for fitting sparse MSVARs to

moderate- and large-dimensional time series data. In practice, an increase in the number of

regimesM and AR-order p has impact on the performance of the method, which is expected

as the optimization problem (4) becomes more challenging. Our simulations also show that

none of the penalties dominates the others in all the settings considered here. Thus, in

practice, we suggest analyzing a dataset using all the penalties and choosing a sparse model

that optimizes a selection criterion (e.g., BIC) as done in our real data analysis.

It can be shown that the BIC based on (18) does not under-estimate the true number

of regimes M . A possible research direction is to investigate conditions under which BIC

consistently estimates M . Another direction is the extension of our method to nonhomoge-
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neous Markov chains. Shrinkage estimators can be incorporated by adjusting the penalty

in (4) and also allowing the dimension d to increase with the sample size n as in the work

of Fiecas et al. (2017), which require further investigation.

Supplementary materials

A Supplementary pdf document to this paper includes: (i) additional methodology de-

tails including the EM algorithm, (ii) theoretical results and proofs, (iii) complementary

numerical results, and (iv) complementary case study results.

Code: “code msvar.zip” contains the code to replicate Figure 1(a) and Figure 2(a).
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In this supplementary document, we provide complete details of the modified EM algorithm,
proofs of the theoretical results on the asymptotic convergence and consistency of our penalized
maximum likelihood estimates and predictive density estimates, and the results of additional nu-
merical experiments not included in the main document. In the following, we denote the true model
parameter vector as θ⋆ ∈ Θ ⊆ RK, and denote a generic element of a parameter vector θ as
θj , j = 1, . . . , K.

A1 Methodology details

A1.1 Penalty functions

The well-studied choices of the penalty function rλ in Section 3 of the main manuscript are:

• lasso (L1 norm): rλ(θj ) = λ|θj |;

• Adaptive lasso (adalasso, weighted L1 norm): rλ(θj ) = λŵj |θj |, with ŵj = |θ̂j |–γ and
γ > 0, where θ̂j is a

√
n–consistent estimator of the true parameter θ⋆j ;

• scad: rλ(θj ) is such that r ′λ(θ) = sgn(θ)
(
λ1{|θ|≤λ} + (aλ–|θ|)+

(a–1) 1{θ>λ}

)
, with parameter a >

2;

• mcp: rλ(θj ) is such that r ′λ(θ) = sgn(θ) (aλ–|θ|)+
a , with parameter a > 1.

In Section A2 below we list general conditions on rλ required to prove our theoretical results.

A1.2 Expectation (E-) step

Here we provide details of the forward-backward algorithm to compute the quantities

ζ
(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n ,θ(k), sp), ζ

(k)
ti = P(ξti = 1|y1:n ,θ(k), sp),
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at the (k +1)-th iteration of the EM algorithm. The forward recursion is also known as filtering, and
the backward recursion as smoothing. We omit the terms (θ(k), sp) from the notation throughout.

Recall the variable

ξt :=

 ξt1...
ξtM

 =

1{st=1}
...

1{st=M}

 .

Let ιm denote the m-th column of the M-dimensional identity matrix. Using the model assumptions,
we can write, for t ≥ p + 1,

P(yt |ξt–1 = ιi , y1:t–1) := P(yt |ξ(t–1)i = 1, y1:t–1)

=
M∑

m=1
P(yt |ξ(t–1)i = 1, ξtm = 1, y1:t–1)P(ξtm = 1|ξ(t–1)i = 1, y1:t–1)

=
M∑

m=1
P(yt |ξtm = 1, y1:t–1)P(ξtm = 1|ξ(t–1)i = 1)

=
M∑

m=1
P(yt |ξtm = 1, y1:t–1)αim =

M∑
m=1

αimϕ
(
yt ;µ

(m)
t ;Σ(m))

)
.

We collect the densities of yt conditional on ξt and y1:t–1 in the vector

ηt :=

P(yt |ξt = ι1, y1:t–1)
...

P(yt |ξt = ιM, y1:t–1)

 =


ϕ
(
yt ;µ

(1)
t ;Σ(1))
...

ϕ
(
yt ;µ

(M)
t ;Σ(M))

 .

Thus, we can rewrite the above conditional density as

P(yt |ξt–1 = ιi , y1:t–1) = ηT
t PTιi . (1)

As the regime-governing Markov chain is unobservable, the information at t – 1 only consists of
observations y1:t–1 and not the regime indicator vector ξt–1. For the purpose of estimation, we
replace the vector ξt–1 by its conditional expected value, which in itself is estimated from the
observed data as follows.

Denote the vectors

ξ̂t |τ := E(ξt |y1:τ ) =

P(ξt = ι1|y1:τ )
...

P(ξt = ιM|y1:τ )

 =

P(ξt1 = 1|y1:τ )
...

P(ξtM = 1|y1:τ )


for p ≤ τ ≤ t and t ≥ p + 1. Thus, using (1), the conditional probability density of yt given y1:t–1
can be written as

P(yt |y1:t–1) =
M∑

m=1
P(yt , ξt–1 = ιm |y1:t–1)

=
M∑

m=1
P(yt |ξt–1 = ιm , y1:t–1)P(ξt–1 = ιm |y1:t–1)
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=
M∑

m=1
P(yt |ξ(t–1)m = 1, y1:t–1)P(ξ(t–1)m = 1|y1:t–1)

= ηT
t PT

M∑
m=1

ιm P(ξ(t–1)m = 1|y1:t–1) = ηT
t PTξ̂t–1|t–1.

On the other hand, for m = 1, . . . , M, we have

P(ξtm = 1|y1:t–1) =
M∑

i=1
P(ξtm = 1|ξ(t–1)i = 1, y1:t–1)P(ξ(t–1)i = 1|y1:t–1)

=
M∑

i=1
αimP(ξ(t–1)i = 1|y1:t–1) = (PTξ̂t–1|t–1)m ,

where (v)m refers to the m-th element of a vector v. Thus, for all t ≥ p + 1, we have

ξ̂t |t–1 = PTξ̂t–1|t–1,

and hence we get

P(yt |y1:t–1) = ηT
t ξ̂t |t–1 = 1T

M

(
ηt ⊙ ξ̂t |t–1

)
,

where ⊙ denotes the element-wise matrix multiplication and 1M = (1, . . . , 1)T. Then

ξ̂t |t =
ηt ⊙ ξ̂t |t–1

1T
M

(
ηt ⊙ ξ̂t |t–1

) , (2)

which follows since, by Bayes’ rule,

P(ξtm = 1|y1:t ) = P(ξtm = 1|yt , y1:t–1) =
P(yt |ξtm = 1, y1:t–1)P(ξtm = 1|y1:t–1)

P(yt |y1:t–1)
.

Now we consider ξ̂t |n . First note that, by Bayes’ rule and the model assumptions,

P(ξtm = 1|ξ(t+1)i = 1, y1:n) = P(ξtm = 1|ξ(t+1)i = 1, y1:t , yt+1:n)

=
P(yt+1:n |ξtm = 1, ξ(t+1)i = 1, y1:t )P(ξtm = 1|ξ(t+1)i = 1, y1:t )

P(yt+1:n |ξ(t+1)i = 1, y1:t )

=
P(yt+1:n |ξ(t+1)i = 1, y1:t )P(ξtm = 1|ξ(t+1)i = 1, y1:t )

P(yt+1:n |ξ(t+1)i = 1, y1:t )

= P(ξtm = 1|ξ(t+1)i = 1, y1:t ),

which we use to write, once more using Bayes’ rule,

P(ξtm = 1, ξ(t+1)i = 1|y1:n) = P(ξtm = 1|ξ(t+1)i = 1, y1:n)P(ξ(t+1)i = 1|y1:n)

= P(ξtm = 1|ξ(t+1)i = 1, y1:t )P(ξ(t+1)i = 1|y1:n)

=
P(ξ(t+1)i = 1|ξtm = 1, y1:t )P(ξtm = 1|y1:t )

P(ξ(t+1)i = 1|y1:t )
P(ξ(t+1)i = 1|y1:n)
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=
P(ξtm = 1|y1:t )P(ξ(t+1)i = 1|ξtm = 1)

P(ξ(t+1)i = 1|y1:t )
P(ξ(t+1)i = 1|y1:n). (3)

Using the above expression, for m = 1, . . . , M, we obtain

P(ξtm = 1|y1:n) =
M∑

i=1
P(ξtm = 1, ξ(t+1)i = 1|y1:n)

=
M∑

i=1

P(ξtm = 1|y1:t )P(ξ(t+1)i = 1|ξtm = 1)
P(ξ(t+1)i = 1|y1:t )

P(ξ(t+1)i = 1|y1:n)

=
M∑

i=1

αmi P(ξ(t+1)i = 1|y1:n)P(ξtm = 1|y1:t )
P(ξ(t+1)i = 1|y1:t )

.

