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SUMMARY: Finite mixture of regressions (FMR) are commonly used to model heterogeneous effects of covariates
on a response variable in settings where there are unknown underlying subpopulations. FMRs, however, cannot
accommodate situations where covariates’ effects also vary according to an “index” variable-known as finite mixture
of varying coefficient regression (FM-VCR). Although complex, this situation occurs in real data applications: the
osteocalcin (OCN) data analyzed in this manuscript presents a heterogeneous relationship where the effect of a genetic
variant on OCN in each hidden subpopulation varies over time. Oftentimes, the number of covariates with varying
coefficients also presents a challenge: in the OCN study, genetic variants on the same chromosome are considered
jointly. The relative proportions of hidden subpopulations may also change over time. Nevertheless, existing methods
cannot provide suitable solutions for accommodating all these features in real data applications. To fill this gap, we
develop statistical methodologies based on regularized local-kernel likelihood for simultaneous parameter estimation
and variable selection in sparse FM-VCR models. We study large-sample properties of the proposed methods. We then
carry out a simulation study to evaluate the performance of various penalties adopted for our regularized approach
and ascertain the ability of a BiC-type criterion for estimating the number of subpopulations. Finally, we applied
the FM-VCR model to analyze the OCN data and identified several covariates, including genetic variants, that have

age-dependent effects on osteocalcin.
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1. Introduction

Finite mixture of regression (FMR) models (McLachlan and Peel, 2000) are commonly used
to accommodate heterogeneous effects of covariates X = (X3, ..., Xy) on a response variable
Y when the population under study is believed to consist of multiple hidden subpopulations.
While FMRs can successfully capture such heterogeneity, they fall short if the effects of X;’s
on Y also vary as functions of an index variable, U, such as time or location. The mixing
proportions, representing the sizes of hidden subpopulations, may also change as functions
of U. It becomes even more challenging when only a few covariates among a large set have
significant effects on Y. The data from the osteocalcin (OCN) study under our consideration
presents such challenges on all fronts: there are many genetic and non-genetic covariates
(X,’s); there may be heterogeneous relationships, also varying over age (U), between the
response variable (OCN, Y') and only a subset of the covariates; and the relative proportions
of hidden subpopulations may also change over age.

An extension of FMRs, semi-parametric finite mixture of varying coefficient regressions (FM-
VCR), was further introduced to account for heterogeneous varying covariates’ effects (Xiang
et al., 2019). These models facilitate the use of varying coefficient regressions, as functions
of U, in studying the relationship between Y and X;’s in a heterogenecous population. The
functional forms of varying coefficients are seldom known and left unspecified. McLachlan
and Peel (2000) and Xiang et al. (2019), discuss statistical inference and applications of
various special cases of FM-VCRs in applied sciences and machine learning.

In the OCN study, the investigators collected data on environmental and genetic factors to
study whether and how osteocalcin (the phenotype) is affected by a subset of these factors
(Liao et al., 2014). Several genetic variants in Chromosome 7 (Chr7) were implicated (Zhang,
2017), and the gene harboring these variants was in fact linked to bone morphogenetic protein

(BMP) (Harada et al., 2003). Population heterogeneity has not, however, been considered in
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these studies. Inspired by recent studies demonstrating that relationships between 0CN and
some underlying factors are not the same across the population (Liu et al., 2015), we are
interested in exploring whether there exist subpopulations, where the relationships between
OCN and the factors of interest, especially the single-nucleotide polymorphisms (SNPs) in
Chr7, are different across the subpopulations. Further, genetic effects on a phenotype may
change over time (Zhang, 2017), which may well be the case for genes related to BMP. Finally,
it is known that aging leads to bone density loss both in men and women (Demontiero
et al., 2012); the mixing proportions of the components may well vary with age. Thus,
a reanalysis of the data to accommodate population heterogeneity, varying subpopulation
relative proportions, and varying genetic effects over time is warranted.

In this paper, motivated by the challenges in analyzing the OCN data, we study method-
ologies for sparse estimation in FM-VCR models. To the best of our knowledge, the existing
literature (Xiang et al., 2019) mainly focuses on maximum likelihood estimation (MLE),
while variable selection problems are largely understudied. In FM-VCRs, even with d = 43
in the OCN study, the dimension of the parameter space is large enough to render classical
methods for variable selection almost impractical. Thus, we develop new results based on
regularized local-kernel likelihood methods, demonstrating that regularized estimation in
FM-VCRs consistently estimates the model parameters while recovering its sparse structure.

Since the seminal work of Hastie and Tibshirani (1993), varying coefficient regressions
(VCR) and their extensions to mixture models (Xiang et al., 2019) have attracted much
attention in the statistics literature. The parameters in these models can change as smooth
non-parametric functions of an index variable such as time or location, which results in
reducing modeling bias while avoiding the curse of dimensionality (Fan and Zhang, 1999).
Due to the non-parametric nature of the models, parameter estimation requires careful

consideration. Several estimation techniques are available in the literature, ranging from
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the local kernel (Huang et al., 2018), to splines and basis functions (Hastie and Tibshirani,
1993) and local polynomial approximations (Fan and Gigbels, 1996). Another line of research
particularly in VCRs has focused on variable selection, thanks to the LASSO (Tibshirani, 1996),
scAD (Fan and Li, 2001), adaptive LASSO (AdpLASSO) (Zou, 2006), MCP (Zhang, 2010), and
group LASSO (Yuan and Lin, 2006). Among others, Wang and Xia (2009) studied variable
selection using group LASSO/AdpLASSO and basis expansion or local-kernel methods. Wei
et al. (2011) and others studied the problem in high dimensions using direct penalization or
two-stage screening and penalization.

Despite the surge of research on variable selection in VCRs, the problem in FM-VCRs under
our consideration has not been studied. The works reviewed by Xiang et al. (2019) focus
on MLE in FM-VCRs and their special cases. One could use best-subset selection methods
such as the AIC, BIC, or their variations to perform variable selection based on the MLE.
Such techniques, however, require intensive computations as there are potentially 2¢*¢ > 108
submodels to be examined for selecting a sparse 2-components FM-VCR even with only d = 10
covariates. Variable selection based on regularization techniques such as LASSO is mainly
studied in FMRs (Khalili and Chen, 2007; Stédler et al., 2010; Shokoohi et al., 2019), without
allowing for varying coefficients. The challenges of sparse estimation in FM-VCRs are the
non-parametric nature of varying regression coefficients, mixing probabilities, and dispersion
parameters, and often many covariates where only a handful are significant in the model.

In this paper, we develop computationally efficient penalized local-kernel likelihood meth-
ods for sparse estimation in FM-VCRs. We establish consistency in estimation and variable
selection and oracle properties of the proposed estimators. We develop a modified EM algo-
rithm (Dempster et al., 1977) for the numerical implementation of the methods. We evaluate

the finite-sample performance of the methods via simulation and analyze the OCN data.
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2. Sparse FM-VCR models

Let Y be a real-valued response variable, X be a d-dimensional vector of covariates, and U
be an index variable. In a population with C' > 1 hidden subpopulations, we are interested
in the conditional distribution of Y|(X = x,U = u), for x € X C R and u € Y C R.

Let C be a discrete latent variable taking values 1,...,C. For any & € X', u € U, we denote
0<mj(u)=PrC=j|X=2,U=u), j=1,...,C, (1)

as non-parametric functions of u, and Ele mj(u) = 1. This setting differs from the mixture-
of-experts (ME) and their variations (McLachlan and Peel, 2000) including finite mixtures
with concomitant variables (Dayton and Macready, 1988; Frithwirth-Schnatter et al., 2018),

wherein each 7; is modeled as a parametric function of u and possibly other covariates «.

Suppose the conditional density (mass) function of Y|(X = «,U = u,C = j) is given by

f(y;Qj(a:,u), qﬁj(u)), for any y € Y C R, (2)
where f belongs to a known parametric family G = {f(y; 6, 9) : (6,¢) € © x (0,00),0 C R}
with respect to a o-finite measure v, and ¢ > 0 is a dispersion parameter. We assume
0;(z,u) = g(x"B;(u)), for a known link function g and the regression coefficients BJT(u) =
(Bjr(u), ..., Bja(u)), where (¢;(u), Bj(u)) are also unknown non-parametric functions of
u. A well-known example of f in (2) is the Gaussian density with the mean 6;(x,u) =
E{Y|(x,u,j)} = x'B;(u) which corresponds to the identity link function g(n) = n, and
variance Var{Y|(z,u,j)} = ¢;(u); see Web Appendix I for more details. Also note that
each B;(u) and ¢,(u) is a function of u rather than a constant as in the ME models.
By putting (1) and (2) together, the conditional density (mass) function of Y|(X = «,U =

u) in an FM-VCR model with order C' is given by

fe(ylp),z) =3

Jj=1

where $(u) = (x7 (w), &7 (u), B] (w), ..., B3 (u))
sub-vectors ¢(u) = (¢1(u), . .. ,gzﬁc(u))T eRY, w(u) = (m(u),... ,Wc_l(u))T € R,

mi(u) f(y; 0;(x,u), ¢;(u), y € Y (3)

" € R?, with p = Cd + 2C — 1, and the
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Identifiability is essential in mixture models; if for any C; > 1,C5 > 1 and given (u,x),
we have f& (y|v1(u), @) = f&, (ylp2(u), ), for all y € Y, then we must have C; = Cs
and ¥ (u) = o(u) (up to a mixture component permutation). Sufficient conditions for
identifiability of (3) are discussed in Theorem 1 of Huang et al. (2018), and the conditions
are given in Web Appendix A. We assume that the models considered here are identifiable.

In an FM-VCR, even for moderate values of C' and d, the number p = Cd + (2C — 1) of
non-parametric functions to be estimated becomes very large compared to a typical sample
size n. In our real data application for Chr7, after an initial covariate screening, we have 36
SNPs plus 7 extra covariates (d = 43), with 1 < C' < 5 resulting in potentially 44 < p < 224
non-parametric functions to be estimated based on a sample size of n = 1704. However, not
all the covariates have significant effects on the response variable of interest, suggesting a

sparse model for the data. Thus, we assume that the true FM-VCR model is sparse, that is,

for every j = 1,...,C, there exists an integer 1 < d? < d such that
0< E[{ ?Z(U)}2}<oo, foralllzl,...,d?, nd (4)
E[{%U)Y] =0, foralll=d’+1,...,d, (5)

where E is with respect to U, and d is the number of non-zero £9(-)’s in component j.

d?+ (2C — 1) and

By (4)-(5), the total number of non-parametric functions is py = Zj &3

presumably much smaller than p. More discussion on Condition (5) is given in Remark 1 of
Web Appendix E. Next, we discuss estimation and variable selection in sparse FM-VCRs.

3. Simultaneous estimation and variable selection

Let (u;, x;,y:), i = 1,...,n, be the observations based on a random sample from the FM-VCR

model (3). The (conditional) log-likelihood function is given by

£=3"" tog{felulp(ut =S tog {37 mlu)f (v (i w). diw)) } (0
where 0;(x;,u;) = g(x;B;(u;)). Since (m;(u), ¢j(u),3;(u)) are unknown non-parametric

functions, the parameter space has infinite dimension and £ is thus intractable. Several
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techniques are available in the literature (Fan and Gigbels, 1996) for non-parametric function
estimation, of which the most popular are local-kernel methods, splines and local polynomial
approximations. Silverman (1984) shows that spline smoothing corresponds approximately
to smoothing by a kernel method with bandwidth depending on the local density of design
points. In the following, we use the local-kernel method where each functional parameter in
the FM-VCR model is locally approximated by constants. As a result, the locally approximated
model becomes a standard finite mixture of regression which in turn makes implementation
of our penalization method via the EM algorithm easier (Huang et al., 2013).

Local log-likelihood. For any u € U, we consider the local-kernel log-likelihood

(b)) = 3 s { 327 w0y (ai), 65 Ko — ). @

where 0;(z;) = g(x]B;), and K,(t) = h™'K(t/h) is a kernel function with a band-width
h. The locally constant vector of parameters is ¥(u) = (w', 0", 8/,...,8.) € R?, where
w' = (m,...,7c_1), @ = (¢1,...,0c),and BJT = (Bj1,...,0Ba),J = 1,...,C. The entries of
¥ (u) are local-constant approximations of the functions (7;(u), ¢;(u), 8;(v)), which depend
on u, and for simplicity, we suppress u in the notation but keep it for ¥ (u).

For any uw € U, the maximum local-kernel log-likelihood estimator (MLLE) of t(u) is
defined as the maximizer of £, (¢ (u); h), and is denoted by b, (). In practice, the estimation
is usually done at the observed points uy, ..., u,; more discussion is given at the end of this
section. In Proposition 1 of Web Appendix D, we establish estimation consistency of Q,Ln(u)
It is, however, well-known that similar to the MLE in parametric regression, zzn(u) does not
provide a sparse FM-VCR model as postulated in (5), which is the main focus of our research.
Therefore, we propose a regularization method that yields fitted sparse FM-VCR models.

Penalized local log-likelihood. Forj=1,...,Candt=1,...,n,let B;s = (Bj1t,-- -, Bjar)"

be the local constant approximation of the vector B;(u) at u;’s. We denote the (nxd) matrices

Bj = (/Bj,la . ,ﬁjm)—r. Slmllarly, let 7'l']—r = (Tfj’l, c. 77Tj,n) and ¢;I' = (¢j,1a ce 7¢j,n) be the
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local constant approximations of 7;(u) and ¢;(u) at u;’s, respectively. Also, denote the (n x p)
matrix ¥ = (7, ..., 7c_1,¢1,...,¢c,B1,...,Bc), where p = Cd +2C — 1.

Using (7), the corresponding (total) local-kernel log-likelihood is given by

Lo(¥sh) =) lu(9(u);h) = ) log {Zj’; Tia £ (055 030 (), 650) | (i =), (8)

ti=1

and 0;,(x;) = g(x,; B;,). We estimate ¥ by maximizing the penalized local log-likelihood

Lo(U;0h) = L(¥;h) =P, (P; ), (9)
Pa®A) = 3 ST pallball/ Ve ), (10)

where p,, is a penalty function with tuning parameters A = (\1,...,\¢)" that control the

level of penalization on ||b;||/y/n. Here, by = (Bj1, - - . ,@-lﬁn)T = (Bu(w),. .. ,ﬁjl(un))T is

the ' column of the matrix B;, j = 1,...,C, and ||b;||* = >_i_, 7(u,). Examples of p,, are
the LASSO, AdpLASSO, SCAD, and MCP (Web Appendix C). The group penalization in (10)
(Yuan and Lin, 2006) enforces zero estimates of some of ||b;|| and thus the vectors b;;. By
Condition (RC.2) on the density m(u) of U, uy,...,u, are dense in the support & (Janson,
1987), and thus it suffices to perform estimation at only w;’s rather than on the entire U.

Given (A, h), the maximum penalized local log-likelihood estimate (MPLLE) of W is
U, (A L) =W, = argmax Lo (W; X, h). (11)
We induce zero estimates for some of the regression coeflicients 3;;(-) by appropriate choices

of the penalty p,, and the tuning parameters (X, k). Thus, the MPLLE performs simultaneous

estimation and variable selection, resulting in a fitted sparse FM-VCR model.

4. Large-sample theory

To distinguish from earlier notation, while drawing the connection, for any v € U, let
1¥°(u) be the p-dimensional parameter vector in (3) corresponding to the true sparse FM-
VCR model satisfying (4)-(5). In particular, for the observed points uy, ..., u,, the (n x p)-

dimensional parameter matrix in (8) corresponding to the true model is denoted by W9 with
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its t*™ row as [¥°(us)] ", t = 1,...,n. Without loss of generality, we assume the partitioning
Y°(u) = (¢ (u), ¥9(u)) such that 9 (u) contains only those 39(-)’s that satisfy the sparsity
Condition (5), and % (u) consists of the non-zero functions 33(-) among other parameters
(79 (u), ¢3(u)). By (5), we have E{[|33(U)||*} = 0. Thus, Conditions (C'1) and (RC.2) on
Bi(+)’s and the density m(u) of U (Web Appendix A and Web Appendix B) imply that

¥3(u) = 0, uniformly in u € Y. This results in 9 = (P

nl

WY,) such that ¥, contains all
the zero regression functions, and W9, = {[¢{(u;)]" : t = 1,...,n} contains the nonzero re-
gression functions and other parameters. Denote [(¢°(u), z,y) = log { f&(y|v°(u), )}, v €
YV, ze X Fort=1,... n, define I'(¥°(u;), x,y) and I"(¢p°(u;), x, y), respectively, as the

gradient and Hessian of I(1, z,y) with respect to 9 and evaluated at ¥ = ¥°(u;). Also, let
I(w) = Exy.x)yu—u, ['(@°(U), X, V)T (4°(U), X,Y)|U = ] (12)
i) = [ 100,20 501" ), )l (13)

and E(x y)u=u, is the expectation with respect to the distribution of (X,Y’) given U = w,.

With regard to the penalty function p,, we denote the quantity

ria = max { /2| (00 M)l /n®? 0 = [ E{BY(U)}2 £ 0,1 <j < C LIS )} (14)

J

where p;, (09; A) is the first derivative of p,(6;; A) evaluated at 6;; = 6% # 0. Also, denote

%:/me,m:/ﬁmmt (15)
u u

Regularity Conditions (RC.1)-(RC.5) on the mixture density ff, the conditional density
g(x|u) of X|U = u, the density m(u) of U, and Conditions (KKC.1)-(KC.2) and (PC.1)-
(PC.3) on the kernel K and the penalty p,, respectively, are all given in Web Appendix B.

The proofs of the following lemma and theorems are given in Web Appendix D.

THEOREM 1: (Point-wise estimation consistency) Suppose that Conditions (RC.1)-(RC.})
hold, the kernel K satisfies Conditions (KC.1)-(KC.2), and (An, pn, hy) satisfy Conditions (PC.1)-

(PC.2). Then, there exists a local mazimizer W, of L, in (9) that n_1H\/I\’n — \IIQH? =
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n S0 [ a(Us) = 90 (U)||* = Op{ (1 + 11a)2(nha) ™}, where 1y, s given in (14), 4, (Uy)

and Y°(U,) are the t™ rows of the matrices ¥, and ®°, and | - || is the Frobenius norm.

n’

By Theorem 1, if 71, = O(1), W, achieves the point-wise consistency rate {nh,}~? in
estimating W0 a property shared by the MLLE (Proposition 1, Web Appendix D). This result
clearly depends on the choice of (A, pn, hn). For the LASSO, A, = O({nh,,} /) suffices. For
SCAD and MCP, as long as (\,, h,) — 0 as n — oo, the desired rate is achieved since ry,, = 0.
For AdpLASSO, with the (possibly random) weights w;;’s, we require A, Max) <j<c<i<d) Wit =
0,({nh,}~1/%). The practical choice of wj; is given in Remark 3 of Web Appendix E. Theorem
1, however, does not imply the sparsity of ‘iln We strengthen this result by establishing the

sparsity and oracle property of the MPLLE, beginning with a lemma.

LEMMA 1: Assume that the conditions of Theorem 1 are met, and that (A, pn, hy) also
satisfy Condition (PC.3). Then, for any +/nh,-consistent MPLLE l/I\ln of Y asn — oo,

PU{ S, BAU) /) = bu/n]| =0) =1, j=1,...,C, I=d%,,....d

By Lemma 1, with probability tending to one, the MPLLE of those f3;;(u) that satisfy the
sparsity property (5) are zero at the observed index variable: le(Ut) =0,t=1,...,n (point-
wise sparsity). It is more appealing to establish a uniform sparsity. Recall the partitioning
PO(u) = (PP(u),¥I(u)), where 93(u) = O uniformly in u € U. We denote the oracle
estimator ’I:ZJ\nLOTC(u) as the MLLE of 9% (u), having known 1)9(u) = 0 a priori. For any u € U,
let {b\n(u) = (@nl (u), {b\ng(u)) be the MPLLE of 1°(u), where its partitioning corresponds to

that of ¥°(u). Next, we describe the behavior of V,Zn(u) with respect to the oracle estimator.