Collecting these into a vector, we get

ξ̂t |n =

P(ξt1 = 1|y1:n)
...

P(ξtM = 1|y1:n)

 =
[
PT
(
ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t |t , (4)

denoting by ⊘ the element-wise division.
From (2) and (4), using the current estimate θ(k), we obtain the computations required in the

E-step as follows:

• Forward recursion (filtering): for t = p + 1, . . . ,n,

ξ̂t |t =
ηt ⊙ ξ̂t |t–1

1T
M

(
ηt ⊙ ξ̂t |t–1

) =
ηt ⊙ P(k)ξ̂t–1|t–1

1T
M

(
ηt ⊙ P(k)ξ̂t–1|t–1

) ,

where ⊙ denotes the element-wise product.

• Backward recursion (smoothing): for t = n – 1, . . . , p + 1, after plugging in the filtered proba-
bilities, we compute

ξ̂t |n =
[
P(k)T (

ξ̂t+1|n ⊘ ξ̂t+1|t

)]
⊙ ξ̂t |t ,

denoting by ⊘ the element-wise division.

Finally, we set ζ(k)
ti = P(ξti = 1|y1:n) as the i-th entry of the vector ξ̂t |n , for i = 1, . . . , M.

Regarding the joint probabilities ζ(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n), as discussed in (Krolzig,

1997, Chapter 5), they can be expressed in terms of the smoothed probabilities ξ̂t |n,j (j -th entry of
ξ̂t |n), the predicted probabilities ξ̂t |t ,j (j -th entry of ξ̂t |t–1), the filtered probabilities ξ̂t–1|t–1,i (i-th
entry of ξ̂t–1|t–1), and the transition probabilities estimates from the previous iteration. Using (3),
the complete vector of joint probabilities, for t = p + 1, . . . ,n, is estimated by

ξ̂
joint
t |n := vec(P(k)) ⊙

[(
ξ̂t |n ⊘ ξ̂t |t–1

)
⊗ ξ̂t–1|t–1

]
,

where ⊗ denotes the Kronecker product, and whose (j – 1)M + i entry corresponds to the term

ζ
(k)
t ,ij = P(ξ(t–1)i = 1, ξtj = 1|y1:n) =

α
(k)
ij (ξ̂t–1|t–1)i (ξ̂t |n)j

(ξ̂t |t–1)j
,

for i , j = 1, . . . , M. Recall (v)i refers to the i -th element of a vector v.
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A1.3 Maximization (M-) step

A1.3.1 Transition probability matrix

The true transition probability matrix is estimated based on the joint distribution of ξt , ξt+1 given
the full sample y1:n as in (3). From (Krolzig, 1997, Equation 6.14), the estimate is given as

vec(P(k+1)) =
[
ξ̂joint

]
⊘
[
1M ⊗

((
1T
M ⊗ IM

)
ξ̂joint

)]
,

where ξ̂joint :=
∑n

t=p+1 ξ̂
joint
t |n , and IM is the M-dimensional identity matrix.

A1.3.2 AR coefficient matrices

Recall the optimization problem with respect to the AR coefficients for regime m is given as

min
{A(m)

l }p
l=1

1
2(n – p)

n∑
t=p+1

ζ
(k)
tm
(
yt – µ̄

(m)
t
)T

Ω̂
(m,k)(

yt – µ̄
(m)
t
)

+
p∑

l=1

d∑
i ,j=1

rλ1

(
a(m)
l ,ij
)
.

To solve it, we utilize the block-wise coordinate descent algorithm for VAR models suggested by
Basu and Michailidis (2015). Let us first define

Ξ̂m :=


ζ
(k)
(p+1)m 0

. . .

0 ζ
(k)
nm

 , y :=

(yp+1 – ν(m,k+1))T
...

(yn – ν(m,k+1))T

 ,

X :=

Xp+1
...

Xn

 , Xt :=
[
yT
t–1 yT

t–2 . . . y
T
t–p

]
.

Let y(m)
i and b(m)

i denote the i-th column and the i -th row of Ξ̂1/2
m y and [A(m)

1 , . . . , A(m)
p ], respec-

tively. Also let X(m) = Ξ̂
1/2
m X and Ω̂

(m,k)
= (ωij )1≤i ,j≤d . The objective function can be rewritten

as

min
b(m)
i ,i=1,...,d

1
2

d∑
i=1

d∑
j=1

ωij

(
y(m)
i – X(m)b(m)

i
T)T(

y(m)
j – X(m)b(m)

j
T)

+
d∑

i=1

dp∑
j=1

rλ1

(
b(m)
ij
)
,

where the b(m)
ij , j = 1, . . . , dp, are the elements of b(m)

i , i = 1, . . . , d . As suggested in Basu and
Michailidis (2015, Appendix C), we minimize the above objective function cyclically with respect to
each b(m)

i until convergence. We repeat the following procedure for i = 1, . . . , d , until convergence:

1. Set ri = 1
2ωii

∑d
j=1, j ̸=i ωij

(
y(m)
j – X(m)b̂

T
j
)
;

2. Update b̂i = argmin
bi

ωii
2 ∥y(m)

i + ri – X(m)bT
i ∥2

2 +
∑dp

j=1 rλ1

(
bij
)
.

To solve the optimization problem in Step 2 above, we employ a generalized gradient descent.
In particular, we use a modified fast iterative-shrinkage thresholding algorithm (FISTA, Beck and
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Teboulle, 2009b), which was initially devised to solve optimization problems of the form minb g(b)+
rλ(b). For a step size L, the iterative scheme is based on the update

b̂
(k+1)
i = argmin

bi

[
1
2

∥∥∥bi –
(
ẑ(k)
i – Lωii (y

(m)
i + ri – X(m)(ẑ(k)

i )T)TX(m))∥∥∥2
+ L

dp∑
j=1

rλ1

(
bij
)]

(5)

=: h(ẑ(k)
i , L),

where ẑ(k)
i is an interpolation between b̂

(k)
i and b̂

(k–1)
i . Since the considered penalty function is

decomposable with respect to individual elements of bi , the minimization problem above corresponds
to a penalized least-squares problem with orthogonal predictors, and can be solved analytically for
all the penalty functions we consider in this work. The exact formulas for this update for all the
considered penalties are provided in Section A1.3.4.

Ideally, in an optimization algorithm the value of the objective function must not increase when
computed over successive iterations. The original FISTA does not possess this property, making it
vulnerable to divergence. This issue has been circumvented in another work by Beck and Teboulle
(2009a), and we incorporate their approach in our implementation. Another enhancement we im-
plement is known as FISTA with restart (Wen et al., 2017, and references therein), which resets
the interpolation parameter every κ iterations for a pre-specified κ, and gives faster convergence
compared to the original version of FISTA. See Algorithm 2 below.

We compute a step size L that ensures convergence as follows. First note that a Lipschitz
constant of the smooth term in the objective function is λmax(XTΞ̂mX), where λmax(A) denotes
the maximum eigenvalue of a real symmetric matrix A. The knowledge of this constant provides
a suitable step size (Beck and Teboulle, 2009b). For a given regime m ∈ {1, . . . , M}, we can
approximate the corresponding Lipschitz constant by observing the relation

XTΞ̂mX ⪯ XTX,

which holds since each element of the diagonal matrix Ξ̂m lies in the interval (0, 1). Hence, following
Guo et al. (2016, Theorem 4.4), we set L as any value satisfying

L <



2
2C+λmax(XTX)

if C = 0,
2

C+λmax(XTX)
if 0 < C ≤ λmax(XTX)/2,

2

2C+
√
λmax(XTX)2–C2

if λmax(XTX)/2 < C < λmax(XTX),

1
C if λmax(XTX) = C,

(6)

where C is the weak-convexity constant of the penalty r , such that
∑dp

j=1 rλ1(bij )+
C
2 ∥bi∥2 is convex.

This constant C exists for all the penalties considered in this work (see Section A1.3.4 below). By
using such L we ensure the convergence of the algorithm to a local minimum. Our procedure is
summarized in Algorithm 2.