THEOREM 2: Under the conditions of Lemma 1, and Condition (RC.5), as n — oo,
(i) uniform sparsity: P{ SUDycy Hv,/b\nz(u)H = 0} — 1; (i) oracle property: sup,cy, H"]’\m(u) —

zZan(u)H = 0,{(log h,* /nh,)"/?}; (iii) asymptotic normality: for any u € U,

Vh {[T(u) + P09 X,) /nPmi(w)] (v (1) — 99 (u) = Ba(u)} = N(0, VoI (u)/m(u)),
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where I(u) in (12) is positive definite, the bias By(u) = SKo{ A" (u; w)+2A" (w; w)m’ (u) /m(u) }h2

— P, (69; X) /n*m(u) + op(h2), and 67 = {09 = (Eo{B%(U)})?:1<j < C,1<I<d}.

Theorem 2(i) implies that the MPLLE of those (;(-)’s that satisfy the sparsity prop-
erty (5) are zero, that is Bﬂ(u) = 0 uniformly in v € U, for all j = 1,...,C and | =

dO

21+, d. Condition (PC.3) on (A, pn,hn) guarantees sparsity of the MPLLE. For the

LASSO, SCAD, and MCP, this condition requires v/nh,\, — 00, and for the AdpLASSO we need
Vnhy A, minlgng,d%KKd wj; — 00, as n — 0o. Theorem 2(ii) and (iii) imply that the MPLLE
asymptotically attains a similar information bound as the oracle estimator described above
(Huang et al., 2018). Regarding (iii), for all the four penalties, we have P”(6; A,,) = 0. On the
other hand, with respect to the bias B,,(u), for the SCAD and MCP, we have P, (6; \,,)/n? = 0,
and for the AdpLASso, P (0% \,)/n? ~ A, Max, ¢j<c1<i<a Wit, Which tends to zero when
scaled by v/nh,, as n — oo. For the LAsso, (6% X\,)/n* = \,, which tends to oo once
scaled by v/nh,, as required by Condition (PC.3) for sparsity. This behavior is also known in
parametric regression, as it gives sparse estimators but does not achieve the oracle property.
Finally, the asymptotic normality in (iii) is obtained from the oracle perspective that the true
sparse structure of the model is known in advance. In practice, a sparse model is typically
fitted based on the MPLLE. As such there are two sources of uncertainty that are caused by
variable selection and parameter estimation. The asymptotic normality does not take the
uncertainty due to variable selection into account, which is a topic of post-selection inference

(PoSI, Berk et al. (2013)). More discussion is given in Remark 2 of Web Appendix E.

5. Computational strategies

The goal is to estimate (Wj(U), ¢;(u), ,Bj(u)),j =1,...,C, at points uy, ..., u,, by obtaining
an approximate solution for (11). To avoid mixture label switching (Huang et al., 2013), we
use a modified EM algorithm for estimation of each function simultaneously over uq, ..., u,.

We view the observations {(u;, x;,y;) : ¢ = 1,...,n} as incomplete data, and introduce
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the unobserved Bernoulli variables Z;; to represent the membership of the i observation
to the j™ mixture component, j = 1,...,C, such that Pr(Z;; = 1|u;, ®;,y;) = m;(u;). The
complete data are {(u;, T;, ys,2;) : i = 1,...,n}, where z; = (2i1,...,2ic)". We define the

complete (total) local-kernel log-likelihood function as

Ly, (®;h) Zt 1Zz 12 Zig{ logms +10g f (yi; 054(2:), bj) } Kn (ui — ),

and the penalized complete local-kernel log-likelihood as L¢(®: h) = L¢(W; k) — P, (T; A),
where the penalty P, is given in (10). Due to the non-differentiability of p,(0; \) at 6 = 0,

as suggested by Fan and Li (2001), we use the local quadratic approximation (LQA)
Pu(6;0'7,0) = pa(805 A) + 1, (07 0) (67 — 6°0) /(201), (16)

for p,, where ) is an initial value. The LQA is used in the modified EM algorithm. Given
W™ - at the (m + 1) iteration, the algorithm proceeds as follows.

E-step. Since the Z;;’s are unobservable, we compute the expectation of Zg(\p; h) with
respect to Z;; conditional on {(u;, ®;,y;) :i=1,...,n} and ™ Foralli=1,...,n, j=

1,...,C, it boils down to the computation of the conditional expectations

(m) . p(m) (m)
E(Z--\\Il(m) Wi, @5, i) = W™ — Ui (ui)f(yiyej (mhui)u(bj (Uz))
1] y Wy Loy Jo) — 17

! chzl 7Tg(‘m) (i) f (yi; Qém)(mi, u;)), ¢§~m) (us))
M-step. - Using the LQA (16) evaluated at 6 = [[by|lo/v/n and 00" = [[Bf}" o/ v/, we

maximize the objective function (up to some constants)

Q‘I’ ‘Il(m ZZ{Zw {10g7rjt+logf(yu 6(Ti), Djit) }Kh —uy) Bjtz(mﬁﬂt/z}

7j=1 t=1 i=1

with respect to ¥, where 9]‘715(332‘) = g(x; Bj;) with the vector 8;; = (Bj1(w), ... ,Bjd(ut))T,
the diagonal matrices 2 dlag{Tl :l=1,...,d} and T](lm) = p, (6" ;) /[n6™].
The maximization of Q with respect to W results in the following updates. The probabilities

7;(u;) and the vectors 8, = B(w), t =1,...,n,5 =1,...,C, are updated by

1 1 n n
WJ(TJ" ) 7T](-m+ )(Ut> = Zi:l wf;n)Kh(uz — ut)/Zi:l Kh(ul — ut),
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BV u) = axg maxe 3wy {log £ (yisOre:): 050) (s =) = B, " Bja/2. (17)

The dispersion parameters ¢j7t = ¢;(u;) are updated by solving the estimation equations

> s ¢ o {log /(4 05 (@), 65) } (s — ) = 0. (18)

To solve (17)-(18), depending on f, we may need to use the Newton-Raphson method.
Details of the algorithm for Gaussian and ¢-distribution f are given in Web Appendix .

Starting from an initial ¥ (discussed in Web Appendix F.4), the EM algorithm iterates

until a convergence criterion is satisfied. We used the stopping rule [|[¥(m+1) — UMz < e

We set the estimates of the regression functions f;(u) to zero if Hb (m+1)

/nH < 4. In our
simulation and the real data analysis, we chose € = § = 10~*. We describe data-adaptive

strategies for the selection of the band-width A and the tuning parameters A;’s, and also

estimation of the mixture order C' in Web Appendix G.

[Table 1 about here.]

6. Simulation study
We asses the finite-sample performance of the methods via simulations. We considered
Gaussian FM-VCRs with C' = 2 and 3 components. The parameter settings for the model
with C' = 2 are given in Table 1, and those for C' = 3 are given in Web Table 1

Let CEZ = # Correctly Estimated Zero, CEN = # Correctly Estimated Non-zero, IEZ = #

Incorrectly Estimated Zero, and IEN = # Incorrectly Estimated Non-zero (;,(-)’s. We define
Sensitivity = CEN/(CEN + IEZ) and Specificity = CEZ/(CEZ + IEN),

which assess the performance of the penalization method for variable selection. We measure

the estimation errors of the proposed estimators using

L3(B;) =n"" Zl 121 0 5]1 ;) 5]'1(%'))2, L3(G;) =n"" Zj_l (0 (u;) — Uj(ui))Q,

L3F) =nt Y (Fw) - mw)?, =1,
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EXAMPLE 1: We generated the vectors &; = (z1,...,%4q) ,i = 1,...,n, from a zero-
mean multivariate normal with a covariance matrix ¥ = {o; = (0.5)* : 1 < k,1 < d}.
The points uy, ..., u, were generated from Uniform[0, 1]. Given each (x;, u;), we generated

the response y; from a Gaussian FM-VCR with ' = 2 and the parameter setting given in
Table 1, for the sample sizes n = 200,400. We considered dimensions d = 5, 10, 20, 50, and
we set non-zero coefficients (S11(u), Bi2(u), B1a(u)) and (Ba1(u), B23(u)) in the 15 and 2
components of the mixture model. In Table 1, by increasing d = 5 to 10, 20, 50, the non-zero
B;i(-)’s remain the same and we add more zeros to each component.

The average sensitivity, specificity, and estimation errors (over R = 300 simulated samples)
for the model with C' = 2 and d = 5, 10, 20 are given in Table 2. An extended version of this

table which includes the results for d = 50 is given in Web Table 2.
[Table 2 about here.|

From Table 2, the average sensitivity and specificity corresponding to n = 200 vary ap-
proximately between 47% to 95% and 80% to 99%, respectively, depending on the dimension
d = 5,10,20, the mixture component, and the penalty function. It seems that the task of
identifying the true non-zero regression coefficients ;;(-) compared to the identification of
true zero coefficients, for the smaller sample size n = 200, is more difficult. As the sample
size increases to n = 400, all the penalties improve in terms of identifying both true non-zero
and zero regression functions. In terms of the estimation error (Ls), the SCAD and MCP are
closer to the oracle estimator, followed by the AdpLASSO, LASSO, and MLLE has the worst
performance as expected. Overall, the AdpL.ASSO, SCAD, and MCP perform similarly in terms
of the three performance measures, followed by the LASSO. The results for d = 50 given in
Web Table 2 follow the same trend with better performance for larger n.

The results for the model with C' = 3, d = 5,10,20,50 and n = 200, 400, 600, 800 are

given in Web Tables 3 and 4. This is clearly a more challenging setting and we can see that

13



14 Biometrics, January 2022

when n = 200, the sensitivity in one of the mixture components is 35% with a specificity
around 80%. For n = 800, the sensitivity reaches 75% for this component. For the other two
components, the sensitivity and specificity values are 80%-96% and 75%-92%, respectively.

Figure 1 shows the mixture order selection results based on the BiCy in (A.79), for the
model with C' = 2. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version. For a given dimension d, as n increases the
performance of BIC; improves. As d increases from 5 to 20, the model becomes more complex
and the model selection task becomes more difficult, as expected. Overall, the correct order

is selected most often (and the majority is over 85%) even in the most difficult scenario.

[Figure 1 about here.]

EXAMPLE 2: Since the covariates in our real data are SNPs, we simulate z;’s to mimic
such variables. We considered discrete covariates, each taking values in {0,1,2}, and each
was randomly generated from the multinomial distribution MNomial((O, 1,2), [(1—p)% 2p(1—
p),pQ]), where p € {.05,.1,.2,.3,.4,.5}. We note that the smaller the value of p, the lesser
the variation in the simulated covariates from this model. The parameter setting for the
Gaussian FM-VCR is the same as those in Table 1. The results for d = 5 and n = 200, 400
are respectively given in Web Tables 5 and 6. The main purpose of this example is to
show that for discrete covariates like SNPs, even for relatively small dimension d = 5, larger
sample sizes are required to achieve a similar performance as those discussed in Example 1.
From Web Table 5, we can see that for n = 200, the task of identifying non-zero regression
coefficients (sensitivity) is more difficult for p = .05 and .10, which also results in higher
estimation errors in one of the mixture components. As the sample size increases to n = 400
(Web Table 6), the overall performance of the method improves for all penalties. This result
is encouraging for our real data analysis, since our sample size is even larger. In this setting,

SCAD and MCP perform better than the LASSO and AdpLASSO.
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7. Real data analysis

The Fangchenggang Area Male Health and Examination Survey was conducted to identify
factors that might influence Osteocalcin (OCN) (Liao et al., 2014) and other phenotypes of
interest. OCN is believed to play a role in metabolic regulation (Lee et al., 2007). It has also
been observed that higher serum OCN levels are correlated with increases in bone mineral
density during drug treatment for osteoporosis (Bharadwaj et al., 2009). The data include
information on 2,200 unrelated healthy Chinese males, with their age, serving as our index
variable (U), ranging from 20 to 69. To guard against potential confounders, individuals
included in the study were free from a list of diseases, such as stroke, diabetes mellitus,
primary hypertension, and hyperthyroidism. Following Zhang (2017), we focus on studying
the relationship between OCN and SNPs in Chr7. We also include 7 other covariates: smoking
status, physical activity, drinking, (log) body mass index, sex hormone-binding globulin,
ferritin, and folic acid. After deleting individuals with missing data, SNPs with close to zero
variability, and those contributing little additional information in the presence of others, we
are left with d = 43 covariates (including 36 SNPs) and n = 1704 individuals.

In our analysis, we considered a Gaussian FM-VCR, where the effects of the covariates
(X,’s) on OCN (Y) and the mixing proportions (n’s) are all functions of age (U). We fitted
models with C'=1,...,5, and BIC selected C' = 2. Since our algorithm and Example 2 based
on SCAD (compared to other penalties) provided more stable estimates for different initial

values of the algorithm, our results below are based on the fitted model with SCAD.
[Figure 2 about here.|

The density plots of the observed y;’s classified into the two components of the fitted
FM-VCR model are given in Figure 2(a). This figure appears in color in the electronic

version of this article, and any mention of color refers to that version. Component 1 can
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be interpreted as representing the high “0cN” subpopulation (hOocN), and Component 2 as
the low “OCN” (loCN) subpopulation. Figure 2(b) shows that as one ages, the probability
of being in the hoCN decreases, which is consistent with biological theory since it has been
found that osteocalcin is related to bone mineral density (Bharadwaj et al., 2009). From
Figure 2(c,d), we observe that the estimated functional intercepts in both subpopulations
are age-dependent, with decreasing OCN values as age increases; the decrease appears to
slow down starting from age 35 for the hOCN, whereas the decrease is fairly linear for the
locN. Furthermore, for the hocN subpopulation, we found the effect of log(BMI) on OCN to
be negative but non-linear (varying with age), with the negative effect generally decreasing
with age (Figure 2(e)). Among the other non-genetic covariates considered, folic acid also
has a non-linear negative effect on ocN (Web Figures 1(d)). Most significantly, rs7456421,
an SNP linked to the OCN level (Zhang, 2017), is identified to have a significant effect on
OCN in the hocN subpopulation. The effect is non-constant over time; in particular, having
the SNP would negatively impact the OCN at a younger age (Figure 2(f)). Further discussion
is provided in Section 8. This SNP resides in gene HIPK2, which codes for homeodomain
interacting protein kinase 2, and is a multi-functional signaling molecule, including being
studied as a tumor suppressor recently (Feng et al., 2017) and as a bone morphogenetic
protein (Harada et al., 2003). There are a number of other SNPs that show significant
effects in the hocN subpopulation (Web Figure 1(a)-(c)). The estimated variances in both
subpopulations are given in Web Figure 1(e)-(f).

In contrast, in the 10CN subpopulation, beyond the finding that the OCN level decreases
with age, it is rather interesting to see that none of the other factors investigated are
selected by the penalization method. Taken together, our results not only corroborated the
findings of Zhang (2017) but also strengthened the results by providing evidence of a dynamic

relationship in one of the two subpopulations identified by the model. In the literature, OCN
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levels have been used as a biomarker for measuring osteoporosis treatment effects (Bharadwayj
et al., 2009). Therefore, our finding of the differential effects of SNPs and other covariates on
OCN between the two subpopulations perhaps warrants further investigation into whether the

conclusion on the use of OCN as a biomarker still holds within each of these subpopulations.

8. Discussion

We developed penalized local-kernel likelihood methods for FM-VCR models and established
their consistency in estimation and variable selection. We examined the finite-sample perfor-
mance of the methods via simulation, and they performed well for the dimensions and sample
sizes considered here. When the covariates are discrete, a larger n is required to achieve
similar performance as those with continuous covariates. We observed that the method based
on all four penalties performs similarly, and none of the penalties universally dominates the
others. Thus, in practice, we suggest analyzing a dataset using all the penalties and choosing
a final fitted sparse model that optimizes a selection criterion (e.g., BIC) and has more stable
estimates based on different initial values for the EM, as done in our real data analysis.
Indeed, in our OCN data analysis, we explored several ways of analyzing the data. We
fitted an FMR model which showed a lack of fit (Web Figure 2), motivating the use of an
FM-VCR model. Additional details are provided in Web Appendix I. In our FM-VCR analysis,
we used the penalties investigated in the simulation and with multiple initial values for
the EM algorithm. Our results are based on the SCAD penalty, which provided the most
stable outcome and was selected by the BiC. The fit of the model to the data is seen to
improve (Web Figure 2) over the FMR, and a number of age-dependent covariates were also
selected. Among them, SNP rs7456421, implicated in the literature for its link to OCN level,
was selected in the high 0CN subpopulation and shown to have a larger impact on younger
people. To further substantiate the finding of the varying effect of the SNP over the age on

OCN, we added the point-wise error bars to the estimated varying coefficient plot of the SNP
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(Web Figure 3(a)). We also plotted the derivative curve (approximated using Matlab) of the
estimated coefficient effect over age (Web Figure 3(b)). It is evident from these plots that the
underlying true derivate function is unlikely to be 0 over the entire age range, substantiating
the finding of a varying coefficient for the SNP effect.

To gauge the performance of our proposed method under a number of conditions that
deviate from our theoretical developments, we conducted additional simulations. First, we
studied the effect of model misspecifications in terms of mixture components or the order C'
in (3). When the data were generated from a ¢ FM-VCR but fitted a misspecified Gaussian
FM-VCR, the results show that the performance of the method does not degrade much in
variable selection and estimation error for the setting considered (Web Table 7). The details
and discussion of the results are given in Web Appendix H.1. On the other hand, for a model
with true C' = 2, if the order was incorrectly specified as C' = 1, then the one-component
underfitted model resembles the behavior of the larger component of the correct model,
but with lower sensitivity and specificity and larger estimation errors for the corresponding
measures in Component 2 when C' = 2 was fitted (Web Table 8). In contrast, if C' was
incorrectly specified as larger than the true value, then the behavior of the overfitted models
is similar to those with the correct model and with lower estimation errors. These simulation
results are in line with the theoretical properties of over-fitted finite mixture models (Ho
et al., 2022). More discussion is provided in Web Appendix H.1. We recognize that our
observations are based on limited simulations; thus, further study on the effect of model
misspecification on our method, including properties of over-fitted FM-VCR, is warranted.

We also studied the effect of fitting an FM-VCR model when data were generated from an
FMR model (without allowing for varying coefficients). The parameter setting is given in Web
Appendix H.2. We observe that for sensitivity, FM-VCR (the wrong model) is generally worse

(on average based on 100 runs) than FMR (the true underlying model), with larger standard
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deviations (spDs) (Web Table 9). On the other hand, for specificity, FM-VCR is consistently
better and with much smaller SDs. This observation implies that FM-VCR selected fewer
variables: fewer true positives and fewer false positives, hence larger specificity and smaller
sensitivity. This observation is intuitively sensible: with a more complex model and a fixed
sample size, variable selection is harder, especially for the parameter setting considered in
this simulation where the effects of covariates (3;’s) are weak. Thus, in practice, one may
fit both models to a data and assess the results as done in our data analysis.

In another simulation study, we also assessed the performance of the penalization method
when the dimension d exceeds the sample size n, although this case is not covered in our
theoretical results where d is fixed as n grows. We considered a setting with d = 500 and n =
200,400 (Web Appendix H.4). Our results (Web Table 12) show that, while the specificity
remains high and similar to the dimensions already considered in Section 6 (Table 2 and
Web Table 2), there is some reduction in sensitivity, although the difference is quite small
when compared to d = 50, indicating that reasonable results are likely to be obtained by
the method even when the number of variables exceeds the sample size. Alternatively, one
may screen the covariates to reduce the dimension, which appears to be reasonable as a
preliminary step (Web Appendix H.4 and Web Tables 13—14). Nevertheless, rigorous study
of high-dimensional settings requires new theoretical and numerical tools beyond the scope
of the current paper and is a topic of future research. Finally, the mixing proportions m; may
also be considered as functions of some covariates in addition to the index variable; however,

modeling and estimation become unwieldy and thus not pursued in the current study.
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Figure 1: Example 1: Order selection results for the model with true order C' = 2. This

figure appears in color in the electronic version of this article, and any mention of color refers
to that version.
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Figure 2: Osteocalcin data analysis; (a) Density plots: Component 1 (hOCN, red), Compo-
nent 2 (10CN, blue); (b) Estimated mixing probabilities over time in hOCN; (c) Estimated
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effect of log(BMI) over time in hOCN; (f) Estimated effect of rs7456421 over time in hOCN.
This figure appears in color in the electronic version of this article, and any mention of color

refers to that version.