A1.3.3 Covariance and precision matrices

Recall the optimization problem with respect to Σ(m) or Ω(m) is

min
Σ(m)≻0

1
2(n – p)

(
n̂m log |Σ(m)| + tr

(
Ω(m)S(m)))+

d∑
i ̸=j=1

rλ2

(
γ

(m)
ij
)
, (7)
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Algorithm 2 Monotone FISTA with restart for sparse VAR parameter estimation

Initialization: ẑ1
i = b̂

0
i , t1 = 1, κ ≥ 1, L satisfying (6), ε > 0

1: x̂k
i = h(ẑki , L)

2: b̂
k
i = argmin

{
h(x, L) : x ∈ {x̂k

i , b̂
k–1
i }

}
3: tk+1 =

1+
√

1+4t2k
2

4: ẑk+1
i = b̂

k
i +

(
tk–1
tk+1

)
(b̂

k
i – b̂

k–1
i ) +

(
tk

tk+1

)
(x̂k

i – b̂
k
i )

5: If k mod κ = 0 set tk+1 = 1

6: If ∥b̂
k
i – b̂

k–1
i ∥/∥b̂

k–1
i ∥ < ε return b̂

k
i , else k = k + 1 and go to 1

with Γ(m) = (γ(m)
ij )1≤i ,j≤d being either Σ(m) or Ω(m). To simplify the notation, we drop the

index m below. Loh and Wainwright (2015) proposed and theoretically studied an algorithm for
regularized M-estimation for non-convex problems. Their algorithm performs a generalized gradient
descent on the objective function, which is assumed to be the sum of a smooth function and a
penalty function, similar to FISTA. We adopt their approach and implement it as follows. Let C be
the weak-convexity constant of the penalty r , so that

∑d
i ,j=1 rλ2(Γ)+ C

2 ∥Γ∥
2
F is convex (see Section

A1.3.4). Next we provide the updates for the scenario where Σ is penalized, followed by the updates
in the scenario where the penalty is instead on Ω.

Penalization on the covariance matrix
The update with step size Lk for the optimization problem for penalized covariance is given as

Σ(k+1) ∈ argmin
Γ≻0

{
1
2

∥∥∥Γ –
(
Σ(k) – Lk

(
Ω(k) – Ω(k)SΩ(k) – CΣ(k)))∥∥∥2

F
+ Lk

( d∑
i ,j=1

rλ2(γij ) +
C
2
∥Γ∥2

F

)}
(8)

=: hΣ(Σ(k), Lk ),

which has a closed form for all the penalties we consider (see Section A1.3.4). Loh and Wainwright
(2015) provided error bounds with respect to a global minimizer that hold with high probability,
and stated that the iterates (8) quickly converge to a neighborhood of any global optimum under a
set of smoothness and convexity conditions. Our objective function meets those requirements since
its differentiable term has a Lipschitz-continuous gradient on a compact constraint set of the form
{Σ : Σ ⪰ δI} for some δ > 0. This can be verified using ideas similar to those of Bien and Tibshirani
(2011, Appendix 2). We compute the step size Lk using a backtracking line search; see, for example,
Parikh and Boyd (2013, Section 4.2).

Penalization on the precision matrix
For the penalized precision matrix case, the difference arises on the differentiable part of the

objective function and its gradient, in comparison with the covariance case. We perform each
update as

Ω(k+1) ∈ argmin
Γ≻0

1
2

∥∥∥Γ –
(
Ω(k) – Lk

(
–Σ(k) + S – CΩ(k)

))∥∥∥2

F
+ Lk

( d∑
i ,j=1

rλ2(γij ) +
C
2
∥Γ∥2

F

)
(9)

=: hΩ(Ω(k), Lk ).

7



The theoretical properties of the iterative procedure as investigated by Loh and Wainwright (2015)
are also applicable. The required Lipschitz continuity is implied when imposing the constraint
Σ–1 ⪰ δI for some specific δ > 0. Such a δ can be obtained with a derivation similar to Bien and
Tibshirani (2011, Appendix 2). The final algorithm for solving (7) for a fixed regime m is outlined
in Algorithm 3.

Algorithm 3 Generalized gradient descent for sparse VAR covariance or precision matrix estimation

Initialization: Σ(1) = S, Ω(1) = S–1, L1 ≤ 1, ε > 0
1: Perform backtracking line search to obtain step size Lk
2: (Penalized covariance) Σ(k+1) = hΣ(Σ(k), Lk )

(Penalized precision) Ω(k+1) = hΩ(Ω(k), Lk )
3: If ∥Σ(k+1) – Σ(k)∥F/∥Σ(k)∥F < ε or ∥Ω(k+1) – Ω(k)∥F/∥Ω(k)∥F < ε return (Σ(k+1),Ω(k+1))

else k = k + 1 and go to 1

A1.3.4 The proximal operators

The updates in Algorithm 2 and 3 of Section A1.3.3 have a closed-form formula for the penalty
functions we consider, which we provide here. The update steps in (5), (8), and (9) can be obtained
by solving the following

min
x

1
2
(x – z )2 + νrλ(x ),

for x ∈ R \ {0}, fixed z ∈ R and ν > 0. For example, in Algorithm 2, each element of bi as in (5),
corresponds to x here. The formulas can be obtained by equating the subgradient of the objective
function above to zero and solving for x . Thus, for a particular choice of the penalty function rλ,
the corresponding formulas for the updates in Algorithm 2 and 3 are given as:

x̂l1 =

{
0, 0 ≤ |z | ≤ νλ,
z – sign(z )νλ, |z | ≥ νλ;

(10)

x̂scad =


0, 0 ≤ |z | ≤ νλ,
z – sign(z )νλ, νλ < |z | ≤ (1 + ν)λ,
(a–1)z–sign(z )aνλ

a–1–ν , (1 + ν)λ < |z | ≤ aλ,
z , |z | ≥ aλ;

x̂mcp =


0, 0 ≤ |z | ≤ νλ,
bz–sign(z )bνλ

b–ν , νλ < |z | ≤ bλ,
z , |z | ≥ bλ.

In the updates of Algorithm 2 and 3, we are required to set ν = (L + C)–1, with C equal to
0, (a – 1)–1 or b–1 for penalty functions L1-norm, scad or mcp, respectively; these are the weak
convexity constants. For the adaptive lasso, the update can be obtained by replacing λ in (10) with
the weighted version λŵ , for a weight of the form ŵ = |β̂|–γ , where β̂ is a

√
n-consistent estimator of

the parameter coordinate being estimated. We use the maximum-likelihood estimator with γ = 1.
If the MLEs of the covariance or precision matrices are computationally singular, following the idea
in ridge regression, we regularize them by adding a multiple of the identity matrix.
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A1.4 Model initialization and identification

The performance of the modified EM algorithm is heavily reliant on an appropriate initialization.
Our proposal here is motivated by the desired behaviour from a good estimate, of having a moder-
ately high likelihood value. Define

y :=

yT
p+1
...

yT
n

 , X :=

Xp+1
...

Xn

 , Xt :=
[
1 yT

t–1 yT
t–2 . . . y

T
t–p

]
.

For m = 1, . . . , M, we set the first iterates as

[ν(m,1), A(m,1)]T = [XTX]–1XTy,

Σ(m,1) =
1

n – p

[
y – X[ν(m,1) A(m,1)]T

]T [
y – X[ν(m,1) A(m,1)]T

]
,

P(1) = αij
(1) =

{
1
M + δ, i = j ,

1
M–1(1 – α(1)

ii ), i ̸= j .

In other words, we use the least-squares and MLE estimates for a VAR(p) model (true p being
assumed as given) as initial coefficient and covariance matrices for all the regimes. We use a gen-
eralized inverse if necessary. The transition probability matrix initial estimate is just a symmetric
matrix, whose diagonal is specified by the quantity δ ∈ (0, M–1), and ensures that the estimates do
not fall into a local maximum.

The interchange of regime labels in the MSVAR models during the estimation procedure can
lead to a model identification problem. The model parameters belong to the same equivalence class
if their regime labels are a permutation of any other label set in the class, and thus all the parameter
combinations in an equivalence class lead to the same model. After convergence of the EM algorithm,
we perform a permutation of the regime labels, as suggested by Krolzig (1997), according to a pre-
specified ordering on the magnitude of the estimated VAR coefficients. For example, different regimes
labels can be indexed based on the increasing order of mean of the intercept vector. This ensures
that the labels of the final estimates always follow the pre-specified order which takes care of the
model identifiability. Another requirement of model identification is the existence of a well-defined
distribution function. This condition is trivially satisfied as we assume Gaussian noise in our MSVAR
models.

A1.5 Selection of the penalty parameters λ1 and λ2

Inspired by Zhang et al. (2010), we select the penalty parameters by optimizing a model selection
criterion, which is composed of a loss function and a model complexity term which involves the
number of degrees of freedom of a candidate model. Here, we assume a fixed number of regimes M
and AR-order p.