26 Biometrics, January 2022

Table 1: Parameters settings for the Gaussian FM-VCR model with C' = 2.

Component(j): 1 2
parameters d(=5,10,20,50)"

Bjo(u) -2 -1

B (w) 1+ 0.5 cos(mu) 1.5sin(mu)
Bja(u) 14 0.5 cos(2mu) 0

Bja(u) 0 1.5 — 0.5 sin(ru/2)
Bja(w) sin(67u) 0

Bjs(u) 0 0

Bjs0(u) 0 0

oj(u) 0.3¢(0-5) 0.5e(~0-2w)
m;(u) %5 /(1 + b5v) (1 + e5u)~t

1 we keep the non-zero coefficient functions 3;;(-) the same for different values of the dimension d.
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Table 2: Results of Example 1: average (SD) sensitivity, specificity, and estimation errors.

C =2  Criteria Sensitivity Specificity L2(B;) L2 (57) La(Rj)
d n Component 1 2 1 2 1 2 1 2 1 2
5 200 Oracle — — — — .650 .162 383 .104 321 .104
MLLE — — — — 1.04 .243 748 .127 .370 .127
AdpLASSO .687(203) -948(191)  -967(125) -962( 120y  .934 .208 612 .118  .500 .118
LASSO T01( 503y 84T( 347y  -813( 265 -824(214) 983 256 812 .167  .524 .167
MCP 682 197y 952(153) 978110y -972(.120) 888 .163  .561 .094  .505 .094
SCAD 684( 127y 957147y -980(.106) 974(11s) 882 .165  .554 .093  .507 .093
400 Oracle — — — — .399 .083 .214 .080 .273 .080
MLLE — — — — .547 .097 .389 .075 .278 .075
AdpLASSO .978( 083y -997(0s8)  -998(.030) -997(.043) 499 .082 225 .074  .311 .074
LASSO 989 060y 995(.064)  -938(179) -910(1g0)  -582 .116  .376 .086  .338 .086
MCP 983( 073y 1.00(.000)  1.00(.000) -999(019) 458 .078  .208 .073  .313 .073

SCAD 984( 070y 1.00(.000)  1.00(.000) -999(.019) 458 .077  .207 .073  .313 .073
10 200 Oracle  — T — T T 77 — 7 7 7 /7 7 7698 .162° .397 .089 314 .089
MLLE — — — — 1.23 .287 1.02 .138 .335 .138
AdpLASSO .589( 239) -893(259)  -970( g7y -966( gg1) ~ 1.09 .288 848 .161  .501 .161
LASSO ATO0( 321y -T75(401)  -928(.100) -917(0s7)  1.32 .383  1.15 .294  .505 .294
MCP 581( 194y -895(.245)  -984( a5y -981(ossy  1.04 238 763 .106  .503 .106

SCAD 594 188) 892(.243)  -983( 019y 980(050) 1.03 287 761 .107  .501 .107
400 Oracle — — — — .439 .089 227 .082 273 .082
MLLE — — — — 878 .149 .607 .087 .337 .087
AdpLASSO .690( 197y -993(057)  -997(.023) -995( 029y  -808 .165  .390 .069  .411 .069
LASSO 766(.230) -970(166)  -970(.066) -962(.06a) 862 232  .518 .108  .425 .108
MCP 6920 104) 992(.064)  997(.020) -998(.01a) 789 .145 374 .06 412 .062

SCAD 688 098) -992(.064) 996(.023) -998(.016) 792 .146  .377 .062  .412 .062
20 200 Oracle —  ~ — T T 7T — 7 7 7 — 7 7 Tel5 .095 .297 079 313 .079
MLLE — — — — 1.37 .225 1.30 .082 .383 .082
AdpLASSO .646( 115y -943(202)  -981(043) -984( 42y 914 .269 713 .056  .488 .056
LASSO 657120y -953(.187)  -963(.059) 952(.053) 924 .336  .896 .056  .494 .056
MCP 643( 121y -953(.199)  -994(028) 995(022) 915 .220  .619 .052 467 .052

SCAD 641 197y 94T 206)  -994( 028y -996( 021y 918 227 633 .052  .472 .052
400 Oracle — — — — .353 .072 211 .067 .251 .067
MLLE — — — — 912 .102 .616 .038 423  .038
AdpLASSO .668( 019) -998(.038)  -999(.015) 1.00( 005y  -798 .170 417 .036  .484 .036
LASSO T16( 118y 1.00(.000)  -978(.035) -969(041) 823 237  .523 .036  .499 .036
MCP 667047y -997(058) 999010y 1.00( 007y 796 159  .433 .036  .481 .036

SCAD 668(.051) -997(0s8)  -999(011) 1.00( 007y  -796 .159 433 .036  .481 .036
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Web Appendix A. Identifiability conditions of f

The following conditions are considered for an FM-VCR model with probability density (mass)

function f in (3) of the paper to be identifiable (see Theorem 1 of Huang et al. (2018).).

(c1) For j = 1,...,C, m;(u) > 0 is a continuous function, and B;(u) and ¢;(u) are
differentiable functions of w.

(C2) Any two curves aq(u) = (Bi(u), ¢;(v)) and as(u) = (8;(u), ¢;(u)), i # j, are transver-
sal; i.e., for any u € U, ||ai(u) — az(u)||? + ||a)(u) — ay(u)]|* # 0, and || - || is the Euclidean
norm.

(C3) The support for U, denoted by U, is a compact subset of the real numbers R.

(C4) The density g(x|u) of X given U = u is a full dimensional (d-dimensional) density

function.

Web Appendix B. Regularity Conditions
In the following three subsections, we state Regularity Conditions (RC.1)-(RC.5) on the
distributions f¢, g, and m which is the density of U; Conditions (KC.1)-(KC.2) on the kernel

K, and Conditions (PC.1)-(PC.3) on the penalty p, and the smoothing/tuning parameters

h,, and \,.

Web Appendix B.1 Conditions on f&, g, and m

(RC.1) The set {(U;, X;,Y;), ¢« = 1,...,n} is a sample of independent and identically
distributed variables drawn from its population V' = (U, X,Y") with the probability density
function fy(u,x,y) = f& (yhjj(u), m)g(a:|u)m(u) The density has a common support in v
for all the parameter values ¥ € €, and fy or equivalently the mixture density f& in (3) of
the paper is identifiable up to a permutation of the mixture components. (See Section Web

Appendix A for identifiability.)
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(RC.2) The density m(u) of U is positively bounded away from zero over its compact support
U; it is continuously twice differentiable, and these derivatives are uniformly bounded over
U. The density f¢ admits third partial derivatives with respect to its parameters 1 for all
(u,x,y); g admits its third derivatives with respect to u, for all . The function ¥ (u) has

continuous third derivatives over U.
(RC.3) There exist functions M (x,y), k = 1,2, with Ex y){M]"(X,Y)} < oo for some
mo > 2, and Ex y){M(X,Y)} < oo, and fmyMl(:v,y)da:dy < 00, such that for all  and

y, and all ¥(u) in a neighbourhood of ¥°(u),

(Y, z,y) Pl z,y)
8—% < Ml(m,y) , W < Ml(m,y),
and
Pl z,y)
00Oy < Me(@,y).

(RC.4) The matrix I(u) in (12) of the paper is continuous in u and positive definite for all
u € U; the vector A(u;uy) in (13) of the paper is continuously third time differentiable with

respect to u over U.

(RC.5) The conditions

3 2 240
B, (‘—al(‘gg’y) ) <oo and B ( T ) <o

hold for all 7 and j and some § > 0, where Ej is the expectation with respect to the joint

distribution of (Y, X, U).

Web Appendix B.2 Conditions on the kernel K
(KC.1) K is a Lipschitz continuous and symmetric pdf with a compact support i.

(KC.2) K; = [,t'K(t)dt, V; = [, t'K*(t)dt, i =0,...,4, are finite; for i odd they are zero.
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Web Appendix B.3 Conditions on the penalty p,, and the tuning parameters (A, hy)

With regard to the penalty function p,, we denote the quantities

py/?
T, = max P (6515 M) L 0 Eo{B5(Un)}? # 0
1<i<d” n3/2
1<y<C

Top, = mMax
1gl<d§?
1<5<C

1 00 A
{—‘p <:2, Jl : 9?1 =/ Eo{ j(‘)l(Ut)}Q # 0},

where p), (09; A\n) and pj;(69; \,) are the first and second derivatives of p,(6;; An) evaluated

at 0 = 0 # 0.

(PC.1) p,(0;),) is nonnegative and symmetric in § € R, and p,(0;\,) = 0. It is also
nondecreasing and twice continuously differentiable for all but finitely many values 6 €
(0, 00).

(PC.2) As n — 00, A, = o(1) such that min;; 6%/\, — oo; and h, = o(1) such that
nh,, — oo, and nh3 = O(1). Also, r1,, = o(v/nh,,) and 4, = o(1).

_ < log(nhn) 1/2 ph(9:An) _
(PC.3) Let Ny, = {9 0 < |f] < oxlnhs } Then, lim inf hy/* Ph(57) = oo,

The smoothness Condition (RC.1) facilitates obtaining estimators of ;;(-) by differenti-
ating Zn(\Il7 A, h) and for studying the asymptotic properties of the estimators of the true
non-zero 3;(-). (PC.2) is required to obtain y/nh,-consistent estimators of the true non-zero

Bi(+), while (PC.3) is required for sparsity.

Web Appendix C. Examples of the penalty function p, and the kernel K

We used the following penalties and kernel function in our simulations and analysis of the
real data.

- LASSO: p,(0; \)/n? = M6

- AdpLASSO: p,(0; \)/n? = Awlf|, for some (possibly random) known weights w;

- MeP: ), (6; \) /n? = sgn(f) 2L

a
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- soAD: (6 A)/n? = sgn(0) { (1] < \) + e r(l0) > 1),

where p/,(+; A) is the first derivative of a penalty with respect to 0, and (z); = max{0,x}.

The Epanechnikov Kernel: K (t) = 3(1 — u?),.

Web Appendix D. Proofs

The result of the following lemma is used in the sequel.

LEMMA 1: (Barlett’s first and second identities) Under Conditions (RC.1)-(RC.4)

m Web Appendiz B, and for any interior point u; of U, it holds that
Eyxw ['(@°(U), X, Y)|U = u] =0,

and

By xyw ["(@°(U), X, Y)|U = w]

= —Eyx)u [U(@°U0), X, V)" (¢°(U), X, Y)|U = w] = I(w).

Proof. Conditioning on U = w;, we prove Barlett’s first identity as follows.
By xyw [I(@°U), X, Y)|U = u,]
/ / 2, y) fE(ylv° (w), ) g(x|u,)dedy
// al( ¢’ L.y |¢:¢°(“t) fa(ylv° (ur), 2)g(x|u;)dedy
/ / mog fc yW \¢=w°<ut> Fi(ylp° (uy), ) g (| uy ) daedy

// ofe(yly, x) 3/|'¢ |¢ o 9l ddy

- = w / / [chf y;0 >] g(@l)dzdy [y gy
() 0.

T o
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For a proof of Barlett’s second identity note that

— Ey.xyw [I"(%°(U), X, Y)|U = ]

0?1
/ / Og’lj/i%’itfb ‘wzwo(ut) fé(y”lpo(ut)a w)g(wlut)dwdy

8 ofr 5 Of& ) T
Rl S & S i
= - P=10(ur)
yJx {fc(y|¢>w)}2 t

x fe(ylv’ (w), @) g(@|u,)dedy

82
- /y /x OPpoPT {Fol, )} |yyoru) 9(@lur)dady

) [t} & i)}

{fe(yly, )}’
82
=050 ). / Lo, @)} [y galur)dady

/ / )T (), @, ) F (), ) g (g

| o) fE Y0 (), ) g(a|us) ddy

= By {I/(9° (), X, YT (40 (u), X, Y) U = ur

We now provide the proofs of our main results, starting with a proposition on point-wise
consistency of the maximum local-kernel log-likelihood estimator (MLLE) of the parameter

vector of @ (u) in the FM-vCR model in (3) of the paper .

PROPOSITION 1: Suppose that Regularity Conditions (RC.1)-(RC.4) on the parametric
family and Conditions (KC.1)-(KC.2) on the kernel K stated in Web Appendix B of this
document hold, and h,, = o(1) such that nh, — oo, and nh? = O(1). Then for any u € U,

there exists a local maximizer ¥, (u) of £, (1(u); hy) in (7) of the paper such that: 4P (1) —

PO ()2 = Opf{(nhy) 12},
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Proof of Proposition 1

Proof. The proof is a special case of the proof of Theorem | (without the penalty) and

thus omitted.

Proof of Theorem 1

Proof. First note that, for any u € U,
() = (77 (u), @7 (u). B (w),.... Bl (w) € RICT,
and whenever necessary, we rewrite
Pu) = (Yi(u), ..., Yowin-1(u)

without changing the order of @' (u), 7" (u), B (u),...,BL(u). Otherwise, we will use the

same notation as defined in Section 2 of the paper . Let

Wii,r1 -.. Whdrl
. . . nxd
wj = : - : € R",
Wit im -+ WidIn
and the vectors
_ T Rnxl =1 Cr
w;rr = (W1, Wirrn) € , J=1...,0,
= TeR™, j=1,...,C-1
W1 = (wj,nl,l, . 7wj,III,n) S , 7=1...,0—1.
We set
_ nx(C(d+2)—1
W, = (wiz,...,wor, Wi, ..., Wer, W, - - -, We-1,17) € R (Cd+2)-1)

which is an arbitrary matrix with rows w,, and wj ;, is denoted as the ¢-th row of w; s, for
t=1,...,n. The first Cd columns of w are denoted by vi1,...,v14,...,vc1,...,Vcq. For an

arbitrary matrix A = (a;;), we define its Ly norm (i.e. the Frobenius norm) as

Al = (Xa2) "
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Note that ||[W, || = Y1, [[w:]* and chzl 27:1 lvill> < |[W,||3. Whenever necessary, we

rewrite w; = (wyy, . .. ,wc(d+2)_1,t)T; otherwise, we will use the same notation as defined by

-
Wi = (wll,l,t> e Widgty s Wel Lty - - - Wed Ity W1ty - - -y WO It W1 IT1ty - - - 7wal,IH,t) .
To prove the claim of the theorem, it suffices to show that for any small € > 0, there exists

a constant M, such that

lim P sup L, (\112 + %W A, hn) <L, (\Ilg; An, hn) >1—c¢, (A.1)
oo n=||Wh[|5=M2

where v, = (1 + r1,)(nh,)~1/2

To show (A.1), we proceed as follows. Let
Do(W,,) = hyn™! {Zn (B0 + 7 Wi An, hn) — Ly (905 A, hn)} .
By the definition of penalized local log-likelihood L,, in (9) of the paper, we have

Zn (1112 + fYana Ana h Z Zl Ut + ’anta X’L7 Y) Kh (Uz_Ut)_PnOIl%_‘JYnWm }‘n)
t=1 i=1
and

Lo (B0 X hi) =D 0 1L(@°(Ur), X0, Y:) K, (U — Uy) — Py (B0 N,,),
t=1 i=1

where [(¥°(u), z,y) = log {f& (y|¥°(u), )}, f& is the mixture density given in (3) of the

paper, and the penalty
c d

‘I’n,)\ Zzpn HleH /\/_ )‘nj)

7j=1 [=1
By Condition (PC.1) on the penalty, we have p,(0; A,;) = 0. Thus,

D,(W,) = han™' Y Y {1 (40 + ymwy, X3, V) = L(9°(Uy), X3, Y3) } K, (Us = Uy)

t=1 =1
C d
™ 30 v (118 + vl /v M) = pa (5], /0 A)
j=1 1=1
< han DY O {1 (@O + ynwr, X3, V) — 1L ($O(Uh), X3, Vi) } K, (Ui — Uy)
t=1 i=1

S5 o (sl ) (1901,470))
j=1 1=1

- Dn,I(Wn) - Dn,[I(Wn); (AQ)
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where D, ;(W,) and D, ;;(W,,) are respectively the differences in the local-kernel log-
likelihood and the penalty functions. In what follows, we first perform an order assessment
of the two differences for large n, in two steps:

Step 1: (Order assessment of the local log-likelihood difference)

Following the first part of (A.2), we rewrite the difference as

Dn,I(Wn) - n_l Z dmI(Uta wt)7 (A3)

t=1

where for each t =1,...,n,

dn,I<Utawt) = hn Z {l (QpO(Ut) + YW, X’L'a }/;) =1 (,()bo(Ut>7 X’ia K)} Khn(Ui - Ut)

i=1

By the differentiability Condition (RC.2) on f and using a third-order Taylor expansion,

1
dn,I(Utawt = h Z {/ant l, 'Iubo Ut) XmY;) + 2777, [ ;rl” (T!)O(Ut),XZ,Y;) wt]
C(d+2)— o
0
+ ”Yn ;1 Wﬁwkawz (" (Uy), X;,Y;) wjwiwyy p Ky, (U — Uy),

where 9°(U,) is between 1°(U,) and °(U,) + ynwy, for t = 1,...,n. We then have

Qs (U w) = w] 1y, (U) + S0, {10, (U)o + "””ZR( (), X Yi),  (A4)

where
! hn = / 0
b, (Ue) = [~ = (L+71) S U (@), X, Y5) K, (Ui = TY), (A.5)
i=1
14 1 . 1
0 (U) = =(L471,)2 > (@ (U), Xy, V) Ky, (U; — Uy)
n i=1
and

C(d+2)— 5

R ($°(13), X, Y;) = (YO0, X3 Vi) K, (Ui = U .
17b ( t) Zl a¢]awka¢l ’l)b ( t) hn( t)wj,twk‘,twl,t

We now perform an order assessment of the three terms in (A.4), by first focusing on
lp, (Up). Under our regularity conditions, we will show that [}, (U;) = O,(1). Using Pro-
horov’s Theorem and Example 2.6 on pages 8-10 of van der Vaart (1998), it is sufficient to

show that Eyl|l;, , (Up)]|* = O(1), where Ej is the expectation with respect to the true joint
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distribution of (U, U;, X;,Y;). Note that,

Eo||l5, 1, (U)]*

n 2
(1 ra)y o2 S @), X, Y K (U~ )
1=1

= L

2

B =,
= (L) 2By |2 U@ (), X3, Yi) K, (Ui — Uy)

=1
= (1+m)? ZE {\l’ (800, Xo V)| K3, (U~ U0 } 4201 4 ™
30 B { [P 00, X0 ) 1 (800 X575 i (U~ U, 05 - U)
1<J
= (1+r1n ZEO ta +2 1+7’1n ZEO z]t (A.6)

1<j
where Q;; and P; ;,; are the quadratic and cross-product terms, respectively. The s*™ element
of the vector I'(p°(U,), X;,Y;) is denoted by I'®)(4°(U,), X;,Y;), where s = 1,2,...,d* =
C(d+2)—1.
We now focus on Ey[Q;,] for the cases ¢ =t and ¢ # t. When i = ¢, by the definition of
the conditional information matrix I(u,) in (12) of the paper and denoting 1) (u,) as its

(s,5)t™ element, we obtain

Eo[Qt,t] = {Hl/( Ut) XUYZ)H K2 )}

= K2 (0) Z Ey (I (4°(U), X0, Yo) )
= K} (0> Ey {Exyyw {I'@"(0), X0, V) | Ur}}

-
= K; (0))  Ey {1*(Uy)}.

By (RC.4), the expected value in the last sum is finite. Thus, for some constant M > 0,

C
Eo[Qu] < Kj (0)Md* = —K2(0)Md* — h_g

= (A7)
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For i # t, we have

BolQul = Eo{ V"), Xu,0)||" K}, (U — U }

- Z EO {l/(8)<¢0(Ut)7 Xi7 }/Z)Khn(Ul B Ut)}2 ’

s=1

Next, we evaluate the expected value inside the sum in the above equation. Note that
(X;,Y;,U;) and U, are independent when i # ¢. Thus,
Eo {I'O(4°(Uy), X;, Vi) K, (U; — U)
< 2B, {9 (@°(Uy), X1, Vo) K, (Us — U)
+ 2B, { [P (°(Uh), X5, Y;) = U0 (°(U), X5, V)| K, (Ui — Ut)}z
= To1 + Tno,
where 7,1 and 7, » respectively represent the two expectations on the right hand side of the

above inequality. Order assessment of each term is given below.