Let θ̂n(λ) be the MPLE given a pair λ = (λ1,λ2) ∈ I ×I ⊂ R2, for a pre-specified set of values
I. We denote the regime-specific degrees of freedom of the corresponding fitted MSVAR model as

Dm(θ̂n(λ)) =
p∑

k=1

d∑
i ,j=1

1
{(â(m)

k ,ij )̸=0}
+

d∑
i ,j=1

1
{γ̂(m)

ij ̸=0}
, m = 1, . . . , M,
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and define the selection criterion

C1(λ) = –2ln(θ̂n(λ); sp) + c
M∑

m=1
Dm(θ̂(λ)),

where ln is the conditional log-likelihood and c is a constant controlling the model complexity. A
similar criterion, denoted by C, is used in the main manuscript for the selection of the number of
regimes M. In the above criterion, if c = 2 or c = log(n –p), we obtain the AIC or BIC, respectively.
A data-dependent choice of the tuning parameters λ = (λ1,λ2) is

λ ∈ argmin
λ0∈I×I

C1(λ0). (11)

The usual practice is to take I to be a discretization of the set [0, λ̃] for some λ̃ > 0, and choose
λ = (λ1,λ2) as in (11). In our numerical studies, the pairs (λ1,λ2) take values on a grid with
increments of 0.25 on the logarithmic scale.

We propose a computationally efficient coordinate-descent approach which optimizes C1 by per-
forming a cyclical search on either coordinate of the argument λ0 ∈ I × I, while keeping the other
fixed until reaching convergence. To increase the accuracy, we perform additional searches at different
resolutions of I. Thus, the coarsest grid corresponds to a global coordinate descent, whereas subse-
quent searches are performed at decreasing resolutions in a neighborhood of the optimum grid point
found in the previous resolution. This refines the result further. The discrete nature of the problem
enables this procedure to converge to a local optimum. For a step size s > 0, window radius w ∈ N,
and center λ > 0, let Iw (s,λ) := {max{λ–ws, 0}, . . . ,λ–2s,λ–s,λ,λ+s,λ+2s, . . . ,min{λ+ws, λ̃}}.
Algorithm 4 summarizes the selection procedure of the penalty tuning parameters and number of
regimes.
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Algorithm 4 Selection of Tuning Parameters and Number of Regimes

1: Input: Mmax ∈ N, λ̃ > 0, λ̂0
2 = 0

2: For M = 1, . . . , Mmax do
3: For k = 1, 2, . . . do

λ̂k
1 ∈ argmin

λ1∈I∞(s,λ̃/2)
C1(λ1, λ̂k–1

2 ),

λ̂k
2 ∈ argmin

λ2∈ I∞(s,λ̃/2)
C1(λ̂k

1 ,λ2),

until λ̂k
i = λ̂k–1

i , i = 1, 2
4: Set ci = λ̂k

i , i = 1, 2
5: For j = 1, 2 do
6: λ̂0

2 = c2
7: For k = 1, 2, . . . do

λ̂k
1 ∈ argmin

λ1∈Iw (s/2j ,c1)
C1(λ1, λ̂k–1

2 ),

λ̂k
2 ∈ argmin

λ2∈ Iw (s/2j ,c2)
C1(λ̂k

1 ,λ2),

until λ̂k
i = λ̂k–1

i , i = 1, 2
8: Set ci = λ̂k

i , i = 1, 2
9: Set λM = (λ̂k

1 , λ̂k
2)

10: Compute C(M) defined in the main manuscript using λM
11: Set M̂ = argmin{C(1), . . . , C(Mmax)}
12: Return (λM̂, M̂)

A1.6 AR-order selection

By adapting the approach for VARs by Nicholson et al. (2020), we devise a procedure for AR-order
selection that has a superior performance for our models compared to a criterion-based approach. It
is based on penalizing the AR coefficients using the group lasso so that the spurious lag entries are
shrunk to zero. This AR-order selection procedure, described next, is straightforward to incorporate
into Algorithm 4.

First note that the AR-order selection can be done by relying on the consistency of the penalized
estimator. We can consider a pre-specified AR-order p0 ≥ p, and express an MSVAR model with
AR-order p as an MSVAR model with AR-order p0, with A(m)

i ≡ 0d×d for i > p and m = 1, . . . , M.
However, a methodologically more suitable approach is to consider the group lasso (Yuan and Lin,
2006) as done for VAR models by Song and Bickel (2011) and Nicholson et al. (2020).

Group lasso shrinks all the elements in a given group simultaneously towards zero, that is, all
the coefficients in a group are simultaneously estimated as either zero or nonzero. Nicholson et al.
(2020) proposed a series of hierarchical-lag penalties derived from the group lasso. The groups
are designed in a nested manner so that if the group corresponding to lag i is set to zero, then its
nested groups, corresponding to a lag greater than i , remain zero. Among the various hierarchical
penalties, the element-wise hierarchical penalty is the most suitable for our models as we do not
assume any particular sparsity structure on the AR coefficient matrices. It is also straightforward
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to optimize in our context. For regime m, we write

min
{A(m)

l }p
l=1

1
2(n – p)

n∑
t=p+1

ζ
(k)
tm
(
yt – µ̄

(m)
t
)T

Ω̂
(m,k)(

yt – µ̄
(m)
t
)

+ R(A(m)
1 , . . . , A(m)

p0 ;λ),

R(A(m)
1 , . . . , A(m)

p0 ;λ) = λ

d∑
j=1

d∑
k=1

p0∑
i=1

√
p0 – i + 1

( p0∑
ℓ=i

(A(m)
ℓ )2jk

)1/2

,

so that each group indexed by lag i contains the element (j , k) of all matrices of lag ℓ ≥ i . Further-
more, the adaptive version of the hierarchical penalty is straightforward to obtain as an extension
of the adaptive group lasso (Wang and Leng, 2008). After estimation we can set

p̂ = max{k ∈ {1, . . . , p0} : Â
(m)
k ̸= 0d×d}. (12)

An advantage of this AR-order selection method is that the penalty, and therefore the optimiza-
tion problem, can be decomposed along coordinates, which enables us to apply the optimization
framework we employ for the penalized AR coefficients estimation in Section A1.3.2.

We examine the performance of the above AR-order selection method via simulations. We set
M = 2, d = 20, and sample sizes n ∈ {400, 600, 800}. We consider the true AR-orders p = 1, 2, 3,
and set the over-specified candidate p0 = 4. We compute the mean of the performance measure
1{p̂=p}, with p̂ obtained using (12). For both sparsity scenarios S1 (sparse covariance matrices)
and S2 (sparse precision matrices), we obtain a mean performance measure of the true AR-order
selection of at least 0.90. It is worth mentioning that using a AR-order selection procedure based
on the BIC did not provide satisfactory results.

A2 Theoretical results

In this section, we study the large sample properties of the MPLE θ̂n introduced in Section 3 of the
main manuscript, when the true number of regimes M is correctly specified or over-estimated. We
denote the true MSVAR model parameter vector by θ⋆, and partition it as θ⋆ = [(θ⋆A)T, (θ⋆A

c
)T]T,

so that θ⋆A
c

= 0, and θ⋆A is a subvector of all the remaining non-zero parameters. Here, A also
denotes the set of indices k of all active (nonzero) parameters, and its complement Ac , similarly
contains the indices of all inactive (zero) parameters. Then, the cardinality of the index set of a
parameter vector θ, denoted as |A ∪ Ac |, is equal to K = M(d + pd2 + d(d + 1)/2) + M(M – 1).
Furthermore, we let E ⊂ A ∪ Ac , denote the set of indices k of the model parameters on which
we perform the penalization. Recall, that we do not penalize the parameters corresponding to
the transition probability matrix P of the hidden Markov chain, the AR intercepts ν(m), and the
diagonal entries of the covariance matrices Σ(m),m = 1, . . . , M. To establish our theoretical results,
we require certain conditions on the process {Yt}, the penalty function rλn used in (4) of the
main manuscript, and the tuning parameter λn . Let r ′λn

(·) and r ′′λn
(·) denote the first and second

derivatives, respectively, of the function rλn (·) with respect to θ.

Assumption 1. For all λ ∈ R, rλ(0) = 0. The function rλ(θ) is continuous, symmetric, nonnegative,
nondecreasing, continuously differentiable for all |θ| > 0, and twice continuously differentiable for
all |θ| > cλ for some constant c > 0.

Assumption 2. As n → ∞,λn = o(1), and for true value of model parameters θ⋆k ,

an = max
k∈A∩E

{|r ′λn
(θ⋆k )|} = O(n–1/2), bn = max

k∈A∩E
{|r ′′λn

(θ⋆k )|} = o(1).
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Assumption 3. lim inf
n→∞

lim inf
|θ|=O(n–1/2)

√
nr ′λn

(θ) = +∞.