By Condition (RC.4) on I(u), it follows that for some constant M > 0,

T = 2/ / / /{l/(s)(lbo(ui), L, yz’)}Qfé(yz‘Wo(Uz‘), x;)g(i|u;)
uJuldxJy
X K,.%n (u; — ug)m(u;)m(ug)dy;de;du;duy
= 2/ / [(5’5)(ui)K,%n(ui — ug)m(ug)m(uy)du;duy
uJu
< 2M/ / Kip (u; — ug)m(u;)m(ug)du;du.
uJu
Applying the change of variable u} = (u; — u¢)/h,, to the above integration, we have
Tna < 2Mh;1/ K2 (uf)m(ug + houl)m(ug)du du.
u Ju
Using a second-order Taylor expansion,

m(us + houl) = m(ug) + houl m'(u) + (hpui)?* m” (i), (A.8)

where 4, ; is between u; and u; + hy,u. Using the boundedness Condition (RC.2) of m(u) and

its first and second derivatives over U, and the finite-moment Condition (KC.1) of K?(u),
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for some positive constants C and Cy, we arrive at
To1 < Cihy' + Csh,,. (A.9)
Using a first-order Taylor expansion and by Conditions (RC.2) and (RC.3) for some
constants C3 and CYy,
T = 2B {[I0@°(U). X. Y) — 1O (U). X0 Y)) Ko, (U = U}
< O3B {My(X;, V) (U, — Uy) K, (U; — Up)Y?
= o [ [ ] e el @t =
X Khn(ui — ug)m(u;)m(uy ) du;duy

< 0304/ /(uZ —ut)QK,%n(ui — ug)m(u;)m(uy)du;duy.
uJu

Applying the change of variable u} = (u; — u¢)/h, and the expansion (A.8), we have

Tna < 0304{hn / / (up)? K (g ym? () du duy
u

+h2 / (w?)2 K2 (w))m! (ug)m (ug ) du duy
Z/{ *

+hf’l// (u;‘)4K2(u;‘)m"(ﬂi,t)m(ut)du;‘dut}.
u Ju

Thus, by Condition (RC.2) on m(u) and its first and second derivatives, and the finite-
moment Condition (KC.1) of K?(u), for some positive constants C5 and Cs, we arrive at
Tra < Cshy + Csh2. (A.10)

Hence, using (A.7), (A.9), and (A.10), the first sum on the right hand side of (A.6) becomes
yhy [ Co 5
(1+7r1n)? ZEO Qit] = (1+7”1n)— ﬁ—l-(n—l)(cﬁh + Csh, + Cshy, +C’6h)

C -1
= (1+ Tln)2 {nhon + (n - ) [Cl + (Cy + C5)h,21 + C@hi] } )

Under Condition (PC.2), we have h, — 0 and nh,, — oo, as n — oo. Thus,

(14 r1,)? E:EOQM O{(1 +r1n)?}. (A.11)

We now assess the second sum in (A.6). The expectation of P; j4, fori > j,i #tand j # 1t

11
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is given by

EolPijil = Eo{[l'(@"(Uh), X;, YOI U (4" (Uh), X, Y;) K, (Ui — Up) K, (U; — Uy) }

S B W), X YOO OU0), X Y o (Ui — U K (U, — U}

s=1
d
= Y Eu {EBy.xuvow {10 @), X5, Y)IO ($0(U)), X, ;)
s=1
x Ky, (U — U)Ky, (U; —U)} | U} (A.12)

Conditioning on Uy, since i # j, (U;, X;,Y;) and (U, X;,Y;) are independent and identi-

cally distributed. In what follows, we first evaluate the conditional expectations.
Etvxusupivn {1 (@ (ue), X, YU (4 (), X3, Y5) K, (Ui = we) K, (U = wg) | Uy = us}
_E(YXU U {l ’U,t) XZ,Y>Khn(U Ut) ’ Ut:ut}, Z#t
Thus,

Ev,x,v)0, {l (°(wr), X, Vo) K, (U; — ug) Uy = ut}

- / [ 8 ) i) i = e 9 ). )

-/ [ / [ )i ) £ o) g | F (s =
= / A(ug; ug) Kp, (u; — ug)m(u;)du;
u

= / K, (u; — wg) A(ug; ug)m(u;)dug,
u

where A(u;;uy) is given in (13) of the paper. Note that by the first Bartlett identity verified

in Lemma 1, A(us; u) = 0. Denote H(u;) = A(uy; ue)m(u;), then

Ery x vow, {1 (9% (w), X3, V) K, (Ui — )| Uy = w } = / K, (u: — ug) H(u;)du;. (A.13)
u

By the differentiability conditions of (f%, g, m) in (RC.2), and Condition (RC.4) on A, the

first and second derivatives of H(u;) with respect to u;, evaluated at w; = u;, are

H' (uy) = A (ug; ug)m(uy)
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and
H"(ug) = A" (ug; ug)m(ug) + 24" (ug; ug)m’ (uy),

where A’(-;uy) and A”(-;u;) are the first and second derivatives of A(u;;u;) with respect to
w;. Similarly, the third derivative of H (u;) with respect to w; is calculated. Using a third-order

Taylor expansion,
/ 1 " / /
H(u;) = A" (ug; ug)m(ug) (u; — ug) + 3 LA (wg; ug)m(ug) + 24 (wg; w)m! (w) } (wi — ug)?
1 "~ ~ /( ~ !/~ /( ~ !~ !~ 1~
+ 8 LA (g g )m(Tg) + A (g g )m! () + 20" (g e )m/ () + 20" (Tg; g )m” () ¥ (ug — wg)?,

where @, is between u; and w;, and A”(-;u;) is the third derivative of A(u;;u;) with respect

to u;. By replacing the above expansion in (A.13), and Condition (KC.2) on the kernel K(-),

Eyx .oy, {9 @ (w), X4, Yi) K, (U — up) Uy = e }
— %ICQ LA (ug; ug)m(ug) + 20 (ug; ug)m’ (ug) } h2{1 + o(1)}. (A.14)

Thus,
Eo[Pij] = {1+0o(1)} LS Z/{A (ug; ug)m(ug) + 20" (ug; ug)m (ut)} m(ug)duy
i <>}2d*h [ i) + 28w ()

Hence, for i > j, i # t and j # t, by the boundedness Condition (RC.2) of m(u) and its

first derivative over U, and Condition (RC.4) on A, it follows that, as n — oo,
Eo[Piji] = O(hy,). (A.15)
For ¢+ > j, and 7+ = t, we have
Eo[Pijil
= Eo{ll (¢0( 0, X, V)l U (" (Uh), X, ;) K, (0) K, (U — U) }

= K. (0 ZEU {Ev.xu,w, {U D, X, YU (9°(U), X5, V) K, (U — U)| U}

Now, we calculate the conditional expectations in the above sum. By the independence of

13
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(X;,Y;) and (U;, X,,Y;) for i # j, and the first Bartlett identity verified in Lemma 1,

Ewx0o {10 (@°(w;), X0, YU (°(w), X5, V) K, (U — w)|U; = u;}
= Epyxow {19 (4 (w), Xi, Y)|Us = i}
X Ery.x v, {1 (4 (), X, Y5) K, (U; — u3)|Us = ui}

=0 x Eyxuo {9 (w), X, Y;) Kn, (U; — w)|Ui = u;} = 0.
Thus,

Using (A.15) and (A.16), the second sum in (A.G) can be written as

h )
2(1 4 r1n)° Z Eo[Pij) = 2(1+ Tln)zg D Bo[Pijal + Eo[Pijil + Eo[Pij]

(
h n

= 21 +7,)*—= OMhHY+0+0

(+r1)n<z (hY) +0+

i<
 5:J A1

(n—1)(n—2)

= (1+7ry)? O(h2) = (1 +r1n)* O(nh2).

Under conditions (PC.2), as n — oo, we have nh? = O(1). Thus, for large n

2(1 + 71,)? ZEO il = O{(1 +710)%}. (A.17)

1<j

Hence, by putting together the order assessments in (A.11) and (A.17), and using (A.6),

for large n we arrive at Eol|l;, , (Up)||* = O{(1 + r1,)?}, which implies that

nin (Ut) = Op{(1 4 7110) . (A.18)
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Next, we perform an order assessment of the third term in (A.4). Using Condition (RC.3),

hn%?; - o

=S R (90(U). X0, Vi)
i=1

< h”Tﬁ Zn: E, ‘R (QZO(Ut), X, Y%)
=1

i (50, .7)

Eo

b+ 2 aflr@enxy))

(t£i)=1

—F Uy, X,.Y: ) Ky, (Up —Upw;
+ 6 0 Z Z %87/%8% (¢( t), ) o ( +)Wj W Wy g

(t#1)=1 j,k,I=1

_ e (0) i: E a—kQ)z(q,Z(’(U) X Y) -
76 hn e 0 8%81/%31?1 t), Nty Xt | Wi W Wit

N

3/2
d* Shn 2
()TV Khn(o) Ey [Mz Xt>Y;t {Z ’wlt’ }

n

(d")h? S "
ST By [My(X Vi) Ko, (Ui = U S o
=1

6 ,
(t#£i)=1

(d*)3h 3 3/2
< Ko, (0) By [Mo(X. ) {Z wrl? }

(d)h "
+T’”" nEy [My( X, Y;) K, (U — Uy)] {Z Jwi 4| }

(d*)S 3 3/2

o
:TK(O) EO [MQ Xt,n {Z‘wjt’ }
. 3/2

d* Shn 3 d

SO (X, Y K (U U) {Z |wl,t\2}
=1
= 0(72) + O(7n) = O(Vn)
Thus,
n%
ZR (W), Xi,Y7) = Oy() (A.19)
uniformly for all t =1,2,...,n. Thus, since 7, — 0, (A.4) reduces to
1
dn,1 (U, wy) = w/ 1, (Uy) + sw 1, (U)wy + 0,(1). (A.20)

2

15
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On the other hand,

" _ (1+T1n)2 . " 0 Y4 R
bin, (U) = =53 0 (9°(U00), X, Y7) K, (U = U)
i=1

— %(1 + 712" (PO(UL), X, Y))

+M { i l”('l,bo(Ut),Xi,Y;)Khn(Ui _ Ut)}

" (i1

Note that
—FEy {l”(d)o(Ut)a Xtyyt)} = Ey {I(Ut)}
which by Condition (RC.4) is finite and positive definite. Thus, by Condition (RC.5),
l” (¢0<Ut)7 Xt7 }/t)
= {l// (¢0(Ut)7 X, Y%) — Eo {l” (zbO(Ut), X, Yt)}} + Eo{l"(¢°(Uy), X1, Yy)}
= Op(1) = Eo{I(Uh)} = Op(1).
Hence, by conditions r1,, = O(1) and nh,, — oo (see (PC.2)), as n — oo,
K(0 1 +71,)?
er= "0 o). xov = T 0,0 — 0,0 (A
nh nh,
Next, we focus on &, (U;). Define the centralized (finite dimensional) matrix
Zin(u) = 1" (4" (u), X3, Vi) Kn, (Ui — u) — Bo[l" (4% (u), Xi, Vi) Kn, (Us — u)], (A.23)
where Ey|Z; ,(u)] = 0, for any u € U. Note that, by using a change of variable v; = (u; —
u)/hn,
Eo[l" (4" (u), X, Vi) K, (Ui — )]
= [ [ 1., ) ) dusdad
vJxJu
= / / / l//(TPO(U)?wi, yi)K(Vi)f(U + hnvi, wiayi>dmidyidyi>
uJyJx
where f is the joint pdf of (U;, X;,Y;). By a second-order Taylor expansion,

2.2

hz V-
f(u + hnyia £, yz) = f(u7 Z;, yz) + hnyif,(uv Z;, yz) + nTyzf”(unia £, yz) (A24)
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such that w,; lies between u and u + h,v;, and f' and f” are the partial derivatives of
f(u, @;,y;) with respect to u, which by Conditions (RC.1) and (RC.2) exist. Replacing (A.24)
in the above integration and using the boundedness Condition (KC.2) on the kernel K(-)

and by the second Bartlett identity verified in Lemma 1, we arrive at
Eo[l"(9°(u), X;, Vi) K, (Ui — u)] = —m(u)I(u) + o,(hy,) , Yu € U. (A.25)

Turning to (A.23), we show that, as n — oo,

nZZm

Let Zlﬂn (u) be the (7, 1)-th element of the matrix Z; ,(u). Since U is compact, let U/kv;l B(ug;nn)

(S

sup
ueU

log (-~
o (i;’m)) = 0,(6,) = 0,(1). (A.26)

be a finite open cover of U, where B(uy;n,) are balls centred at u; and with radius 7, such

that 7, = o(1), as n — oco. Clearly, we have N,, = O(n,;}). Then, we can write,

LS [zt - 2] \

o3 [Zh - 2zt

n

Sz w)

=1

< max ZZJZ (ug)| + max sup

sup
1<k<N, 1<k<NG yely

ueU

il
< max |[— E Z] (ug)| + max sup
1<k<Nn L<k<Nw e B(ugimn)

We show that Z,; and 2,5 follow the rate as in (A.26). We first focus on Z,,. Note that,
Z [Zﬂ (Uk:)}
— _Z{ [ (9% (w), X5, Y3) K, (Us — w) — U (9 (), X, i) Ko, (Us — )]

— Eo [I(4°(w), X5, Y3) K, (Ui — w) — Uy (° (ur), X4, Yi) K, (Us — )] }
where 17} is the (j,[)-th element of the matrix [”. The expression in the first square bracket
can be rewritten as

[ (° (), X5, Vi) K, (U; = w) — U (9° (w), X, Yi) Ko, (Ui — )]

= Uy (°(u), X, V) [K, (Us — u) = K, (Ui — uy)]

+ [l;',l(w()(“)v X, Y;) — l;/l(wo(uk)a X, Y;)} K, (U; — ug).
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By the Lipschitz condition in (KC.1) on the kernel K, and Conditions (RC.3) and (RC.5)

on l(¢p(u), x,y), we have that, for large n,

> L), X Y0 [ (U = ) = K (U = )

<= DU, X V)| = = 0, <h_2 .
=1 s

Similarly, by the above conditions and also Condition (RC.2), the Condition (KC.1) on

the kernel K (-), and using the mean value theorem, for large n,

_Z{\l w), X;,Y;) = U (" (wr), X, Y3) | K, (U — uge) } < Op(l)lu;uﬂ o, (Z_n) |

Hence, by the putting together the above order assessments, we have that, for large n,

=or() v (ie) = (&)

which implies that if we choose 1, = h2¢,, we have, for large n,

n

LS [~ i )|

=1

Z =0, <Z—%> = 0,(&). (A.28)

Next, we focus on the order assessment of Z,; in (A.27). Denote the random variables,

Zi(w) = 20, () {5 (w), X, V)| < Con/™) (A.29)

and
Zi(u) = Zi () 1" (w), X, Y7)| > Cont/™) (A.30)

such that Zfln(u) = El'n( )—I—Zjl (u), for some constant Cy > 0, and 1{} is indicator function.

Note that EO{ZZ]ln(u)} = (. Then, we have that

n

1 ”
Zu = max 0D Zl(w)
i=1
) ~
- - ‘jl _ Jl
< max Z[ - B{Z0,(w)}] |+ max |~ 1: |Z0 () E{Zz,nwk)}}‘

1=

= T+ T (A-31)
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For some constant C3 > 0, any € > 0, by using the Markov inequality and Condition (RC.3),

P(Jna > C56,) < ( max U {|ljl O(up), X;,Y3)| > C nl/mo})

1<k<N,
P (U {|Mi(X,,Y3)| > anl/m°}> <Y P(M(X:,Y;) > Con'/™)
i=1 i=1

3" Eo{M™ (X, Y)} (Con'/™) 7m0 = Eo{ M{™(X,, Y)}Cy™ < e

i=1

if we choose Cy > e V™m0 [Eo{ M™(X;,Y;)}]'/™. Since € > 0 can be arbitrarily small, we

then have that, for large n,

Tn2 = Op(&n)- (A.32)

We use the Bernstein inequality, Lemma 2.2.9 of van der Vaart and Wellner (1996), to
assess the large sample behavior of J,; in (A.31). First, we verify the conditions of the

lemma. Note that, by the definitions in (A.23) and (A.29), and the boundedness of K(-),

C Var(Zh )y < 7

n

C’4C’2n1/m0

P (A.33)

—jl —jl
Zi () = B{Z3, (w)} ] <

for some constant C'4 > 0. By the Bernstein inequality,

C2n2¢?
- B .
P(Tu > Csn) < 2Ny exp { 2nCy/hy + 27104fn0302”1/m0 /3hn}

If we choose ('3 such that C3 > 3C}, then by the definition of &,,

C2n?¢? - (3C5/2) log bt
27104/hn + 2n04§n0302n1/m0 /3hn - 1+ 0204fnn1/m0 '

Also if, for large n,

nh,

n2/mo Jog (L 3
nt/mog, = (ﬂ) =o(1) , N,exp{—Cslogh,'} =o(1) (A.34)
Thus, for large n, we have that P(Jn1 > Cs§,) < o(1), which implies that
Tn1 = Op(&n)- (A.35)

Hence, in summary, by (A.28), and also applying (A.32) and (A.35) to (A.31), we have

proved (A.26).

19



20 Biometrics, January 2022

Therefore, for any u € U, and using (A.25),

% {Z (% (u), X5, Ya) K, (U; — U)}

_ —ZZW + Eo [I"(¢"(w), X3, Yi) Ky, (Ui — u)]

= = Z Zi (1) — m(u)I(u) + 0,(hy) (A.36)
i=1
and then, using (A.26), we have that
sup |~ Zl" w), X;, Vi) Kp, (U; — u) + m(u)I(u) 2
— sup % Xj; Zin(w) - 0p(hn) = Op(&n + hy). (A.37)

This implies that, for large n,

sup ||, (w) + (1 + r1,)°m(w) I (u) |

= sup lop{ (1 +710)?} 4 Exn(u) + (1 4+ 71)*m(u) I (u) |2
= (1+ rln)QOp(fn + hn) = 0p{(1 + Tln)Q} (A.38)

since, by Condition (PC.2), nh, — oo.

Using (A.20) and taking into account (A.38), then (A.3) reduces to

n

DW= 13 [w () + éw " <Ut>wt] Foy(1)

_ —Z [w;z; 0 (00 gl {12, (U) + (L4 rPm(UNT(0) — (14 710 m(U)I()}
o1

< %Z 0l 1,0~ 7w T (@) + 0y(1)) ] +0,00)

_1 Z {w;g; . wwj (m(U)I(U)} wt] 1 0,(1). (A.39)

By condltlons (RC.2) and (RC.4), the matrix m(U;)I(U;) is positive definite, and thus all
of its eigenvalues are positive. Let A" be the smallest eigenvalue of m(U;)I(Uy). Also, let

Amin = min{A"™, ¢ = 1,...,n} and ™ = infuey Amin{m(v)I(u)}. Inequality in (A.39)
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reduces to
Dn,I<Wn)
1 < T4+ 71)2% 1 win
< 23 ol @) - E i) 4o,
t=1
IR 1+ 71,)2 -
< IS w0 - T S ]+ 0,1
t=1 =
1
_ i — ’ (1+T1n>2 —
< (nHWLlP)® ( 1ZW (U) H2> — 5 XA X (0 [WLIP) 4 0,(1)
: 1+71,)2
- <_IZIIZW U ||> RS X M2 40, (1)
— : 1+T”2 min
< ( 1Zuznhn W) n?) ATl g M2 (14 0,(1). (A.40)

As we showed in (A.18), we have

! ZEllln e (UDIP =071 Op{(1+71)} = Op{(1 +110)%}

Note that AT > 0. Therefore, we can choose M, large enough such that the second term in

(A.40) and thus D,, ;(W,,) become negative, in probability, for large n.