Assumption 1 imposes a differentiability condition on the penalty function which allows to per-
form the Taylor expansion of the objective function around the true optimizer. Assumption 2
is essential to show the existence of a

√
n-consistent optimizer of the penalized conditional log-

likelihood function, and Assumption 3 is required to prove the sparsity property for the estimator of
the model parameter. For simplicity of exposition, we suppose that the penalty function rλ used for
the covariance (or precision) matrix parameters is the same as for the VAR matrix coefficients, but
this is not a requirement. In addition, in contrast to the related work of Monbet and Ailliot (2017),
we employ a unique tuning parameter λn for all the regimes; the computational burden is alleviated
in this way and our experiments show that one tuning parameter for all the regimes also performs
well. As we consider the situation that for any θ ∈ Θ, we have maxm∈{1,...,M} λmin (Σm) ≥ δ > 0,
we do not penalize for a possibly singular Σm . Here, λmin(A) denotes the smallest eigenvalue of
a real symmetric matrix A. We assume that the true number of regimes in the MSVAR model is
already given.

We use the results on consistency and asymptotic normality of the maximum-likelihood estima-
tors obtained by Douc et al. (2004) for the MSVAR models. All their assumptions follow in our
setting of a homogeneous regime-governing Markov chain St and the Gaussian noise process.

Proposition 6.1. (Douc et al., 2004, Proposition 1-3) There exists a deterministic function l(·)
such that

(i) for all sp ∈ {1, . . . , M}, and θ ∈ Θ,

lim
n→∞

n–1ln(θ; sp) = l(θ), Pθ⋆-a.s. and in L1(Pθ⋆);

(ii) limn→∞ supθ∈Θmaxsp |n–1ln(θ; sp) – l(θ)| = 0, Pθ⋆-a.s.;

(iii) l(θ) ≤ l(θ⋆) and l(θ) = l(θ⋆) if and only if θ = θ⋆.

The above results ensure the strong consistency of the conditional MLE estimator. Next, we
also have a central limit theorem for the score function and a law of large numbers for the observed
Fisher information.

Proposition 6.2.

(i) (Douc et al., 2004, Theorem 2) (Central limit theorem) For any sp ∈ {1, . . . , M}

n–1/2∇θln(θ⋆; sp)
Pθ⋆–→ N

(
0, I(θ⋆)

)
,

where I(θ⋆) is the asymptotic Fisher information matrix, defined as the covariance of asymp-
totic score function.

(ii) (Douc et al., 2004, Theorem 3) (Law of large numbers) For any sp ∈ {1, . . . , M} and a possibly
stochastic sequence {θ⋆n} ∈ Θ converging to θ⋆ Pθ⋆-almost surely, we have

–n–1∇2
θln(θ⋆n ; sp) –→ I(θ⋆),Pθ⋆-a.s.
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As fixing the initial state of the regime-governing Markov chain does not affect our asymptotic
convergence results, we simplify our notation for ln(θ; sp) and Ln(θ; sp) by rewriting them as ln(θ)
and Ln(θ), respectively. The following results hold for any sp ∈ {1, . . . , M}. We first show that under
the correct specification of M and appropriate choices of (rλn , λn), there exists a local maximizer
θ̂n of the penalized conditional likelihood function Ln(θ) that is a consistent and sparse estimator
of θ⋆.

Theorem 1. Suppose that {Yt} is generated according to a stationary and ergodic MSVAR process.
Further assume that Assumption 1 - 3 on the tuning parameter λn and penalty function rλn hold.
Then, as n → ∞,
(i) there exists a local maximizer θ̂n of the penalized log-likelihood Ln(θ) such that
∥θ̂n – θ⋆∥ = OP(n–1/2);
(ii) for any

√
n–consistent estimator θ̂n of the true sparse parameter θ⋆ with θ⋆A

c
= 0, we have

P
(
θ̂A

c
n = 0

)
→ 1.

Proof. Let αn = n–1/2 + an . For the first claim, it suffices to show that for n ≥ n0 with n0 large
enough, for any ε > 0 there exists a large constant C such that

P
(

sup
∥u∥=C

Ln(θ⋆ + αnu) < Ln(θ⋆)
)
≥ 1 – ε. (13)

In other words, we need to show that for ∥u∥ = C, as n → ∞, Ln(θ⋆ + αnu) – Ln(θ⋆) < 0
uniformly in u with probability approaching to one. As the penalty function is non-negative, for
k ∈ Ac , rλn

(
θ⋆k + αnuk

)
≥ 0. Also recall that rλn (0) = 0. Then, we have the following inequality:

Vn(u) ≡
(
Ln(θ⋆ + αnu) – Ln(θ⋆)

)
=

1
(n – p)

ln(θ⋆ + αnu) –
∑
k∈E

rλn

(
θ⋆k + αnuk

)
–

1
(n – p)

ln(θ⋆) +
∑
k∈E

rλn

(
θ⋆k
)

≤ 1
(n – p)

(
ln(θ⋆ + αnu) – ln(θ⋆)

)
–
∑

k∈A∩E

(
rλn

(
θ⋆k + αnuk

)
– rλn

(
θ⋆k
))

=: D1n(u) – D2n(u,λn).

We use the Taylor expansion of the likelihood function ln to write:

D1n(u) =
αn

(n – p)
uT∇θln(θ⋆) +

1
2(n – p)

α2
nuT∇2

θln(θ̃n)u.

In the above θ̃n is equal to sθ⋆ + (1 – s)(θ⋆ + αnu) for some 0 < s < 1. From Proposition 6.2(i) we
have for large enough n, ∇θln(θ⋆) = OP(n1/2). This gives αn∇θln(θ⋆) = OP(αnn1/2) = OP(α2

nn),
due to Assumption 2 on an . From Proposition 6.2(ii), for large enough n, we have – 1

n∇
2
θln(θ̃) =

I(θ⋆)
(
1 + oP(1)

)
. Then, we get

D1n(u) =
1

(n – p)
∥u∥OP(α2

nn) –
1

2(n – p)
uTI(θ⋆)unα2

n
(
1 + oP(1)

)
. (14)

In the above, it is clear that the second term dominates the first uniformly for ∥u∥ = C with a
sufficiently large C. Recall that for all k ∈ A, θ⋆k ̸= 0 and for large enough n, |θ⋆k | > cλn for some
constant c > 0, since λn = o(1) due to Assumption 2. As αn = o(1), we can perform a second-order
Taylor expansion in D2n(u,λn) due to Assumption 1, and obtain the following inequality,

D2n(u,λn) =
∑

k∈A∩E

(
αnr ′λn

(
θ⋆k
)
uk +

α2
n
2

r ′′λn

(
θ⋆k
)
u2
k
(
1 + o(1)

))
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≤
√

|A ∪Ac |αnan∥u∥ +
α2

n
2

bn∥u∥2. (15)

From the assumption on the rates of decay of an and bn in Assumption 2, the above upper bound
can also be dominated by the second term of (14) by choosing a large enough C. Thus, from the
results in (14) and (15), we can conclude that for sufficiently large n, Vn(u) < 0, and that the
hypothesis in (13) holds.

To prove the result on the oracle property of the penalized estimator in Theorem 1(ii), we first
show the following lemma.

Lemma 6.3. Suppose that θn = [(θn
A)T, (θn

Ac
)T]T, is such that ∥θn – θ⋆∥ = OP(n–1/2) as

n → ∞. Then, for tuning parameter λn and penalty function rλn satisfying Assumption 1–3, we
have as n → ∞, with probability tending to one that

Ln
(
[(θAn )T, (θA

c

n )T]T
)

< Ln
(
[(θAn )T, 0T]T

)
,

where θ⋆ = [(θ⋆A)T, (θ⋆A
c
)T]T, with A containing the indices of all nonzero elements of θ⋆.

Proof. Consider,(
Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

))
=

1
(n – p)

(
ln(θn) – ln

(
[(θAn )T, 0T]T

))
–
(∑
k∈E

rλn

(
θn,k

)
–
∑

k∈E∩A
rλn

(
θn,k

))
.

By the second-order Taylor expansion, we have

ln(θn) – ln(θ⋆) =
(
θn – θ⋆

)T∇θln(θ⋆) +
1
2
(
θn – θ⋆

)T∇2
θln(θ̃n)

(
θn – θ⋆

)
,

ln
(
[(θAn )T, 0T]T

)
– ln(θ⋆) =

(
[(θA

n )T, 0T]T – θ⋆
)T∇θln(θ⋆)

+
1
2
(
[(θAn )T, 0T]T – θ⋆

)T∇2
θln(θ̃An )

(
[(θAn )T, 0T]T – θ⋆

)
.

In the above θ̃n is sθ⋆ + (1 – s)θn for some 0 < s < 1 and θ̃An is tθ⋆ + (1 – t)[(θAn )T, 0T]T for some
0 < t < 1. We know that θ⋆ = [(θ⋆A)T, 0T]T, which gives(

θn – θ⋆
)T∇θln(θ⋆) =

(
θA
n – θ⋆

A)T∇θA ln(θ⋆) +
(
θAc

n – θ⋆
Ac)T∇θA

c ln(θ⋆).

From Proposition 6.2(i) we have ∇θln(θ⋆) = OP(n1/2). Then,(
θn – θ⋆

)T∇θln(θ⋆) =
(
θA
n – θ⋆

A)T∇θA ln(θ⋆) + OP(n1/2)|θA
c

n |.

As n → ∞, θ̃n → θ⋆ a.s., then from Proposition 6.2(ii) we have –n–1∇2
θln(θ̃n) = I(θ⋆)(1 + oP(1)).

Furthermore, as n → ∞, θ̃An → θ⋆A a.s., we have –n–1∇2
θln(θ̃An ) = I11(θ⋆)(1 + oP(1)), where the

Fisher information matrix corresponding to θ⋆ = [(θ⋆A)T, (θ⋆A
c
)T]T, is written as

I(θ⋆) =
[
I11(θ⋆) I12(θ⋆)
I12(θ⋆) I22(θ⋆)

]
.
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Thus, for large enough n, we have

ln(θn) – ln
(
[(θAn )T, 0T]T

)
= OP(n1/2)|θAc

n | –
1
2
n
(
θn – θ⋆

)TI(θ⋆)
(
θn – θ⋆

)
(1 + oP(1))

+
1
2
n
(
θAn – θ⋆

A)TI11(θ⋆)
(
θAn – θ⋆

A)(1 + oP(1))

= OP(n1/2)|θAc

n | – n
((

θA
n – θ⋆

A)TI12(θ⋆)θA
c

n

+
1
2
(θA

c

n )TI22(θ⋆)θA
c

n

)
(1 + oP(1)).

Since ∥θAn – θ⋆A∥ = OP(n–1/2) and ∥θA
c

n ∥ = OP(n–1/2), for large enough n and some constants
C1, C2, C3 > 0, we get

ln(θn) – ln
(
[(θAn )T, 0T]T

)
≤ C1n1/2|θA

c

n | + nC2n–1/2|θA
c

n |(1 + oP(1)) ≤ n1/2C3
∑

k∈Ac

|θn,k |.(16)

Next, we notice that (∑
k∈E

rλn

(
θn,k

)
–
∑

k∈E∩A
rλn

(
θn,k

))
=

∑
k∈E∩Ac

rλn (θn,k ).

From (16), for large enough n, we have

Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

)
≤ n1/2

(n – p)
C3

∑
k∈Ac

|θn,k | –
1
n

∑
k∈E∩Ac

nrλn (θn,k ). (17)

As ∥θn – θ⋆∥ = OP(n–1/2), for the coefficients belonging to the zero-elements set Ac , we have
|θn,k | = OP(n–1/2). Then, for each k ∈ Ac , Assumption 3 is applicable on the penalty function
value rλn (θn,k ), which gives

lim inf
n→∞

nrλn (θn,k ) = lim inf
n→∞

√
n|θn,k |

√
nr ′λn

(θn,k ) = +∞ a.s..

Hence, as n → ∞, from (17) we deduce that

Ln
(
[(θAn )T, (θA

c

n )T]T
)

– Ln
(
[(θAn )T, 0T]T

)
< 0 a.s..

which proves the result.

Now, we provide the remainder of the proof. From Lemma 6.3, we know that for any
√

n–consistent

estimator θ̂n , the parameter vector
[
θ̂An
0

]
maximizes Ln(θ) with probability tending to one as

n → ∞, over any other choice θn =

[
θAn
θA

c
n

]
such that ∥θn – θ⋆∥ = OP(n–1/2). From Theorem 1, we

know that a
√

n-consistent maximizer θ̂n of Ln(θ) exists when λn and rλn satisfy Assumption 2.
Then, it must be true that P(θ̂A

c
n = 0) → 1 as n → ∞.

The result in Theorem 1 shows that we have a
√

n–consistent estimator if an = O(n–1/2), with
λn → 0. For scad and mcp penalty functions, it is then enough that λn → 0 as n → ∞, since then
an = 0. For the lasso penalty, we must have at least that λn = O(n–1/2) since an = λn ; and for
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the adalasso, we require
√

nλn = o(1). However, as is well-known, it is not possible to recover
the sparsity structure using the lasso penalty as we will then require that limn→∞

√
nλn = ∞,

to satisfy Assumption 3, which contradicts the earlier requirement on the tuning parameter decay
rate for the lasso penalty function. The sparsity structure can be recovered with the other three
penalty functions, since we can choose λn ∼ n–1/2–ψ for a 0 < ψ < γ/2, for the adaptive lasso,
and λn ∼ n–1/2 log n for the scad and mcp penalties.

If M is under-specified, the MPLE θ̂n converges to the minimizer of the Kullback-Leibler distance
between the densities of the under-specified and true models, a property shared by the MLE under
this misspecification (Douc and Moulines, 2012). On the other hand, in Theorem 2 we show that if M
is over-specified, the density function of the over-fitted MSVAR model based on MPLE consistently
estimates the density function of the true model, which is useful for prediction. In particular,
we show that the estimated predictive density of the over-fitted model based on MPLE consistently
estimates the h-step ahead predictive density of the true MSVAR model with M regimes, denoted by
f ⋆(yn+1:h |y1:n), and computed in Section 4 of the main manuscript. As a consequence of this result,
in practice when the true number of regimes is unknown, a conservative choice of M considering
the sample size n can guarantee a reliable estimate of the h-step ahead predictive density, and the
optimal predictor (see Section 4, main manuscript) in the sense of minimum mean squared prediction
error.

Theorem 2. Under Assumption 1–3, the estimated h-step ahead predictive density function
f̂M(yn+1:h |y1:n) for number of regimes M ≥ M, converges almost surely to the true h-step ahead
predictive density f ⋆(yn+1:h |y1:n) as n → ∞ where M is the true number of regimes in the model.

Proof. We provide the proof for the one-step estimated predictive density. The result for the h-step
estimated predictive density can be shown similarly.

We denote the generic intercept vector for VAR model by ν and the vectorized VAR coefficients
and covariance matrices as ai = vec(Ai ), i = 1, . . . , p and σ = vec(Σ). For number of regimes
M > M and n > p, the one-step ahead predictive density function is given as

fM(yn+1|y1:n) =
M∑

m=1
g
(
yn+1, y1:n ; ν(m), {a(m)

i }p
i=1,σ

(m))P(sn+1 = m|y1:n),

where

g
(
yn + 1, y1:n ; ν, {ai}

p
i=1,σ

)
:=

1√
(2π)d |Σ|

exp

(
–
1
2
(yn+1 – µ(y1:n , ν, {ai}

p
i=1))

T(Σ)–1

(yn+1 – µ(y1:n , ν, {ai}
p
i=1))

)
,

µ(y1:n , ν, {ai}
p
i=1) := ν + A1yn + . . .+ Apyn–p+1.

The estimated one-step ahead predictive density for number of regimes M is given as

f̂M(yn+1|y1:n) =
M∑

j=1
g
(
yn+1, y1:n ; ν̂(m), {â(m)

i }p
i=1, σ̂

(m))P̂(sn+1 = m|y1:n),

with P̂(sn+1 = m|y1:n) computed via forward and backward recursions and using the estimates of
the transition probability matrix for M number of regimes. The estimates of VAR coefficients and
covariance matrices are denoted by (ν̂(m), {â(m)

i }p
i=1) and σ̂(m) respectively. We can alternatively

write

f̂M(yn+1|y1:n) =
∫

g
(
yn+1, y1:n ; ν, {ai}

p
i=1,σ

)
dΦ̂M,n(ν, {ai}

p
i=1,σ), (18)
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with

Φ̂M,n(ν, {ai}
p
i=1,σ) =

M∑
m=1

P̂(sn+1 = m|y1:n)H(ν ≥ ν̂(m), {ai}
p
i=1 ≥ {â(m)

i }p
i=1,σ ≥ σ̂(m)),

where H(·) denotes the Heaviside step function. The true one-step ahead predictive density can be
then written as

f ⋆(yn+1|y1:n) =
∫

g
(
yn+1, y1:n ; ν, {ai}

p
i=1,σ

)
dΦ⋆

n(ν, {ai}
p
i=1,σ),

with

Φ⋆
n(ν, {ai}

p
i=1,σ) =

M∑
m=1

P⋆(sn+1 = m|y1:n)H(ν ≥ ν(m)⋆, {ai}
p
i=1 ≥ {a(m)⋆

i }
p
i=1,σ ≥ σ(m)⋆).

The estimated and true filtered probabilities are computed by fixing the initial state sp and initializ-
ing with true conditional state probabilities P⋆(sp = m|y1:p) respectively. The effect of initial distri-
bution dissipates geometrically fast in number of observations n as shown in Douc et al. (2004, Corol-
lary 1). Next, we define the following distance between the probability measures Φ⋆

n(ν, {ai}
p
i=1,σ)

and ΦM,n(ν, {ai}
p
i=1,σ) :

D(ΦM,n ,Φ⋆
n) (19)

=
∫ ∫ ∣∣ΦM,n(ν, {ai}

p
i=1,σ) – Φ⋆

n(ν, {ai}
p
i=1,σ)

∣∣e–(|ν|+
∑p

i=1 |ai |+|σ|)dν da1 . . . dap dσ dP⋆(y1:n).