Step 2: (Order assessment of the penalty difference) Following the penalty difference

21
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in (A.2), D, ;1(W,), which involves the grouping penalty and using Taylor expansion,

D, 11(W3) (A.41)
d()
= han” sz 15 + vl /35 M) = pu (OS] /v/7 M) }
7j=1 [=1
_ -1 : ’Ynﬁgz
= han ZZZ 6% /v/15 Anj) wsirs
j=1 1=1 t=1
_ BoUN2\
S p i A “&]mmme o
j=11=1 t=1 Hb H Hble
2 8]
i ‘1222 "2 o H DB/ M) 01
j=1 1=1 t=1 1

_ -2
+hn,n IZZ Z \/jiHb H . (|| lH/\/— Anj) Wit r4Wit1/2
j=1 1= 1t7él 1 il

—|—h n_lzz zn: ’YTL/B‘]Z

” H lH/\/_ /\n] wjl]tw]lfl/2
ST as el

= dl,n,]I(Wn) + d2,n,II(W ) + d3,n,II<Wn> + d4,n,II(Wn) + d5,n,]l(Wn)'

Ut gl Ul

We now perform order assessment of the terms d ,, 7 (w), ..., ds . r(w). For large n,
dl n II(Wn)

1 a g 185U )\ _

< (I +rw)hinTe Z Z A ‘ (B5l1 /v/rs M) | i,z
j=1 1=1
\]\

. b )| G (& V2

< (U+ra)hi max te (% ﬂ/ﬁf 2 > {Zw?z,n/n}
1;],;67' j=11=1 (=1

g Mc (1 + Tln)rlrr <A42)
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Following ds ,, 11(W,,), for large n,

’dZnJI(vvhN
_ _ & 135
< o 222 ( h ) 1 8 /35 005) | 2
=1 I=1

2 oo
g n;)\nj - 2
< (1471,)*n 1/2{m11r1||bo||/\/_} ' pn(H JH/\/_ ) {ijl,l,t/n}

l dO ns3/2
1<]<C
—1/2
= M? 7, (1 +7r1,)3{nh,} V2 {H]llln Ey [ﬂfl(U)} } . (A.43)
Following ds ,, 11 (W,,), for large n,
C d? n 2
’di’),n,H(Wn)‘ < hnn_l Z Z H (Hb?lH /\/57 )‘"J')’ wJZ'l,I,t
j=1 I1=1 t=1 2 H lH

P[] lH/f An)

< (1471,)* max

e

1<l<dg?
1<5<C
< M2 7o (14 71,)% (A.44)
FOHOWng d47n711 (Wn) s
|11 (W)
1C S 2B 18O
S »> Z 12, (105,]] /v M) | stz iwiiral /2
J=1 1=1 t#l= \/—H lH

< han™ (1t 1) (ham) {mmH lH} Jma [, (|[b lH/ﬁ;Anj)\{Zw?z,f,t}
{Zw]ut/”}

1<H<C

P ([0 /v Ani)

n3/2

-1
o (o R}
1\<J'\<CJ

—1/2
= M? {nhn}—l/%n(lwln)?{I%nEo [ﬁfl(U)}} : (A.45)
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Following ds ,, 11 (W,,),

\dsn,11(Wh)|

oA [ EF AT
S ZZ Z P (105 ]] /3705 M) wsergwiiral /2

po e o n |89,

b /\n
¢ oy AU (5 L)
1<j<é

= MZ ron(1411,)% (A.46)

Thus, by Condition (PC.2) on the penalty p, and the smoothing parameter h,,, the order
assessment in (A.40) and those in (A.42)-(A.46) corresponding to the terms D,, ;(W,,) and

D, 11(W,,) in (A.2) imply that for a sufficiently large M, the expression

_(1 +7’1n>2

URBTY:
is the sole leading term in the right side of D,(w) in (A.2). Therefore, for any given € > 0,

there exists a sufficiently large M., such that

lim P{ sup Ly (@9 + 7. Wi An, ha) < L, (wz;xn,hn)} >1-¢
noree n= 1| Wy |[3=M2

as needed in (A.1). This completes the proof of Theorem 1.

Proof of Lemma 1

Proof. Recall the partitioning of the true parameter matrix ¥? = (¥Y, ¥ ) such that

nls
WY, corresponds to all the zero regression functions, while ¥, corresponds to the nonzero
regression functions, among other parameters, given in Section 4 of the paper. Also, consider
any matrix ¥, = (¥,;,¥,,) in a neighbourhood of WY such that n='||¥, — ¥Y||% =
O,((nhy,)™), and dim(¥,,) = dim(¥?,) and dim(¥,,,) = dim(¥Y,). The existence of such
neighbourhood is guaranteed by the result of Theorem 1. We provide the proof in two steps:

Step 1. We first prove that, with probability tending to one, as n — oo,
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By the definition of the penalized likelihood function in (9) of the paper, we have that
zn((‘Ilnla \I’nQ)y )\nv hn) - Zn((\]:’nlu 0)7 )\nv hn)

= [Ln((\Ilnl, W,0); hn) - Ln((qlnb 0); h”)]

- [Pn«‘ynla ‘I’nQ); An) - ]P)n((‘:[lnla O), An):| . (A48)
By the definition of the penalty in (10) of the paper we have

]P)n((\I’nla‘I’M);)‘n) _Pn(( n1, 0); Z Z DPn ”leH /\/_ )‘m) (A.49)

Jj=11= d0+1

On the other hand, using (7) and (8) of the paper, we can write the likelihood difference

as

n

Lo (o1, W2); h) — Ly (U1, 0); hyy) = Z [0 (b1 (1), 2 (ue)); hn) — € (301 (11r), 0); B )|

=1

- Z Z ’(pl Ut ¢2(Ut))7 XMY;) - l(<¢1(Ut)7 0)7 Xia K)]Khn<Uz - Ut)a <A50)

t=1 i=1

where [(-) is the log of the mixture density as given in (6) of the paper. Note that ¥ (u;) =
(Y1 (wy), Po(uy)) is the t-th row of the matrix ¥,, = (¥,1, ¥,,2). For any fixed Uy = u € U,

we first assess the inner sum in (A.50). We thus consider

n

Aulw) = 37 (1@ (). o)), X2 Yi) = 1((ab1 (), 0), X, Y Ko (Ui =) (A1)

i=1

By the mean value theorem, there exists a vector &(u) on the segment between 0 and ()

such that
A (u)
=3 6 (0 | P R T
N OL((h1 (u), €(u), X, Y:)  Ol((49(u),0), X;,Y))] "
= a0 SRR - ST e
n 0 u ) - T
£ (U ) [al((‘”l(at)b; (()i)X Yi)} () = A (1) + Ag(u), (A.52)

where Aj(u) and Ay(u) are respectively the two sums on the right hand side of the above

equation. Similar to (A.18), as shown in the proof of Theorem 1 for the order assessment of
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(A.5), we have that, for any u € U,

> At ‘(’i) Xo X g, (U= w) = O,{(nhi) ). (A.53)

Thus, since dim(t,(u)) < oo, using the Cauchy-Schwarz inequality we have

No(u) = O,{(nhy)2}|[pa(u)]
= O {(nh;")2}wha(w)|l2

oy 1/2
= 0,{(nh;’ (Z B ) (A.54)
=1 1=d?,
which then implies that

> Ao(U) = Op{(nhy! }Z [2(U2) |2

or using the Cauchy-Schwarz inequality,

n n 1/2
>t = 0,( ) {Z H%(Ut)nz} (A55)

- o4 ){Z 5 [l /f}

JlldO

For the first term in (A.52), we have that

Aq(u)
_ - Ol((YP1(u),&(u)), X;,Y;)  Ol((¢1(u),0), X;,Y5) ’
- ZKhn(Ui —u) [ Do 1) - > (1) ] o (u)
- N((31(u),0), X;, Vi) l((49(w),0), X, )]
#3 Ka (U | TR S AE] )

By the mean value theorem, there exist vectors £€*(u) and 1)} (u) respectively on segments

between 0 and &(u), and 1, (u) and 1?(u) such that, by Condition (RC.3),

3 L Jol(( (), €(u), X6, Y;)  0l((i(u),0), X5, Y))
ZKh (U; — )

0o (u) O (u)

= Z K, (Ui — ) [I" ((h1(w), €7 (), X5, Yi)] €(u) = Op(n)[|€(w) ]2



Supporting Information for “Sparse Estimation in Semi-parametric Finite Mixture of Varying Coefficient Regression Models”

and

- [ (), 0). X, ) 9U(#9(w),0). X, V)
ZKhn(Uz ) [ 0 (1) s (1)

= ZKh Ui —u) U'((7(u), 0), X, Y;) [1(u) — ¥ (u)] = Op(n) [[9h1(u) — 9i(u) ],

Thus, together with the above order assessment, and again the Cauchy-Schwarz inequality,

we have that

Ai(u) = Op(n) {1€(W)lly + [[or(u) — 9 (w) |, } [[p2 ()], - (A.56)

This implies that

D AU = 0p(n) Y {IEW I, + [[91(U) = 1 (U |, } 142 (U, - (A.57)

By the Cauchy—-Schwarz inequality,
> _AIEWD Ny + [l (V) = (U]} 142U,
t=1

n /2 ¢ o,
< {Z [IEUIE + 191 (U) — ¢?<Ut>||%}} {Z ||¢2<Ut>||3}

t=1

C d 1/2 C d
{n<nhn>1}w{z > bﬂi} <hﬂ2{2 > bﬂg}.

Jj=1 l=d§9+1 Jj=1 l:dg?ﬂ

1/2

Combing the above results, for some constant C', we arrive at,

;Al(Ut) Cm {Z > bl /\/_} (A.58)

j=1 = d0+1

By (A.55), (A.58), and (A.50), we have that, for large n,

L (%01, W00): Ay ) — L ((®41,0); Ay, By ) 02” {Z > lballe/vn } (A.59)

J=1 j=df+1
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for some constant Cy. Finally, by using (A.49) and (A.59) in (A.48), for large n,

L ‘IlnlalIln2 >\n7hn \Ilnhoa nahn)

) A
Cj% 3 I/ } >0 37 pa(lballo/ v h)

n 7=1 1=d9+1 7=1 1=df+1

d

=3 3 { St/ ke VA } <0

Jj=1 j= +1

The last inequality is due to Condition (PC.3) on the penalty function p,. This completes
the proof of (A.47).

Step 2. Consider the penalized local log-likelihood function Zn((\Ilnl, 0); A\, hn), which is
only a function of ¥,,;. Let (\/I\lnl, 0) be its maximizer. Then for any ¥, = (¥,;, ¥,5) with

the property (A.47) shown in Step 1, we have that,
Lo (@1, 2)s A ) = L (¥, 0); A )
= (L ((¥01, Cp2); Ay ) — Ly ((¥01,0); A, o) |
(1,00 A ) — La(%0,0): )|
< Lo (W01, W); Any ) — L (¥, 0); A, ) < 0,
where the last two inequalities are due to the definition of (\/I\'nl, 0) and the result of Step 1.
Hence, in the v/nh,-neighbourhood of ¥ guaranteed by Theorem |, the maximizer of the

penalized local log-likelihood Ln((\Ilnl,\Ilng);)\n,hn) satisfies \/I\an = 0, with probability

tending to one, as n — oo. This completes the proof of Lemma 1.

Proof of Theorem 2

Proof. (i) Recall the partitioning of the true parameter matrix ¥2 = (¥ w9 ) such that

nl»
WY, corresponds to all the zero regression functions, while 2 corresponds to the nonzero
regression functions, among other parameters, given in Section 4 of the paper. Consider any

matrix ¥,, = (¥,1, ¥,2) in a neighbourhood of ¥? such that n=!||¥,— 0|2 = O,((nh,)™"),

and dim(®,;) = dim(¥?,) and dim(¥,,) = dim(P?,). Note that such choice is guaranteed
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by Theorem 1. Also, for the t-th row of this matrix we have that || (U;) — ¥°(Uy)|l2 =
Op((nhn)_l/z),t =1,...,n. On the other hand, for any u € U, let u* be its nearest neighbour-
hood among the observed index values Uy, ..., U,, that is u* = argmingey, v,
Under Condition (RC.2), we have that [[¢°(u) — ¥°(u*)||2 = O,(logn/n), (Janson, 1987).
Using the triangle inequality, we then have that |1p(u) — ¥°(u)|l2 < [Jo(u) — ¥ (u*)]2 +
(%) =) -+ 1 45° (%)~ 5°(u) - Thus, for any u € U, we have that 4b(u)—°(u)l» =
O, ((nh,)~'/?). We provide the proof in two steps as follows.

Step 1: For any u € U, using the partitioning 1 (u) = (¢1(u), 2(u)) for any choice ¥ (u) in

the above neighbourhood, consider the local log-likelihood given in (7) of the paper,

(41 (u), % Zz (1 (), 2 (w)), X3, Y;) K, (U; — u).

We now denote the following two penalized local log-likelihoods,
) c d
gn(’()b(u)ahna)\n) = gn((wl( ) ¢2 nzzpﬂ ”bﬂ”Q/\/ﬁ; )‘"j)’

Jj=1Il=1

(a0 A) = L((abi (). nzipn (1l )

j=1 Il=1

In what follows, for any u € U, we assess the order of the following difference for large n,

Do(u) = Lo(th(u); by An) — O (101(10); i, A)
= [ (1), 92(w)); ) — € (1 (), 0); By ]
—%Z P (1bjill2/ v/ Anj)

= —40
J l—dj+1

= D)= 30 ST pullbala/ Vi M),

=1 |=
where A, (u) is the difference in the local log-likelihood which is also used in the proof of

Lemma 1, given in (A.51). Recall the following representation of A, (u) given in (A.52),

Ay (u) = Ay (u) + Ag(u).
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From (A.54), we have that (up to a constant), for large enough n

Do) < /7= D0 D 1Balw)]
" =1 =d0

Under Condition (RC.2), we have that ||¢°(u) — % (u*)||2 = Op(bi”

). Using (A.56), for large

n, we also have that (up to a constant), for any u € U,

[zz Bl

Therefore, for any u € U, for large n we have

[j > {W 2ol )

Also, for any u € U and its correspondmg u* as defined above, for large n we have that

Ba(uw)] < 1Bu(w) = Bu(w")] + |Bu(u?)|
= Oy (logn/n) + |[bjll2/v/n + Op({nha} %)
= |[ball2/v/n + 0,(1).
Therefore, for large n we have that by the Condition (PC.3) on the penalty, D, (u) < 0,
uniformly in v € U.

Step 2: For any u € U, let P (1) be the maximizer of £, (1 (w); h, Ay) Which is considered

as only a function of ¥ (u). Then, for any u € U,

b (W0 () s An) = Ca (1 () o, o)
= T () An) = La(abr () 5 M) |
_ {En (B (1); o, An) = Lo (1 (1); P, )\n)} <0.
This difference is indeed negative uniformly over v € Y. This implies that with probability
tending to one, as n — oo, 1Zn2(u) = 0, uniformly in u. Similar to the result of Theorem 1,
@an(u) is a consistent estimator of ¥?(u), for any u € U.

(ii) For any u € U, recall the oracle estimator {b\nlmc(u) which is the MLLE of 9?(u),

having known %9(u) = 0 a priori. This estimator is the maximizer of the local log-likelihood
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((p(u); hyy) in (7) of the paper, and it satisfies the estimating equation

g;(tz\nl,orc(u); hn) =0.

Using a Taylor’s expansion around 1?(u), we arrive at

(D (u); B) + 02 (P (w): ) (P ore (1) — 2 (u)) = 0,

where @E?(u) lies on a segment between 1% (u) and 1;”1707«0(15), for any u € U. By Proposition
1 of the paper, since @nlmc(u) is a consistent estimator of 19 (u), so is ¥%(u). Thus, for large

n,
Cu(@7 (): ) + {60 ()3 1) + 05 (1)} (B orelw) = 9 (w) =0 (A.60)
Similarly, the MPLLE ),,1 (u) also satisfies the estimation equation
b (W (w); o X)) =
or equivalently,
£, (oo () hn) = Pr(@rs An) =
where

P,(W,1i A,) szwwfmﬁ<%ww. (A61)

jlll

Using a Taylor’s expansion around %9 (u), and consistency of '(an (u), for large n,

6@ )b — [PLUOY: ) + 0,(n)]} (A.62)
() ) — BO%: A + 0,(n) } (s (1) — 9 (w)

= 0,

where P! and P are the gradient and Hessian of the penalty P, in (A.61) with respect to

the parameter vector ¢ (u), and 69 = {69 = |/ Eo{5(U)}?:1<j < C,1 <1< dJ}.
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By (A.60) and (A.62), we have that

D1 (1) = P ore (1)
= (LW ha) + 0 ()} (0 )
{0 ) — BB A) + o)} {0 ha) — PLO% A}
= ({00}~ (@A)~ PO A1+ 0,0}
o {fsttnm)

n

+{ @ b~ PO A+ <1>}{M Fo0)}

n

= Vin(u) + Vau(u),

where V},,(u) and Vs, (u) are respectively the two vectors on the right hand side of the above

equation. By (A.25), for any u € U and for large n,

(i (w); ho) fn = —m(u)I(u)(1 + 0,(1)). (A.63)
Thus, due to the finiteness condition of m(u)I(u) and since rq, = o(1) by Condition (PC.2)
on the penalty, we have (in a matrix form)
{020 (u); h) fr+ 0, (1)} = {22 (42 (u); By) fr— P09 M) /n+0,(1)} 7 = (A.64)
Also, by (A.14) we have

E{ﬁ;(wl (u); hn)} _ %Kgm(u){A”(u; W)+ 24 (u; u)m’(u)/m(u)}hi{l"'O(l)} < oo (A.65)

n

for any u € U, and Ky = [, t* K (t)dt < oo. Using a similar approach to show (A.26) and the

centralizing technique as in (A.36), and since nh? = O(1), we have that

sup [, 4o /nzop{(loiﬁf)) }+Op<hi>0p{(%) } (2.66)

Thus, by (A.64) and (A.66),

log(7)
sup [Vin(u)|l2 = op { ( h,

[NIES

} = 0,(&n)- (A.67)
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Also, by the positive definiteness of m(u)I(u) and condition 75, = 0(1), we have that
sup [[Van (W) 2 = Op {r1n/v/nln (A.68)
ueU

Thus, using (A.67) and (A.68) we have

{14 712060} sup ([P (1) = Wt ore (1) |3

uel

< {0 med ] sup Vi@l + sup Vi (o)}

-1 T1in 1
{(1 + Tln)} Op(l) + 1+ T1in \/ log h,;l OP( )

This completes the proof.

(iii) From (A.62) and using (A.63), and the relation (A.61) we have

]PJZ OO;AH 7~ Pn 00;)\71 g;’L 0 U ;hn
{0+ B2 o ) (Bt — ot )+ B2 LA -
Using the second-order moment calculations in the proof of Theorem 2, we have

Vi 0 . hn
Var{ ”("plg‘)’ )} - n’;f I(u)ym(u)(1 + 0,(1)) < oo, (A.70)

where Vo = [, K*(t)dt < co.
Using (A.65) and (A.70), we standardize both sides of the equation (A.69). Hence, by the

multivariate central limit theorem we have that

Vamd [ 7w+ B (G 0) - whw) - Bt} ~ 0V 1)

n2
where

P, (67; \)

n2

B, (u) = %ICQ{A”(U; u) + 2A (u; w)m' (w) /m(u) ph2 — m ™" (u) + 0,(h2).

Web Appendix E. Remarks
REMARK 1: The sparsity assumption in Equation (5) of the paper is indeed the most
common assumption in the variable selection literature. The implication is that the under-

lying data-generating process is a simple sparse model and is beneficial for interpretation
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purposes, specifically in mixture regressions when the number of covariates is relatively large.
Together with (5) and under Conditions (PC.2) and (PC.3) on the penalty function p, in
Web Appendix B | we achieve the selection consistency property as stated in Theorem 2(i).
Essentially, Conditions (PC.2) and (PC.3) imply that only those coefficients that satisfy
E{B;i(U)} > A, where A, — 0 as n — o0, are detectable by the regularization methods and
will be estimated as non-zero, while the ones below the threshold A,, so-called weak signals,
will most likely be estimated as zero. In a sense, the aforementioned conditions are similar
to the ones considered by Wei et al. (2011) with 7, replaced by A,. Wei et al. (2011) refer to
(5) as the narrow sparsity condition (7; = 0) under which they also show that, for example,
AdpLASSO has the selection consistency property. By changing (5) to the one used in Wei et al.
(2011) with n; > 0, it turns out that regularization methods only achieve certain estimation
error bounds but not really selection consistency as those weak-signal regression parameters
most likely will be estimated as zero. Hence, since our main result focuses on the variable
selection consistency property, we have decided to keep the current definition of sparsity (5)
in the FM-VCR models. Nevertheless, it is worth noting that Fang et al. (2021) proposed
a two-step procedure based on both variable selection and ridge regression estimators that
were shown to be capable of detecting weak signals and providing an estimation of both

strong and weak signals.

REMARK 2: The asymptotic normality result in Theorem 2(iii) is obtained as if the true
sparse structure of the model is known in advance, i.e., an oracle’s perspective. In general,
its use in practice to perform likelihood-ratio type inference is reserved (referred to as naive
inference) as the true sparse structure of the model is not known in advance and it is esti-
mated by the penalization method. As a result, in the partitioning t, (u) = ('@nl(u), $n2(u))
introduced before Theorem 2 of the paper (oracle perspective), in practice due to the variable

selection stage the dimension of the sub-vector 12,11 (u) is indeed random and may not be equal
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to the dimension of true non-zero vector ¢ (u), and hence asymptotically normal distribution
may be distorted. The extra variability due to the variable selection needs to be taken into
account for further inference and is a part of the general topic of post-selection inference
(PoSI, Berk et al. (2013)), which sees a surge of research in recent years for (generalized)
linear regression models (see Zhang et al. (2022) for a recent survey), although little for the

FMR and FM-VCR models.

REMARK 3: Recall the penalty p, in (10) of the paper. If the AdpLASSO is used, we have

Pallitllz/ v/ Aa) /0 = Nqwillballo/Vn, j=1,....C, I=1,....d
In practice, one needs to specify the weights wj;. As in Zou (2006), we use w;; = {||b;il|2/v/n} 7,
for some v > 0, where ||by[2 = Y1, U?l(ut) and f3;;(u;)’s are the consistent MLLE dis-
cussed in Section 3 of the paper. Thus, as n — oo, the condition A\, Max <j<o<i<d? Wit =

o,({nh,}~%?) in Theorem 1 becomes +/nh,\, — 0, and the sparsity condition

Vhn Ap Ny e g0 11<1<q Wit — 00 in Theorem 2 becomes (nhy,)0TV/2)\, — oo,

REMARK 4: For the AdpLASSO, the difference D,, ;;(W,,) in (A.41) has a simpler upper

bound as follows. By the definition of the penalty, we have that,

c 4
DurtWo) < b SN {pu (0% + 70w ]| /v/5 Ang) = 2 (051 /v M) }
j=1 1=1
c d
< han™ DY S ety Anwillvall/v/n
=1 5=1

< Me{nhn}l/2 max  {Apjwj}

1< <C,1<I<d]

which is dominated by the likelihood difference D,, ;(W,,) in (A.2) under the condition

{nhn}1/2 max  {Ajwj} = 0,(1).

1< <C,1<I<d)

REMARK 5: For the AdpLASSO, the penalty difference in (A.49) becomes,

C d
Po (1, Wn2); An) = P (®1, 0 00) = > > 0 Aws(|[bsll/v/n).

=1 j=d%+1
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Thus, the difference in (A.48) is bounded by
L (%1, 9,9); Mgy 1) — Lo (1, 0); A, )

< Z {CZ”“nbﬂnz/ﬁ—n min {Anjwﬂ}<||bﬂ||/¢ﬁ>} <0

- 1< <C,dV+1<I<d
J=11=dj+1 SISEG

under the condition v/nh, min, < g0 1<<af{ Anjwji} — 00, as n — oo.
SIsLLa5 X

Web Appendix F. Details of the numerical algorithm and implementation
Web Appendix F.1 Local quadratic approxzimation of the penalty functions

The Local Quadratic Approximation (LQA) of a penalty function is given as follows.

Fn(lIl§ >‘)
S5 (], )

o (|Je], /v )
o | /v

For each (j,1) the derivative is given as

(b}lbﬂ fn— Bl Tplm) /n> } (A.71)

OP.(:A) 7, (

(m) .
by H /s )“) bji

e

Specifically, for the well-known penalty functions that are used in the main paper, we have

the following expressions:

e LASSO:
P, (T; ) n32\;
w [,

o AdpLASSO: Given the weights w;; discussed in Remark 2 of the paper, which are based in

the MLLE,

OP, (T X)) n*2\wj
b,y ‘

by
pm |

gl

2
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e MCP:
)
n32);
; I R A
(% ) i
db,
R T
e SCAD:
4
n3/2)\.
J (m)
m|| ‘bﬂ H S VA
o],

(A.72)

1| by, V) < Hb§7‘>H2 < Vv

0, ‘

b§.§”>H2 > iy,

Web Appendix F.2 The EM algorithm for the MLLE and MPLLE in Gaussian FM-VCR

For a Gaussian FM-VCR, at any u € U, the local-kernel log-likelihood in (7) of the paper is

given by

ta(in) =3 g {37 miN@sa' 8,08} Kilui - u), (A.73)

where N (y; 1, 0?) is the pdf of a Gaussian distribution with mean p and o2

The locally constant vector of parameters is ¥ (u) = (w',¢",8/,...,8L), where n' =
(m1,...,m0m1), @7 = (0F,...,08) and B = (Bj1,...,B5a) for j = 1,...,C. Note that the
entries of the vector v (u) are local constant approximations of the functions (j(u),l =
1,...,d, mj(u), and a?(u), for all j = 1,...,C. These entries clearly depend on u, and for
simplicity, we suppress u in the notation but keep it for 4 (u).

Using (A.73), the corresponding (total) local-kernel log-likelihood in (&) of the paper is
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given by

Lo(®sh) = ) bu(dh(u);h) (A.74)
n C
= Zm:l log {Zj:1 Tt N(yz‘; m;—ﬁj,ta Uf,t)} Kp(uwi — ),
where W is the (n x {C(d + 2) — 1})-dimensional matrix of the locally constant vectors

¢(ul),z:1,,n

Web Appendix F.2.1 The EM algorithm for the MLLE. We view the observed data {(u;, @;, y;) :
i =1,...,n} as incomplete, and introduce the unobserved Bernoulli random variables Z;;
to represent the membership of the i-th observation to the j-th component of the mixture
model, Vj = 1,...,C, such that Pr(Z;; = 1|u;, x;,y;) = m;(u;). The complete data consist
of {(us, @i, ys, 2;) i =1,...,n}, where z; = (2i1,..., 2zi0) .

At any arbitrary point u € U, the complete local log-likelihood function is given by

C(p(u);h) = ijl ZJCI Zii{logm; +log N(ys; &' B;,07) } K (u; — u)
— ijl 25:1 Zii{logm; — 2%‘? (yi — XZT,BJ-)2 — %log(ajz-)}Kh(ui —u)
Given the current value of the parameter (™ (u), at the (m + 1)-th iteration, the EM
algorithm proceeds in two steps as follows.
E-step: Since the Z;;’s are unobservable, we compute the expectation of the complete local
log-likelihood {¢ with respect to Z;j conditional on the observations {(u;, ;,y;) i =1,...,n}
and the current parameter values (™ (u). This boils down to the computation of the

conditional expectations

m "Ny 2] B, o™
1 C m m m)2
§j:17r§ )N(yi;wiTﬁj(. ),O'j( 2

foralli=1,...,nand j=1,...,C.

M-step: We maximize the objective function

n C m 1 1
Zz’:l ijl ij ){ log m; — 202 (y, - X:ﬁj)Q ) 10g<0]2')}Kh(ui —u)

J
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with respect to (7, 3;, 0]2). The locally-constant parameter updates are,
n n
(m+1 — +1) )
" )(u) = 7r](-m = Zwl(]m Kp(u; — u)/E:i:1 Kp(u; —u)
=1
By =B = (XTWMX) T XTW My
n 2
+1
3wl Kt =) (4 =<8
1=

> wi™ Ky (u; — u)

i=1

2(m+1 2(m+1
Uj( +)(u)50j( +1)

Y

where X = (zy,...,@,) , y= (y1,..-,Yn) ", and

1

W,(M)(u) = pvj(m) = diag {w(;n)Kh(Ui —u)i=1,... ’n} ]

Web Appendix F.2.2 The EM algorithm for the MPLLE. The complete (total) local log-

likelihood is given by

LS (W5 h) = Z;l Z:;l Zil Zl-j{ log m;+ + log f(yi; 0;+(:), d)N)}Kh(ui — Uy).
Given the current value of the parameter W™ at the (m+1)™ iteration, the EM algorithm
proceeds in two steps as follows.
E-step: Since the Z;;’s are unobservable, we compute the expectation of the penalized com-
plete local log-likelihood ZfL with respect to Z;; conditional on the observations {(u;, z;, v;) :
i=1,...,n} and the current parameter values ¥ (™) This indeed boils down to the compu-
tation of the conditional expectations

oy ) f (i 0 (e w), 6 (i)

wi' = m m m
T ) f (s 0 (i, i), 6 (i)
foralli=1,...,nand y=1,...,C.

M-step: The objective function @ in M-step of the modified EM algorithm in Section 5 of

the paper becomes

Q(w; w™)
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where E dlag{ :l=1,...,d} with

0 = L1/
J
R VD

The locally-constant parameter updates are, t =1,...,n,

m+1 m+1 m n
7Tj(t+ ) 7T](- + )(Ut> = sz(j )Kh(ui—ut)/zileh(ui—ut)
i=1

m m " m 1 2
53(,t = 53( H)(Ut) = arg min { Z wz(j ){ 2(m) (yz - XiTBj,t) }Kh(ui — uy)
i=1 Ot

B, +ERC
+ ;tzg%j,t}
n 2
Z wE}”)Kh(ui - Ut) (yi - XiT ](-?H))
i=1

; wg-n)Kh(ui —u)

Web Appendix F.3 The EM algorithm for the MLLE and MPLLE in t FM-VCR

We adapted the EM algorithm outlined in Yao et al. (2014) for t¢-distribution mixtures to
our penalization method for the FM-VCR models.

In a ¢ FM-VCR, the conditional density (mass) of Y|(X = x,U = u) is given by

Je(ylp(u Z% (y —x" Bj(u); 05(u), vy),

where fr is the density of a t—dlstrlbutlon with vy degrees of freedom and

Uj+1
r()

()20 (3) {1+ S,

fr(ej(u); oj(u), vy) =

}(v]-+1)/2

o

j(u)

with €;(u) =y — x' B;(u).
Let (u;, x;,y;),i = 1,...,n be the observations based on a random sample from above

model. The (conditional) log-likelihood function is given by

n C
L= Z log {Z (i) fr(ys — % B (u); 05 (us), Uj)} :

At any u € U, the local- kernel log-likelihood in (7) of the paper is given by

= Z log {Z mi fr(yi — =] Bj; 05, Uj)} K (ui — u), (A.75)

The locally constant vector of parameters is ¥ (u) = (w',¢",8/,...,8L), where n' =
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(m1,...,7c_1), @' = (01,...,0¢) and ,BJT = (Bj1,...,0B5a) for j = 1,...,C. Note that the
entries of the vector @ (u) are local constant approximations of the functions (j(u),l =
1,...,d, mj(u), and o;(u), for all j = 1,...,C. These entries clearly depend on u, and for
simplicity, we suppress u in the notation but keep it for ¥ (u).

Using (A.75), the corresponding (total) local-kernel log-likelihood in (8) of the paper is
given by

La(ih) = 37 a(th(w)ih) (A.76)

C

= Zt,i:l log {Z T fr(ys — wiTBj,ﬁ Ojit Uj)} K (ui — wy),
j=1

where W is the (n x {C(d + 2) — 1})-dimensional matrix of the locally constant vectors
’l,b(ul),Z = 1,...,7’L.
As discussed in Yao et al. (2014), a t-distribution can be represented as a scale mixture of

normal distributions as follows. Let g be the latent variable such that
lg~ N(0,0%/g), g~ Gamma(v/2,0/2),
where Gamma(a, 7) has the density

1 a a—1_-—vg
; Y - Y > O'
falgs o, 7) Ty 9 e
Then € has a marginal ¢t-distribution with degrees of freedom v and scale parameter o. The

scale mixture is used in the EM algorithm outlined below.

Web Appendix F.3.1 The EM algorithm. We view the observed data {(u;, x;,v;) : i =
1,...,n} as incomplete, and introduce the unobserved Bernoulli random variables Z;; to
represent the membership of the i-th observation to the j-th component of the mixture
model, Vj = 1,...,C, such that Pr(Z;; = 1|u;, @;,y;) = mj(u;). The complete data consist of
{(us, 3,95, 23, 9:) i = 1,...,n}, where z; = (21,...,2ic) ", and g;’s are the latent variables

in the scale mixture.
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The complete local-kernel log-Likelihood is given by

LE(W; h)
n C

- LYY e {may (wials

t=1 i=1 j=1
n C

Z DD zdn(u = ug) log(my,)

t=1 i=1 j=1

%) o (05 5) o=

n n C

FY DD 2K (s — ) log {N (yw x; Bje; ?. )}

t=1 i=1 j=1 v

n n C

+ Z Z Zzinh(Ui — uy) log {fG <gi’ = U_]>}

— < 272

t=1 i=1 j=1
The EM algorithm first computes the expected value of LS (W; h), with respect to the latent
variables (z;;, g;)’s conditional on the data, and the current parameter values W™

E-step: At the (m + 1)-th iteration, we compute

) i (35— X B () () 0,
wgm) = E(Z;| %™, data) = ’ ’
j Se i) fr (i — @ B (w); o™ (), v )

and

90" = B(g:| ¥, data, Z; = 1) = v+

5
yi—z] B (u;)

Vi+ 4§ —F——

J { U; )(’Uq) }

M-step: The MLLE parameter updates are given as follows.

(m+1) _ _(m+1)

S wi™ Ky (u; — uy)
Tt =T; (uy) =

Zi:l K (u; — uy) ’

and

-1
B = B D ) = (XTWIG X)X TG

J J J ’

where Wj(m“) = diag {wgnﬂ),z’ =1,... ,n}, Gg.mﬂ) = diag {gfjmﬂ), =1,... ,n}, and
Sl g Ky — ) (- x B

S w Y (s — w)
The updates of the regression parameters based on ridge penalty are given as
—1
BJ(TH) /3](m+1)< ) = (XTW m+1)G (m+1) 5 I 'YLixd) XTW](m+1)G(m+1)y

Vi Y
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where v > 0 is the ridge tuning parameter.

Finally, the MPLLE updates of the regression parameters are given as

-1
IB(m—i-l) _ ,Bj(mﬂ)(ut) _ <XTWng+1)G§m+1)X AT+ E(m+1)> XTW.(erl)G(.m“)y,

Jit J J J
where 0" = diag{r{" : 1 = 1,...,d} and

o _ 12 (57 1/ )
o _ 1710 |
SR [ VAV

Web Appendix F.4 Initial value for the EM algorithm

In our simulation, we obtained ¥(® by adding perturbation Gaussian noises to the true value
W0, In another approach, we first fit a finite mixture of polynomial regression coefficients
of a prespecified degree (five) with fixed (non-varying) mixing probabilities and dispersion
parameters (7, ¢;). The resulting estimates are then used as the initial value ¥ in the
modified EM algorithm. In our simulations, both approaches led to similar results. In our
analysis of the real data, we adopted the second approach by the first fitting finite a mixture
of polynomial regressions based on several randomly generated initial values.

When the dimension d is comparable to the sample size n, or there is a near-singularity
among the covariates, a ridge penalty may be applied in fitting the finite mixture of polyno-

mial regression models.

Web Appendix G. Tuning parameter and mixture order selection

In practice, one needs to choose the band-width A, the tuning parameters A;’s, and the
mixture order C'. It is computationally infeasible to simultaneously choose appropriate values

for all these parameters. We now describe data-adaptive strategies for their selection.

Web Appendix G.1 Band-width selection for smoothing

We use the idea of a multi-fold cross-validation (Geisser, 1975) for band-width selection.

Let D = {(w;,x;,y;),4 = 1,...,n} represent the full data. We partition D randomly
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into subsets P, I = 1,...,J, each of size approximately n/.J. For each [, we refer to P, and
T_, = D\ P, as test and training data, respectively. For each [, and given h, let \il,l(h) =0,
be the MLLE of ¥, by maximizing the local-kernel log-likelihood in (7) of the paper and
using the training data 7_;. Inspired by Huang et al. (2018), we compute the predictive

log-likelihood

=D ) log {Z I (yis 01, i), <z~5~,z(u@-))} : (A.77)

=1 ieP;

where 6; _(x;,u;) = g(x] Bj,_l(ui)). The predictive log-likelihood is computed over a grid of
h values, and we choose a value of h that maximizes PI(h). To reduce the effect of random
partitioning, we repeat the partitioning, say B times, and maximize an average predictive
likelihood with respect to h. In our simulation, we used J =5 and B = 10.

In what follows, we fix h at the value obtained based on the criterion in (A.77).

Web Appendix G.2 Tuning parameter for variable selection
We use a BIC-type criterion (Wang et al., 2007) for choosing a presumed common tuning
parameter \; = --- = A¢c = A for the variable selection via penalty p, in (10) of the paper.
Using this method, one may choose different A;’s by searching over a C-dimensional grid
which is computationally more expensive.

For a value A, let W,(\) be the MPLLE as in (11) of the paper. Note that to perform
variable selection, each non-parametric function 3;(u) is estimated at the points uy, ..., u,
by the vector le(A) = (Bﬂ(ul), e ,B\jl(un))T. Thus, the total number of estimated non-zero

regression functions is given by ch=1 S 1{ngl()\)H2 > 0}. We compute

BIC;(A) = —2L(F,(\)) + log n x { ch:l S Bl > 0}} X DFp,  (A.78)

where £ is the log-likelihood in (6) of the paper evaluated at W, ()), and as in Huang et al.

DFhZTKh |U|{ ——/K2 du}

(2013),
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where |U| is equal to the length of the support of the index variable U, and

= KO - 2 [ K2(w)du K(u) = 5 K+ K(u) i i
2 Ju u 2

and K * K(t) = fot K(u)K(t — u)du. In Web Appendix G.4 that follows, we compute the
degrees of freedom DF;, for the Epanechnikov Kernel. We compute the BIC over a grid of
A-values, say A1, ..., Ay, and then choose a value of A that minimizes (A.78).

In our simulation and data analysis, guided by the theory in Section 4 of the paper, for
a given n, the smoothing parameter h is chosen by maximizing the predictive log-likelihood
(A.77) over the range [0.1,2n7%2]; the tuning parameter \ is chosen by minimizing the BIC
in (A.78) over the range [107¢, 3n=045] for the AdpLASSO and over the range [107¢, 3n=0-3]

for the LASSO, sScAD, McCP. The constants involved in the ranges are chosen by trial and

error.

Web Appendix G.3 Mizture order selection

We also use a BIC for selection of the mixture order C', when it is unknown. Here, we need
to take into account the total number of non-parametric mixing probabilities and dispersion
parameters that are estimated. We compute the BIC

BIC,(C) = —2L(¥,,(C))+log n x {20—1+Z; Z; 1{|[b;,(C)]]2 > 0}} x DF,, (A.79)

~

where W, (C) is the MPLLE obtained for the fitted mixture models of different orders C' =
1,...,KC, for some pre-specified upper bound K. In Web Appendix G.4 that follows, we
compute the degrees of freedom DF; for the Epanechnikov Kernel. The mixture order is
then estimated by én that minimizes BICy(C) over 1 < C' < K. Theoretically, under the
conditions of Theorem 2 in the paper, and similar to the results of Leroux (1992), the
estimator (7” does not underestimate the true mixture order with probability tending to one
as n — co. Our simulation results show that C,, does not underestimate the mixture order,

and also the percentage of overestimation decreases as n increases.
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Web Appendix G.4 Computing the degree of freedom for the BIC

For the Epanechnikov Kernel in Web Appendix C, we have

by = mch! U] {K(O) - %/MK2(u)du},

and for the BIC given in Web Appendix G of the paper, where U is the support of the index

variable U, |U| is equal to the length of the support, and

B K(0) -1 [ K*(u)du
f K () = 1K« K(u)} du

TK
with the convolution
t
Kx K(t) = / K(u)K(t — u)du.
0

For the Epanechnikov Kernel, we have

3 ('3 3 32 2 1
K*K(t)zﬁ/o Z(l—uQ)Z( —(t—u)2)du:ﬂ(t—§t3+%t5),

and

[ tesofa - [ (foor (3o b
1

42 J, 8 4 80
= 0.2285.
Thus,

3
K(0) = —
0)=7

1 ) 1 32 o 2 3

/0 K (u)du:/o E(l—u) du:l—o,

and
3/4—3/20 1.5755
DF}, = ¥M(3/4 —3/20) =

0.2285 h h
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Web Appendix H. Additional simulation studies

Web Appendix H.1 Model Misspecification

Since our proposed estimation and variable selection method is likelihood-based, one expects
that a misspecification of the parametric form of the mixture components would, in general,
affect the performance of the method, although the degree of performance degradation
depends on how different the misspecified and the true models are. In terms of the number
of latent classes, if C' is smaller than its true value, then the fitted model converges to
an under-specified model that minimizes the Kullback-Leibler distance to the true FM-VCR
model (Leroux, 1992). Thus, we cannot make statements about the consistent estimation of
the parameters of the true model based on an under-specified model. On the other hand,
if C' is larger than its true value, then the overall behavior of the true FM-VCR model will
be captured by the over-fitted mixture model. In particular, Ho and Nguyen (2016) and Ho
et al. (2022) showed that the density function of an over-fitted standard finite mixture model
and the finite mixture of regressions (both special cases of FM-VCRs) consistently estimates
the true finite mixture density. We believe such property also holds for over-fitted FM-VCR,
although further investigation is needed to study this theoretically.