The above distance metrizes the space of probability measures on the space of VAR model parameter
(ν, {ai}

p
i=1,σ) ⊂ Θ. We can consider any other distance between probability measures on the space

of VAR model parameter (ν, {ai}
p
i=1,σ). For an arbitrary δ > 0, we consider a family

Hn(δ) = {ΦM,n : D(ΦM,n ,Φ⋆
n) > δ},

of probability measures such that each element in it is at least a δ distance away from Φ⋆
n . Then,

clearly Φ⋆
n /∈ Hn(δ), and

E⋆
[
log

(
fM(yn+1|y1:n)
f ⋆(yn+1|y1:n)

)]
< 0.

Similarly, we also have for t = p + 1, . . . ,n

E⋆
[
log

(
fM(yt | = y1:t–1)

f ⋆(yt |y1:t–1)

)]
< 0,

where the conditional densities fM(yt |y1:t–1) and f ⋆(yt |y1:t–1) have their own representation similar
to fM(yn+1|y1:n) and f ⋆(yn+1|y1:n) but with their own probability measures ΦM,t ∈ Ht (δ) and Φ⋆

t ,
respectively. From the stationarity of the process and ergodic theorem,we can also conclude that

1
n – p

n∑
t=p+1

log

(
fM(yt |y1:t–1)
f ⋆(yt |y1:t–1)

)
=

1
n – p

log

(
fM(yp+1, . . . , yn |y1:p)
f ⋆(yp+1, . . . , yn |y1:p)

)
< –ϵ(δ) a.s., (20)
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for some ϵ(δ) > 0 and n large enough. Define γ := (ν, {ai}
p
i=1,σ) as the VAR model parameter

vector. Then, the joint probability density under the assumption of M > M regimes and true joint
probability density can be expressed as follows:

fM(yp+1, . . . , yn |y1:p) =
∫ n∏

t=p+1
g
(
yt , y1:t–1;γt

)
dΦjoint,M(γp+1:n),

f ⋆(yp+1, . . . , yn |y1:p) =
∫ n∏

t=p+1
g
(
yt , y1:t–1;γt

)
dΦ⋆

joint(γp+1:n),

where γp+1:n = (γp+1, . . . ,γn), with γt , t = p + 1, . . . ,n, representing the choice of VAR model
parameter at different instances. Furthermore,

g
(
yt , y1:t–1;γ

)
:=

1√
(2π)d |Σ|

exp

(
–
1
2
(yt – µ(y1:t–1, ν, {ai}

p
i=1))

T(Σ)–1(yt – µ(y1:t–1, ν, {ai}
p
i=1))

)
,

µ(y1:t–1, ν, {ai}
p
i=1) = ν + A1yt–1 + . . .+ Apyt–p ,

and

Φjoint,M(γp+1:n) =
M∑

jp+1=1
. . .

M∑
jn=1

P(sp+1 = jp+1|y1:p)
n∏

t=p+2
α′jt–1,jt

n∏
t=p+1

H(γt ≥ γ′jt ),

Φ⋆
joint(γp+1:n) =

M∑
jp+1=1

. . .
M∑

jn=1
P⋆(sp+1 = jp+1|y1:p)

n∏
t=p+2

α⋆jt–1,jt

n∏
t=p+1

H(γt ≥ γ⋆jt ).

For the joint distribution Φjoint,M(γp+1:n) we can similarly define a family

Hjoint(δ) := {Φjoint,M : D(Φjoint,M,Φ⋆
joint) > δ},

based on its distance from the joint distribution Φ⋆
joint(γp+1:n) with the distance being defined

analogously as in (19) with inner integral being with respect to γp+1:n and the outside probability
measure corresponding to P⋆(y1:p).

From the result in (20) for any Φjoint,M ∈ Hjoint(δ), and the fact that penalty terms are non-
negative with order o(1), we get

sup
Hjoint(δ)

 1
(n – p)

log

(
fM(yp+1, . . . , yn |y1:p)
f ⋆(yp+1, . . . , yn |y1:p)

)
–
( ∑
k∈EM

Rλn

(
θTk
)

–
∑
k∈E

Rλn

(
θ⋆k
)) < –ϵ(δ) a.s..

Hence, the joint probability distribution corresponding to the penalized maximum-likelihood esti-
mate in coefficient space ΘM cannot be an element of Hjoint(δ) almost surely as n → ∞. This is
true for any δ > 0, thus we must have for the joint distribution corresponding to the penalized
maximum-likelihood estimate in coefficient space ΘM : Φ̂joint,M that D(Φ̂joint,M,Φ⋆

joint) → 0 as
n → ∞. In other words, we have that Φ̂joint,M converges weakly to Φ⋆

joint as n → ∞. Then we must
also have that Φ̂M,n converges weakly to the true distribution Φ⋆

n as n → ∞. As the function g in
(18) is bounded and continuous for the choice of parameter θ in the compact parameter space Θ,
we have that f̂M(yn+1|y1:n) converges almost surely to f ⋆(yn+1|y1:n) as n → ∞.
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A3 Complementary numerical results

Recall the scenarios S1 and S2 for sparse covariance and precision matrices, respectively, along with
sparse AR matrices. We use MLE* to refer to the MLE obtained by incorporating the knowledge
of the true zero parameters of an MSVAR model, which we denote it by θ̃ in the main paper. We
set M = 2, p = 1, and consider dimensions d = 20 with sample sizes n ∈ {200, 300, 400}, d = 40
with n ∈ {300, 400, 500}, and d = 100 with n ∈ {600, 700, 800}. For these values of (d , M, p), the
parameter vector θ has dimensions K = M

(
d +pd2+d(d +1)/2

)
+M(M–1) = 1262, 4922 and 30302,

respectively. The corresponding dimensions of the parameter vector of the true data-generating
MSVAR models are 104, 202 and 504, respectively. The simulation result for each d should be
analyzed on its own, since the parameter configurations of the underlying models corresponding to
d = 20, 40, 100, are different; see Section 5 of the main manuscript on “Simulation design”.

Sparsity scenario S1. Figure 1 shows the relative estimation error (REE) and true positive rate
(TPR) for d = 20. The results for dimensions d = 40, 100, are presented in the main manuscript.
In Figure 1, we observe that in terms of the overall REE for the smallest sample size, Scad and
MCP perform better compared to the other two penalty functions. On the other hand, adalasso
and mcp outperform when n = 300, 400, while also being comparable to the MLE* (median REE at
most 1.2). In terms of TPR, the performance of the method based on all four penalties is reasonable.

(a)
AR coefficients Covariance matrices Overall
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Sample size n: 200 300 400
Figure 1: (a) Relative estimation error (REE) and (b) true positive rate (TPR, nonzero parameter detection, bottom)
based on 50 random samples for data dimension d = 20, parameter dimension K = 1262, and sparsity scenario S1.

For d = 20, we also investigate the performance of the MPLE for a wider range of sample sizes
n ∈ {120, 200, 400, 800, 2000, 5000, 10000}. Figure 2 shows the estimation error (EE) and the TPR
values. For the sample sizes n = 120, 200, the results show that the EE are relatively large and the
TPR are relatively low. This is expected as these sample sizes are close to the number of parameters
in the true data-generating MSVAR model, which is 104. On the other hand, the results show that
as the sample size increases to 400 and beyond the standard deviation of the estimates decreases,
which is expected as per our result in Theorem 1-(i) on the consistency of the MPLE. In addition,
the TPR reaches the value 1.0 as n increases, which confirms the sparsity recovery property of the
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Figure 2: (a) Overall estimation error (EE) and (b) true positive rate (TPR) for data dimension d = 20,
parameter dimension K = 1262, and sparsity scenario S1.

21



MPLE in Theorem 1-(ii). We also performed simulations for M = 2, p = 1 and d = 40 (K = 4922)
with a minimum sample size n = 220 (the number of parameters in the true data-generating MSVAR
model is 202), and we observed the same behaviour of the MPLE as for d = 20.

Sparsity scenario S2. Relative estimation errors (REE) with respect to the MLE* for this scenario
are presented in Figure 3 for d = 20, 40, 100. Different from scenario S1, here we observe that the
MPLE attains a lower estimation error compared to the MLE* θ̃, the reason being as follows. To
obtain θ̃ for the case of sparse precision matrices Ω(m), we first compute the regime-specific MLE of
Σ(m) and we then set the entries of the MLE of (Σ(m))–1 to zero, corresponding to the zero entries
of the true precision matrices. This estimation procedure does not directly use the knowledge of the
true zero parameters in the precision matrices resulting in REE < 1, that is, a higher estimation
error (EE) for θ̃ compared to the proposed penalized estimators. From the results we can see that
regarding the AR matrices, the adalasso outperforms the other penalties, followed by scad, mcp
and lasso. About the precision matrices and also the overall REE, the four penalties perform
similar to each other.