Below we investigate, through simulation, two scenarios related to model misspecification:
misspecifying the parametric form and misspecifying the number of components, with the
results presented below as (i) and (ii), respectively. Our simulations are based on the dimen-
sion d = 10 and sample sizes n = 200 and 400, representative settings of those in the paper.

The results are based on R = 100 replicates.

(i) Misspecification of the parametric form of the mixture component density
We generated random samples (u;, ;,v;),7 = 1,...,n, from a two-components FM-VCR

model with each component density set to be a t-distribution with 10 degrees of freedom,
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which has moderately heavier tails than a Gaussian distribution. The rest of the parameter
settings are the same as those in Table 1 of the Simulation Section in the paper.

Using our proposed regularization method outlined in Section 3 of the paper, we fitted
two models to the generated data: the correct ¢t FM-VCR from which the data were generated
and the misspecified Gaussian FM-VCR model. As in the paper, the simulation results are
summarized in terms of sensitivity, specificity, and estimation error (Ls). The results are
given in Web Table 7 below. Similar to the Gaussian FM-VCR model, the details of the
numerical implementation of the penalization method for a ¢ FM-VCR are now given in Web
Appendix F.3 above.

From Web Table 7, we observe that, overall, the results based on the correct ¢ FM-
VCR (upper portion of the table) are reasonable in terms of all the performance measures
under consideration. The results are roughly similar to those of Table 2 of the paper based
on the correct Gaussian FM-VCR model. As expected, the performance of the method in
Component 2 (the larger component) of the mixture is better. On the other hand, the
results (lower portion of the table) based on the misspecified Gaussian model show that the
performance of the method in terms of sensitivity and specificity generally degrades but not
dramatically in terms of sensitivity, while specificity has not been affected much. The quality
of the parameter estimates in terms of estimation error has been affected particularly in
Component 1, the smaller component. As the sample size n increases, the loss in performance
is less which is expected. Overall, the misspecification for the above parameter setting has

not affected the performance much.

(i) Misspecification of the number of mixture components (C)
We consider the Gaussian FM-VCR with the true number of components (order) C' = 2
and the same parameter setting as in Table 1 of the paper. We generated random samples

(us, @i, y;),4 = 1,...,n, from this model and fitted Gaussian FM-VCR models with orders
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C =1,2,3 and 4, to the data. For the overfitted FM-VCR models with orders C' = 3,4, we
first perform a component-matching in which we find the closest components of the over-
fitted model to those of the true model with C' = 2 and then compute the performance
measures.

The simulation results are summarized in Web Table 8. The results for the fitted misspec-
ified models with orders C' = 1,3 and 4 are compared with those from the correct order
C = 2. The one-component underfitted model with C' = 1 resembles the behavior of the
larger component of the correct model, i.e. Component 2, but with lower sensitivity and
specificity and larger estimation errors for the corresponding measures for Component 2
when C' = 2 was fitted. On the other hand, the behavior of the models with C' = 3,4 are
similar to those with the correct model but with lower estimation errors. These simulation
results are in line with the theoretical properties of over-fitted finite mixture models (Ho and
Nguyen, 2016; Ho et al., 2022), although further work is necessary to theoretically investigate

such properties for the over-fitted FM-VCR models.

Web Appendix H.2 Comparison of FMR and FM-VCR models

We generated data from a Gaussian finite mixture of regression (FMR) model (without
allowing for varying coefficients) with the number of components C' = 2, dimension d = 10,

and samples sizes n = 200 or 400. The parameter setting for the FMR model is as follows:

B/ =[-0.5,0.25,0.25,0,—0.25,0,0,0,0,0, 0],
B) =[-0.25,0.25,0,0.25,0,0,0,0,0,0,0],

o' =1[0.39,0.45], w' =][0.55,0.45].

We then fitted both Gaussian FMR and FM-VCR models to each simulated sample. The
results are given in Web Table 9. We observe that, for sensitivity, FM-VCR (the wrong

model) is generally worse (on average based on 100 replicates) than FMR (the true underlying
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model), with larger standard deviations (SD). On the other hand, for specificity, FM-VCR is
consistently better and with much smaller SD. This implies that FM-VCR selected fewer
variables, hence fewer true positives and fewer false positives, thus larger specificity and
smaller sensitivity. This result makes sense because with a more complex model and more
parameters but a fixed sample size, variables are harder to be selected as significant, especially
for the parameter setting considered above where the effects of covariates (/5;;’s) are weak.
Thus, in practice, one may fit both models to a dataset and assess the results as we have

done for our real data.

Web Appendix H.3 Alternative tuning parameter selection

In general, it is challenging to provide a universally dominant method for a data-dependent
choice of the three tuning parameters. In addition to the implementation of the sequential
selection of h and then A for a prespecified mixture order C' (Web Appendix G), here we
investigate an alternative tuning parameter selection approach, where h and A are selected
simultaneously, to see whether performance can be improved although at the expense of
greater computational intensity. Specifically, we investigate the scenario in which C' = 2,
dimension d = 10, and sample sizes n = 200,400, which was considered in the paper. The
variable selection and estimation error results are given in Web Table 10, and the time (in
seconds) are given in Web Table 11.

As we can see from the computational time results, on average, the MPLLE based on
selecting h and then \ is at least 18 times faster than the MPLLE when (h, \) are selected
simultaneously, which is expected. On the other hand, comparing the results of Web Table 10
with those in Table 2 of the paper, despite the increase in computational time, the gain in
performance of the MPLLE based on the simultaneous selection of (h,A) both in terms of

variable selection and estimation error is negligible.
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Web Appendix H.4 High-dimensions

In this section, we assess the performance of the penalization method when the dimension d
exceeds the sample size n, although this case is not covered in our theoretical results where
d is fixed as n grows.

We have considered the two-component (C' = 2) Gaussian FM-VCR model with the pa-
rameter setting given in Table 1 of the paper, dimension d = 500, and sample sizes n =
200,400. In this model, covariates (xi,z2,x4) in Component 1 and covariates (x1,z3) in
Component 2 have non-zero (;,(u), and the rest have zero coefficients. There are a total
of p = Cd+ 2C' — 1 = 1003 non-parametric functions to be estimated by the proposed
penalization method. The results are summarized in Web Table 12.

The results show that while the specificity remains high and similar to dimensions d =
5,10, 20, and 50 already considered in Example | of Section 6 in the main paper (Table 2,
and see also Web Table 2), there is some reduction in sensitivity, although the difference
is quite small when compared to d = 50, indicating that reasonable results are likely to be
obtained by the method even when the number of variables exceed the sample size.

Nevertheless, rigorous study of high-dimensional setting requires new theoretical and nu-
merical tools, which are not covered in the current paper.

In the second part of our simulation to investigate high-dimensional settings, we examined

two popular screening techniques that one could use when fitting an FM-VCR to a dataset.

(1) Screening using the Pearson’s Correlation.

We computed the sample correlation between the response and d = 500 covariates for each
simulated sample, and we kept d* = 50 top covariates with the highest correlation values.
This procedure was repeated for 100 replicated samples. Web Table 13 shows the top 20
covariates that have the highest frequencies of being selected out of the 100 replications.

Note that in our simulation, the covariates (z1, x2, 3, x4) have non-zero ;;(u)’s in the true
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data generating FM-VCR, and they all survived the screening process in all 100 replicates.
Some other covariates (those with zero §;;(u)’s, essentially noise) also survived with high fre-
quencies, necessitating the use of our FM-VCR method for further in-depth variable selection

and estimation.

(2) Screening using marginal likelihood of single-covariate FM-VCR model with C' = 2.

In this approach, via MLE, we fitted d = 500 single-covariate FM-VCR models each of
which includes intercepts and only one covariate in both components of the mixture model.
We then rank the top d* = 50 covariates based on the likelihood value of their corresponding
fitted model. This procedure was repeated for 100 replicated samples. Web Table 14 below
shows the top 20 covariates with the highest frequencies of being among the top 50’s out
of the 100 replications. Again, we can see that the covariates (x1,x2, z3,x4) that have non-
zero (;(u)’s in the true data generating FM-VCR survived the screening process in all 100

replicates, among other (noise) covariates that were in fact selected less.

Web Appendix I. More on the data analysis from the OCN study

To substantiate the need for an FM-VCR model, we carried out an analysis by fitting an
FMR model to the OCN data to show the lack of fit of this model compared to the FM-VCR
model. Specifically, using all four penalties studied in the paper, we analyzed the OCN data
by fitting FMR models with mixture orders C' = 1,2,3,4, and 5. An FMR model with two
components (C' = 2), and based on the SCAD penalty, was selected by the BIC. Similar to
the fitted sparse FM-VCR model, SNP rs7456421 was also selected in the fitted sparse FMR
model, among several other covariates. The mixing proportion of Component 1 in the FMR
model is 53% which is approximately equal to the average of the varying mixing proportion
of Component 1 in the FM-VCR model. The variance of Component 1 in the FMR model is

about 62, which is close to the average of varying variance of Component 1 in the FM-VCR



Supporting Information for “Sparse Estimation in Semi-parametric Finite Mixture of Varying Coefficient Regression Models” 53

model. However, the second component of the FMR model has a much larger variance, about
149, compared to the variance of Component 2 in the FM-VCR model (which ranges from
13 to 19 as a function of age). This much larger variance of Component 2 compared to
the variance of Component 1 in the FMR can be an indication of a misspecified model. To
demonstrate the lack of fit using the FMR model and the subsequent improvement by the
FM-VCR model, we analyzed their residuals by plotting the quantiles against their normal
counterparts. As can be seen from the QQ-plots in Web Figure 2 below, the use of FM-VCR
indeed improves the fit to the data compared to FMR, especially for Component 2.

We have also supplied two plots to provide further evidence of the varying coefficient effect
of SNP rs7456421 over the age on osteocalcin. In Web Figure 3(a), we have added the point-
wise error bars to the estimated varying coefficient plot of the SNP, where the error bars
were calculated using the EM algorithm approximation method of ?. This substantiates our
conclusion that SNP rs7456421 has an age-dependent effect on osteocalcin, and that this
SNP has a significantly negative effect at a younger age, and this effect diminishes as one
ages. Web Figure 3(b) is the derivative curve (approximated using Matlab) of the estimated
coefficient curve over age. It is evident from the plot that the underlying true derivatives are

unlikely to be constant at 0 over the age range.

Web Appendix J. Additional tables and figures

[Table 1 about here.|
[Table 2 about here.|
[Table 3 about here.]
[Table 4 about here.]
[Table 5 about here.]

[Table 6 about here.]
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[Table 7 about here.]
[Table 8 about here.]
[Table 9 about here.]
[Table 10 about here.]
[Table 11 about here.]
[Table 12 about here.]
[Table 13 about here.]
[Table 14 about here.]
[Figure 1 about here.|
[Figure 2 about here.|

[Figure 3 about here.|
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Web Figure 1: Osteocalcin data analysis; (a) The estimated effect of rs109522346 over time
in hOCN. (b) The estimated effect of rs7456421 over time in hOCN. (c) The estimated effect
of rs4074826 over time in hOCN. (d) The estimated effect of folic acid over time in hOCN.
(e) Estimated variance over time in hOCN. (f) Estimated variance over time in IOCN.
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Web Figure 2: QQ-plots of the OCN data analyses; results of FM-VCR versus FMR model.
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Web Figure 3: The non-constant effect of SNP rs7456421 on osterocalcin for Component 1
of the two-component FM-VCR model. (a) Error bar of the estimated effect size at each age;
(b) Derivatives of the non-constant effect curve.
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Web Table 1: Parameters settings for the Gaussian FM-VCR models with C' = 2, 3.

Component(j) 1 2 3

Parameters d(= 5,10, 20, 50)*

Bro(u) 9 1 1

Bj1(u) 1 4 0.5 cos(mu) 1.5sin(mu) 0

Bio(u) 1+ 0.5 cos(27mu) 0 —1.5(cos(27u))?
Bjs(u) 0 1.5 — 0.5sin(mu/2) 0

Bja(u) sin(67u) 0 1 —0.5cos(3ur/2)
ﬁjg,('d) 0 0 0

Bj}g;()(’d) 0 0 0

oj(u) 0.3e(0-54) 0.5e(=024) 0.8(0-2%)

T (u) 60.5u/<1 + 60.5u) (1 + 6O.E'm)—l o

7 (w) D51 1 05 4 D20y DT (] 4 05 4 028) (1 4 0 1 0 2o) T

1 we keep the non-zero coefficient functions le(~) the same for different values of the dimension d.
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Web Table 2: Results of Example 1: average (SD) sensitivity, specificity, and estimation errors:

C =2

- Sensitivity Specificity Ly(8)) Ly(57) Ly(7;)
Component 1 2 1 2 1 2 1 2 1 2
d=5 n = 200

Oracle — — — — 0.6504 0.1619 0.3828 0.1037 0.3209 0.1037
ML — — — — 1.0348 0.2431 0.7476 0.1273 0.3702 0.1273

raasso 0.6867(02030) 0.9483(01010) 0.9667(0.12109) 0.962200.1201) 0.9337 0.2077 0.6119 0.1182 0.5001 0.1182
weso 0701102030y 0.8467(05167) 0.8133(00653 0.8244(02136) 0.9829 0.2560 0.8119 0.1670 0.5237 0.1670
0.6822(0.1269) 0.9517(01535 0.9783(0.1009) 0972201203 0.8885 0.1632  0.5608 0.0938 0.5046 0.0938
cono 0684401066 0956701467  0.9800(01063 0.9744(01176) 0.8819 0.1655 0.5536 0.0926 0.5074 0.0926
n = 400
- - - — 0.3987 0.0831 0.2144 0.0800 0.2730 0.0800
0.5467 0.0969 0.3895 0.0749 0.2782 0.0749
raasso 0.97T8(0 0833 0.9967(00s7r  0.9983(0.00s9) 0.9967(0.0430) 0.4991 0.0819 0.2253 0.0743 0.3114 0.0743
wasso 0.98890.0500) 0.99500.0615) 0.9383(01703 0.910001709) 0.5819 0.1165 0.3759 0.0859 0.3377 0.0859
(
(

0.9833(0.0725) 1.0000(0.0000) 1.00000.0000) 0998900102y 0.4582 0.0777 0.2079 0.0735 0.3128 0.0735
coan 0.9844(0070 1.000000.0000) 1.000000.0000) 0.998900102 0.4581 0.0774 0.2074 0.0734 0.3129 0.0734

= = = — 0.6983 0.1616 0.3968 0.0887 0.3143 0.0887
- — — — 1.2296 0.2886 1.0160 0.1378 0.3355 0.1378
raasso 0.588902300) 0.8933(02502)  0.97050.0667) 0.9663(0.0610) 1.0894 0.2876 0.8483 0.1608 0.5007 0.1608
weso 0470005006 0.7750(04000)  0-9276(0.100 0.9167(00se0) 1.3206 0.3829 11522 0.2940 0.5054 0.2940
wer 0.5811(01040) 0.8950(0.0450) 0.9838(0.0450) 0.981200ss1) 1.0420 0.2378 0.7633 0.1056 0.5034 0.1056
oo 059440 157y 0891700435  0.98330.01s8) 0.9300(00s035 1.0294 0.2372  0.7612 0.1066 0.5010 0.1066
n = 400
0.4393 0.0888 0.2270 0.0816 0.2728 0.0816
— — — — 0.8776 0.1489 0.6068 0.0867 0.3374 0.0867
raasso 0.6900(01272) 0.9933(0057a) 0997100032 0.9954(0.0004) 0.8079 0.1654  0.3905 0.0692 0.4110 0.0692
meso 0.7656(0.030 0.9700(01650)  0.9705(0.0657 0.9617(00sss) 0.8617 0.2322  0.5176 0.1076 0.4249 0.1076
(
(

MLLE

MeP 0.6922(0.1042) 0.9917(0.0641) 0.9971(0.0200) 0.9983(0.0144y 0.7892 0.1455 0.3745 0.0616 0.4119 0.0616
SCAD 0.6878(0.00979) 0.9917(0.0641)  0.9962(0.0231) 0.99790.0160) 0.7919 0.1463 0.3768 0.0620 0.4122 0.0620

— - - — 0.6147 0.0952 0.2975 0.0790 0.3133 0.0790
— — — — 1.3671 0.2255 1.3035 0.0821 0.3835 0.0821
aamasso 0.6456(0.1153  0.9433(02005  0.9814(0.0431) 0.98390 06 0.9140 0.2692 0.7131 0.0563 0.4878 0.0563
eso 0.6567(0.1200) 0.9533(01s70)  0.9629(0.0557 0.9524(0 0532y 0.9240 0.3363  0.8963 0.0563 0.4940 0.0563
0.6433(0.1212) 0.9533(01085) 0.9941(0.007) 099550001y 0.9149 0.2200 0.6193 0.0520 0.4673 0.0520
coan 064110 1065y 0.9467(05061) 0.9943(0.027 0.9957(00211) 0.9183 0.2270  0.6333 0.0524 0.4721 0.0524
n = 400
= = = — 0.3533 0.0721 0.2108 0.0670 0.2515 0.0670
— — — — 0.9120 0.1019 0.6161 0.0377 0.4234 0.0377
rarasso 0.6678(0.0102 0.9978(003s5)  0.9986(0. 0145y 0.9996(0 0015y 0.7984 0.1697 0.4171 0.0356 0.4844 0.0356
weso 07156018 1.000000.0000)  0-9780(0.0s51) 0.9694(00s12) 0.8226 0.2373  0.5234 0.0365 0.4995 0.0365
wer 0.6667(0.0072) 0.9967(00577) 0.9994 (00102 0.9996(0.0065y 0.7962 0.1589 0.4331 0.0360 0.4808 0.0360
oo 0.6678(0.0510) 0.99670.0577)  0.99920.010m7 0.9996(00065) 0.7961 0.1588 0.4331 0.0360 0.4806 0.0360

MLLE

MLLE

= - = — 0.7270 0.1672 0.3934 0.0968 0.2946 0.0968

— — — — 2.0960 0.2002 2.0600 0.0808 0.1598 0.0808

aamasso 0.54T8(0o1s8) 0.763303307  0.988200150) 0.98950.015m  1.2587 0.2045 1.0778 0.1649 0.4606 0.1649

wsso 0.5067(00s52) 0.698304145) 0.98730014m 0.987200150 1.3616 0.3737 1.2348 0.2622 0.4830 0.2622

wee  0.5567(01617) 0821702065  0.992300105 0.99250010m 1.2601 0.2437 1.0173 0.1137 0.3995 0.1137
(

coan 0557801589y 0.8283(00m3)  0.99300.0102 0.9926(0.0100 1.2481 0.2397 1.0028 0.1117 0.4045 0.1117
n = 400

— — — — 0.4701 0.1410 0.3067 0.0957 0.2988 0.0957
— — — — 1.8860 0.2506 1.6380 0.1881 0.2752 0.1881