(a)
AR coefficients Precision matrices Overall

LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP
0.00

0.50

1.00

1.50

2.00

R
E

E

Samplesize n: 200300400

(b)
AR coefficients Precision matrices Overall

LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP
0.00
0.30
0.60
0.90
1.20
1.50
1.80

R
E

E

Samplesize n: 300400500

(c)
AR coefficients Precision matrices Overall

LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP LASSO ALASSO SCAD MCP
0.00
0.30
0.60
0.90
1.20
1.50
1.80
2.10

R
E

E

Samplesize n: 600700800

Figure 3: Relative estimation error (REE) based on 50 random samples for sparsity scenario S2: (a) d = 20,K =
1262 (b) d = 40, K = 4922 (c) d = 100, K = 30302, where d and K are the data and parameter dimensions, respectively.

Figure 4 shows the boxplots of the TPR. We can see that the method has a reasonable perfor-
mance, above 0.85 overall. As in scenario S1, we observe mean true negative rate (TNR) above 0.90
for all cases (omitted).
Similar to scenario S1, for d = 20, we also investigate the performance of the MPLE for a
wider range of sample sizes n ∈ {120, 200, 400, 800, 2000, 5000, 10000}, and for d = 40 with n ∈
{220, 300, 400, 800, 2000, 5000, 10000}. The performance of the method in terms of the overall EE
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and TPR improves as the sample size increases (the results omitted), which is expected as per the
result of Theorem 1.
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Figure 4: True positive rate (TPR, nonzero parameter detection) based on 50 random samples for scenario
S2: (a) d = 20, K = 1262 (b) d = 40, K = 4922 (c) d = 100, K = 30302, where d and K are the data and
parameter dimensions, respectively.
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Diagonal covariance matrices. In our simulation experiments considered in the main manuscript,
we considered non-structured sparse covariance matrices. Here, we present the results for an exper-
iment for d = 20, M = 2, p = 1 and diagonal true covariance matrices Σ(m). If we incorporate the
knowledge of the true covariance matrices being diagonal, the number of parameters (dimension of
θ) to be estimated by the MPLE reduces from K = 1262 to K = 882.

In Figure 5, corresponding to K = 1262, we observe that the median REE across all the four
penalties is less than 1.6, with the adalasso and lasso performing closer to the MLE* compared
to the other two penalties, as also shown by the overall EE. In terms of TPR and TNR, we observe
that the MPLE is able to recover both the the true nonzero and zero (off-diagonal) entries of the
covariance matrices, with median rates above 0.80 and 0.90, respectively.

In Figure 6, corresponding to K = 882, we observe that, by incorporating the knowledge of the
covariance matrices being diagonal, the medians of all the performance measures remain roughly the
same as in Figure 5. The main differences are that (i) the standard deviations of the REE and EE
are lower in Figure 6 for the smallest sample size, and (ii) the TNR corresponding to the covariance
matrices is now 1.0. This shows that the performance of our method is at par with the performance
of the estimator that uses the knowledge of the true sparsity structure. In simulation designs with
covariance matrices being multiples of the identity matrix, as well as for d = 40, we observe the
same phenomenon (results omitted).
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Figure 5: (a) Relative estimation error (REE), (b) overall estimation error (EE), (c) true positive rate
(TPR) and (d) true negative rate (TNR) for model with diagonal covariance matrices and data dimension
d = 20 (parameter dimension K = 1262). MLE* represents maximum likelihood estimation knowing the
location of the zero parameters.
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Figure 6: (a) Relative estimation error (REE), (b) overall estimation error (EE), (c) true positive rate
(TPR) and (d) true negative rate (TNR) for model with diagonal covariance matrices and data dimension
d = 20, using the knowledge of the true covariance matrices being diagonal (parameter dimension K = 882).
MLE* represents maximum likelihood estimation knowing the location of the zero parameters.
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A4 Model fitting results for the macroeconomic dataset case study

In the case study based on the Canadian macroeconomic dataset as presented in Section 6 of the
main manuscript, we fit MSVAR models with M = 1, 2, 3, 4, and p = 1, 2, 3, and for each penalty
and sparsity scenario S1 (sparse covariance matrices) and scenario S2 (sparse precision matrices).
We compute BIC and MDL to choose the final model. From Table 1 below, we conclude that: (i)
scenario S1 yields the lowest values of BIC in all cases, and of MDL in almost all cases, compared
to S2; (ii) under S1 and for any penalty, the number of regimes M = 3 is consistently selected
based on BIC and MDL; (iii) under S1 and for M = 3, the adalasso and mcp provide the lowest
values of both BIC and MDL. The change in BIC and MDL when varying M from 3 to 4 is not
significant. Moreover, the optimization problems associated to M ≥ 4 are obviously more sensitive
to their initialization, and more prone to bad local optima.

We employ our proposed AR-order selection method based on the hierarchical group-lasso
penalized estimation (Section A1.6), and obtain p̂ = 1 for the estimated M̂ = 3. Finally, regarding
the choice of the penalty function, since we are also interested in the predictive performance of the
model, we choose between adalasso and mcp by comparing the value of their predictive densities
obtained with M̂ = 3 and p̂ = 1, evaluated on out-of-sample observations from the last 6 months in
the dataset. The adalasso penalty yields the highest value of the log-predictive density (-162.4)
compared to lasso (-180.2), scad (-218.4) and mcp (-220.5). Thus, using adalasso , we obtain
the final model with M̂ = 3, p̂ = 1.
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lasso M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12224.3 – 11319.8 11219.4 11273.4 11096.9 11356.2 11170.5
p = 2 12095.8 – 11246.8 11158.9 11103.9 10959.7 11174.1 10960.8
p = 3 12049.2 – 11341.5 11257.3 11182.6 10650.2 11218.1 11034.4

S2 p = 1 12285.7 – 11938.6 11824.6 12123.4 11744.9 12071.9 11796.1
p = 2 12161.2 – 11822.4 11697.3 12507.9 11968.1 12149.1 11766.7
p = 3 12119.9 – 12061.6 11992.6 11778.0 11632.3 11958.6 11691.6

alasso M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12094.5 – 11051.7 10974.2 11009.9 10861.7 11095.1 10769.3
p = 2 11931.5 – 10912.0 10833.0 10893.1 10758.6 10957.2 10778.9
p = 3 11872.9 – 10937.1 10848.1 10976.1 10828.9 10945.6 10739.6

S2 p = 1 12246.8 – 12617.7 12024.7 12125.2 11577.5 12090.3 11580.3
p = 2 12111.0 – 11970.6 11826.1 12311.5 11941.4 12618.7 11765.5
p = 3 12045.9 – 11622.8 11507.8 11551.3 11377.3 11787.7 11484.0

scad M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12187.4 – 11137.5 11059.7 11105.5 10917.0 11115.4 10854.5
p = 2 12053.8 – 11043.6 10968.5 10943.6 10788.9 11014.4 10783.0
p = 3 12019.9 – 11186.0 11070.8 11051.9 10914.7 11110.8 10896.7

S2 p = 1 12322.3 – 12676.2 12305.7 11761.1 11539.9 12598.5 11710.1
p = 2 12182.4 – 11948.9 11817.0 12169.0 11731.6 11997.9 11845.1
p = 3 12118.2 – 12671.9 12306.7 12394.5 10049.0 12862.4 12069.9

mcp M = 1 M = 2 M = 3 M = 4
BIC MDL BIC MDL BIC MDL BIC MDL

S1 p = 1 12074.3 – 11016.8 10953.2 10987.6 10754.9 11387.9 10976.8
p = 2 11897.1 – 10885.6 10809.5 10840.4 10644.4 10917.7 10551.2
p = 3 11863.4 – 10905.2 10841.1 10757.4 10600.7 10982.2 10630.4

S2 p = 1 12239.9 – 12166.7 11903.8 11864.8 11486.9 12409.5 11759.5
p = 2 12063.3 – 11927.1 11691.2 12205.6 11746.1 12603.9 12006.7
p = 3 12036.0 – 12572.1 10385.3 12412.1 11786.2 13314.0 11959.3

Table 1: BIC and MDL values based on the macroeconomic dataset of Section 6 of the main manuscript, for
M = 1, 2, 3, 4, p = 1, 2, 3, sparsity scenarios S1 and S2, and all the penalties considered. Minima for fixed p
and criterion are highlighted in boldface.
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