Oracle

MLLE

samasso 0.612200.1660)  0.8783(022009)  0.9906(0.015) 0.9926(00105) 1.1289 0.2968 0.8221 0.0953 0.5259 0.0953
sso 0.6067(0.203) 0.8750(0.2500) 0-9887(0.0156) 0.9891 (0016 1.1621 0.3373  0.8745 0.1454 0.5231 0.1454
0.6067(01505) 0.8900(0.2075) 0.9950(0.0092) 0.9953(0.0089) 1.0893 0.2396 0.7811 0.0676 0.5090 0.0676
oo 0.5978(01s56) 0.8833(00118)  0.9948(0.000s) 0.9951(00000) 1.1050 0.2428 0.7983 0.0688 0.5053 0.0688
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Web Table 3: Results of Example 1: average (SD) sensitivity, specificity, and estimation errors:

C =
Sensitivity Specificity Ly(B;) Ly(52) Ly(%))
1 2 3 I 2 3 I 2 3 I 2 3 I 2 3
n = 200
p— 11339 04871 0.0875 0.7438 0.2002 0.0865 1.0024 0.2325 0.0517
1.6500 04347 0.1254 1.8838 0.3828 0.1070 1.6658 0.2806 0.0709
aasso 0.4700(0 2689y 0.4000(0.4100) 0.5567(0 3850y 0.8350(02125 0.7844(02107) 0.87220206) 1.6441 0.5469 0.2052 1.8992 0.4338 0.1766 1.5472 0.3074 0.1055
o 0.4644(0001) 0.3483(04329) 0.4833(05677)  0.7417(02560) 0.7978(02261) 0.8544(02030) 1.7766 0.6021 02767 2.1098 0.4487 0.2314 1.6641 0.3258 0.1348
0.4589(0.2361) 0.4267(0.4105 0.5567(03s16) 0.8417(02365) 0.7833(0.2363 0.8856(0200 1.6661 0.5162 0.1561 1.8239 0.4479 0.1346 1.6039 0.3143 0.0860
04722002337 0.4267(0.1085) 0.5517(05812) 0.8383(02013) 0.7800(02102) 0.8778(02105) 1.6562 0.5188 0.1483 1.8079 0.4530 0.1272 1.6232 0.3124 0.0861
n =400
— — — — — — 0.7176 0.3614 0.0662 0.3425 0.1530 0.0659 0.6768 0.2011 0.0549
— — — — — — 1.2502 0.4340 0.0896 1.3935 0.3189 0.0766 1.2189 0.2185 0.0532
aasso 0.6011(01535) 0.6833(0.1086) 0.8517(03122) 0.86830006) 0.832200381) 0.902200001) 12151 0.4796 0.0988 1.2501 0.3418 0.0859 1.0994 0.2273 0.0541
o 0.6544(0.0150) 0.5483(04502) 0.8233(0339) 0.7467(0.5602) 0.766702503 0.7867(02536) 1.2838 0.5554 0.1691 1.5429 0.3721 0.1500 1.1995 0.2440 0.0691
0.590000.1532) 0.7117(0 3508 0.8600(03001 0.8750(02160) 0.8333(0.2360) 0.9167(010sr 1.2334 0.4681 0.0849 1.2412 0.3263 0.0755 1.0959 0.2326 0.0509
0.5956(0.1447) 0.7133(03520) 0.8617(03088) 0.8783(02100) 0.83330353 0.9111(0206) 1.2209 0.4633 0.0825 1.2322 0.3268 0.0730 1.0902 0.2345 0.0501
n =600
I — - — — — — 04931 0.3087 0.0734 0.3156 0.1236 0.0690 0.4868 0.1796 0.0543
— — — — — 0.8025 0.3754 0.1115 0.9222 0.1933 0.0932 0.8227 0.1839 0.0588
ramasso 0.73440 1507 0.7983 (03020 0. <>217(019%) 0.9150(0.1551) 0.928901503 0.97890.0000) 0.8513 04528 0.1154 0.8243 02104 0.1012 0.7135 0.1739 0.0568
o 0.85890.17s0) 0.6617(0.608) 0.9167(000r1)  0.7717(0.2625) 0.9056(0.0120) 0.7444(00736) 0.8996 0.5195 0.1626 1.1124 0.2676 0.1385 0.9293 0.1838 0.0631
0.8367(0.1530) 0.8517(03350) 0.9767(01133) 0.9133(01s96) 0.8978(0.2070) 0.9467(01504) 0.7811 0.4085 0.1024 0.7399 0.1825 0.0864 0.5831 0.1728 0.0554
0.8333(0.1530) 0.8583(03058) 0.9767(0m133) 0.9167(01s67) 0.8967(002s2) 0.9444(0146) 0.7975 0.4116 0.1033 0.7482 0.1825 0.0877 0.5821 0.1732 0.0553
n = 800
04614 0.3326 0.0619 0.2413 0.0986 0.0584 0.4829 0.1581 0.0486
— — — — — — 0.9958 0.3702 0.0905 1.1395 0.2504 0.0812 0.8393 0.1799 0.0512
samasso 0.7833(0234m) 0.7T17(0 3523 0.9383(02133)  0.8633(0.2232) 0.818%02000) 0.9633(01208) 0.9786 0.4266 0.0942 0.9848 0.2471 0.0841 0.7121 0.1696 0.0537
o 0.8733(0.2220) 0.7583(03500) 0.9450(0.1000) 0.7833(02551) 0.7000(03231) 0.7411(02671) 1.0108 0.4708 0.1242 1.1539 0.3030 0.1123 0.8866 0.1700 0.0579
0.8411(02365) 0.8500(02815 0.9633017a)  0.8383(02343) 0.7856(02003 0.9167(01s31) 0.9485 0.3770 0.0784 0.9249 0.2235 0.0716 0.6262 0.1631 0.0476
0.83780.031) 0.8517(02813 0.9600(017s1)  0.8450(0.2316) 0.7867(0086m) 0-9222017s4) 0.9638 0.3764 0.0773  0.9287 0.2276 0.0713  0.6278 0.1629 0.0473
d=10  n=200 T
p— 0.9505 0.4974 0.1277 0.9805 0.3235 0.1182 0.8308 0.2478 0.0637
14183 04360 0.1719 24018 0.3248 0.1455 1.7147 0.4082 0.0742
samasso 0497800565 0.3367(0.4069) 0.5333(0.4076)  0.9595(0.0m15) 0.936200072 0.9625007a1) 1.3498 0.6338 02486 1.9354 0.4319 02061 1.3817 0.3126 0.0996
o 0501100003 0.2700(0.4175) 0.4517(05088) 0.9124(00s06) 0.93330002) 0.9483(00r0n 1.4418 0.6559 0.3217 2.1788 0.4406 02604 1.5181 0.3373 0.1123
0485600200 0.4033(03000) 0.5733(03575) 0.9643(00652) 0912101185 0.9658(00s10) 1.3085 0.5850 0.1633 1.9423 0.4015 0.1397 1.2839 0.3119 0.0833
0.4900(0.1002) 0.4083(03011) 0.5767(03032) 0.9657(0p6as) 0901201317 0.9596(0 000 1.3065 0.5855 0.1556 1.9433 0.4122 0.1330 1.3086 0.3125 0.0836
n =400
s — — — — — — 0.7064 0.3682 0.1009 0.5835 0.1737 0.0958 0.5880 0.1974 0.0578
— — — — — 11659 0.4723 0.1869 1.8652 0.2792 0.1559 1.0682 0.222 0.0531
aasso 0.6333(01430)  0-5383(0.4601) 09083(02430) 0.9376(0.0m10) 0.9438(0102) 0.9792(0.0530) 1.0881 0.5651 0.1851 1.4778 0.2902 0.1525 0.8380 0.2063 0.0569
o 0638902155 0.37330.4710) 0.8283(03165)  0.8990(00ms1) 0.94540 0010 0.9312010s7 1.1901 0.6027 02640 1.7628 0.3562 0.2239 0.9875 0.2344 0.0670
0.6033(0.1302) 0.5967(0.4131) 0.9333(01075) 0.9443(007a7) 0.9054(01385 0.9821(0ps35) 1.1059 0.5332 0.1566 1.5774 0.2718 0.1274 0.8055 0.1920 0.0517
0.6111(0.1305) 0.6083(04356 0.9283(01070) 0.9490(0073) 0901701475y 0.9788(00006) 1.0858 0.5366 0.1554 1.5586 0.2647 0.1280 0.8064 0.1931 0.0491
n =600
I = = = — — — 0.6282 0.3691 0.0699 0.3349 0.1507 0.0656 0.6261 0.1922 0.0539
— — — — — — 15853 04621 0.1178 1.8785 04041 0.0933 1.6192 0.2246 0.0626
samasso 0554401570 0.5050(0.435m 0.7183(0.4005)  0.9300(0.0731) 0.8717(01205 0.9308(01012) 1.5225 0.5138 0.1287 1.7028 0.4685 0.0957 1.4546 0.2560 0.0718
o 0.5567(0.0305) 0.4733(0a56) 0.6817(0u20  0.8943(00s17) 0.842901506) 0.8717(0151 1.5624 0.5539 0.1808 1.8107 0.4890 0.1378 1.5342 0.2823 0.0951
0.5467(0.1758) 0.5250(0.427) 0.7400(03010) 0.9319(00s3s) 0.869200.1263 0.9308(01023) 1.5513 0.4919 0.1099 1.7320 0.4426 0.0853 1.4713 0.2486 0.0604
0.54440.1763) 0.5233(0.4920) 0.7367(03ss8) 0.9262(00ss6) 0870401232y 0.9308(0103) 1.5480 0.4922 0.1090 1.7370 0.4425 0.0843 14715 0.2517 0.0598
n = 800
. - - - — — — 04334 0.3366 0.0730 0.3427 0.1056 0.0690 0.4247 0.1583 0.0494
— — — — — 0.9388 0.4102 0.1100 1.0839 0.1892 0.0962 0.9063 0.1567 0.0424
santasso 0687801121y 0.8150(0.3747) 09700(01500) 0.9714(0.0572) 0.9658(00s20) 0.99420006) 0.8708 04872 0.0964 0.7564 0.2115 0.0852 0.6450 0.1744 0.0402
o 0.73780.104m 0.798303020) 0.9567(0.1013) 0.961900033) 0.957%00sr 0.901201174) 0.9325 05133 0.1156 0.8413 0.2873 0.1076 0.7948 0.1757 0.0426
0.737810.1516) 0.8467(03369) 0.9867(0.0005) 0.9710(0.063) 0.93040.1610) 0-972900666) 0.8441 0.4815 0.0949 0.8760 0.1912 0.0812 0.5877 0.1680 0.0416
0.7322(0.1510) 0.8617(03168 0.9850(0.00a) 0.9700(0.0619) 0920401853 0.9708(00s3s) 0.8497 0.4811 0.0947 0.8860 0.1905 0.0816 0.5908 0.1714 0.0411
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Web Table 4: Results of Example 1: average (SD) sensitivity, specificity, and estimation errors:
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C = 3. (Continued from Table 3).
Sensitivity Specificity Ly(B;) Ly(52) Ly(%))
T 2 3 T 2 3 T 2 3 T 2 3 T 7 3
n = 200
s 0.8847 04505 0.0692 0.6231 0.2354 0.0825 0.9026 0.3294 0.0928
24150 0.2449 0.0865 3.0950 0.2591 0.0847 2.6280 0.5813 0.0955
aaasso 0.39220701) 01333000615 0-122202015) 098550032 0.9486(0052) 0.9496(0 0528y 1.5544 0.6677 0.1387 2.3229 05798 0.1672 2.1041 0.4115 0.1683
o 0.4956(0.9m10) 0.1422096s1) 0178900741y 0.9847(001s6) 0.9431L00721) 0.9294(00m05) 1.4868 0.6605 0.1442 2.2727 0.5143 0.1858 2.0811 0.4245 0.1772
0.4611(0.2475) 0.2033(03128) 0.198902705) 0.9825(00157) 0.929000650) 0.9190(00610) 1.4237 0.5401 0.0959 2.3932 0.4939 0.1378 2.1098 0.3868 0.1477
0.4456(0.2506) 0.1978(03026) 0.1844(02630) 0.9814(00150) 0.92550067s) 0.912500670) 1.4476 0.5579 0.0970 2.3869 0.5199 0.1320 2.1923 0.3921 0.1427
n =400
— - - — — — 0.6117 0.3402 0.0597 0.3602 0.1264 0.0694 0.6735 02347 0.0743
— — — — — — 15067 0.4131 00789 2.7800 0.3614 0.1365 2.2260 0.4047 0.1324
sarasso 0.59890 1035 0-3044(05560) 030110 a708) 0992000303 0.891201011) 0.8876(00p03) 1.0889 0.5669 0.0635 2.0191 0.5990 0.1172 1.8476 0.3394 0.1215
psso 0.6211ga010) 0.2844(05775) 0.3344(05509)  0.9802(0.0102 0-8908(01065) 0.876900si0) 11582 0.5837 0.0752 20132 0.6125 0.1427 1.8449 0.3669 0.1568
0.6256(01422) 0.2944(05002) 0.290003881) 0.99310.0200) 0-8990(00703) 0.8878007sm 0.9780 0.5352 0.0528 21200 0.5278 0.0948 2.0148 0.3719 0.0934
0.6278(01576) 0.28%90300m 0291105813 0.992900s36) 0-8951(0psas) 0.8876(007a0) 0.9744 0.5253 0.0530 21205 05399 0.0920 2.0125 0.3692 0.0937
n =600
I — - — — — — 05206 0.3012 0.0575 0.2014 0.1123 0.0620 05303 0.2013 0.0652
— — — — — 1.0740 0.3920 0.0515 2.2576 0.3473 0.1071 1.9200 0.3376 0.1099
santasso 0.6456(0.1216) 0.4567(0.4655) 0. 4567(04807) 0993300357 0.8822(0.1231) 0.8873(00755) 0.9047 0.4913 0.0428 1.6734 0.5258 0.0617 1.6541 0.3080 0.0686
ssso 0.6567ar) 0.4600(04621) 0475604759 0.9810(0.010 0860401205 0.853900s20) 0.9382 0.4920 0.0467 1.7238 0.6113 0.0763 1.6019 0.2769 0.0856
0.6544 (0 0916) 0.4333(0.4712) 0.468%0amss)  0.99450311) 089470007 0.8992000s51) 0.8688 0.4742 0.0426 1.8228 0.4525 0.0625 1.7317 0.3384 0.0647
0653300801y 0-4344(0.4751) 04578 7rr)  0.99430031 0895700001 0.9012(00s51) 0.8666 0.4774 0.0415 1.8015 04540 0.0585 1.7368 0.3476 0.0598
n = 800
0.4053 03002 0.0544 0.2182 0.0958 0.0538 0.4650 0.1791 0.0596
— — — — — — 0.9461 0.4178 0.0391 1.7950 0.3703 0.0663 1.8255 0.3372 0.0729
sanasso 0661100745 0.5011 (0 4535) 0.9988(0.0141) 0.8976(01083 0.8990(00sar) 0.8429 04953 0.0361 1.4930 0.5105 0.0498 1.5919 0.2987 0.0569
o 0.68780.1216) 0.5400(0.4500) 0.9857(0.0362) 0.8582(01325) 0.8486(0.0s00) 0.8838 05161 0.0363 1.5547 0.5969 0.0586 1.5479 0.2557 0.0662
0.66560.0510) 0.5000(0.4903) 0.9988(0.0127) 0.906500030) 0.9051(0085) 0.8150 0.4965 0.0345 1.5933 0.4380 0.0495 1.6502 0.3203 0.0516
0.6656(0.0510) 0.49890.1506) 0.9984(0.0166) 0-9045(0.0965, 0.90510s65) 0.8149 0.4966 0.0343 1.5000 0.4413 0.0505 1.6569 0.3208 0.0529
d=50 n=200 T
- 11880 0.4564 0.0926 0.7124 0.2652 0.0951 0.9451 0.2230 0.0597
40.344 02321 0.0663 125.66 0.2723 0.0514 32176 0.8198 0.0608
saasso 0.468903352) 0.4217(0.4065) 04383105707  0.8240(00451 0.806202585 0.7938(0256) 2.1951 04730 02227 2.3250 0.4201 0.1927 2.3168 0.3967 0.1750
o 041330101 0.30170.410 0.3450005117)  0.9848(00011) 0.9776(0.0265 0.9744(000ss) 2.1437 0.5992 02835 2.3110 0.4974 02434 2.0452 0.3191 0.1897
0.3933(0.2332) 0.3350(03505 0.4033(05712) 0.9841(00s10) 0.9703(00832) 0.9708(00s2s) 2.5522 0.5669 0.1513 2.2695 0.4985 0.1327 24620 0.2859 0.1112
0.400000.2320) 0.3317(03130) 0.4050(05772) 0.9811(0ps2s) 0970200830y 0.9703(00s2r) 2.5530 0.5914 0.1524 3.2542 0.5091 0.1344 25090 0.2837 0.1159
n =400
s — — — — — — 0.8292 0.4252 0.0808 0.5226 0.2399 0.0835 0.7582 0.2307 0.0641
— — — — — 2.6560 0.1830 0.0777 3.2830 0.2087 0.0505 3.7560 0.7442 0.0463
sarasso 0.3767(02360)  0-3017(0.3550) 04400(03979) 0989500113 0.9801(00075 098200025 1.7019 0.6798 0.2610 2.1450 0.6171 0.2076 15710 0.2986 0.1125
msso 051562657 031830 4s36) 0-5983(03s00  0.9841(0.0110) 0.9753(002ss) 0.9850(00205) 1.5590 0.6283 0.3020 2.0440 0.5326 0.2386 1.4284 0.3122 0.1139
0444400 1031 0.3533(0.4050) 0.66170.1086) 0.9861 (00207 097590061 0.9836(0.0269) 1.5994 0.5609 0.1893 20424 0.5460 0.1432 1.4424 0.2625 0.0808
0.4389(0.1508) 0.3317(03050) 0.6550(0.1132) 0.9864(00160) 0974400263 0.9838(00250) 1.6486 0.5602 0.1897 2.0740 0.5373 0.1452 14756 0.2723 0.0823
n = 600
I = = = — — — 0.7489 0.3810 0.0840 0.4102 0.1602 0.0902 0.6591 0.2147 0.0603
— — — — — — 1.9910 04178 0.1770 3.3130 0.3138 0.1285 3.3190 0.6631 0.0730
ramasso 0.49222009) 0.3183(04021) 0.5867(0.361  0.9847(0.0110) 0.9798(00230) 0.9807(0p2s1) 14228 0.6366 0.2343 2.1166 0.5214 0.1771 1.2459 0.2997 0.0858
ssso 054000 21s9) 0-2533(04090) 0-6017(05071) 0.9832(0.0002 0.9768(0032s) 0.9853(00251) 14331 0.6275 0.3046 2.1956 0.5131 0.2200 1.2370 0.3321 0.1055
0.5078(01776) 0-3450(0.5067) 0-8283(02072 0.98550.0116) 0964900362 0-98720.0305 1.4685 0.5357 0.1772 21265 0.4445 0.1354 1.1316 0.2397 0.0636
0.4867(01703) 0.3633(03575) 0-821703009) 0.9855(00120) 0-963200303) 0.98590.0511) 1.4795 0.5362 0.1750 2.0962 04475 0.1354 1.1242 0.2492 0.0634
n = 800
. - - - — — — 05805 0.3965 0.0993 0.4517 0.1583 0.0967 05172 0.1903 0.0560
— — - — — — 16200 0.5005 0.2281 3.2746 0.3564 0.1757 2.5160 0.5238 0.0697
samasso 0567801731y 0.3733(0.42rm 0.7950(05177)  0.9853(00102) 0.9795(00215) 0.9884(0000  1.2957 0.6338 02102 1.9223 0.4454 0.1576 0.9566 0.2544 0.0685
o 0617801000 0.3567(04370) 0.8117(05063) 0.9836(00102) 0.982300201) 0.9803(00031) 1.2639 0.6388 02336 1.9158 0.4390 0.1775 1.0092 0.2894 0.0780
0.5644(01656) 0.4300(0.5015) 0.940001007 0.984500149) 0.9619001g0) 0.99350.0185 1.3264 0.5506 0.1822 20416 0.3556 0.1493 0.7944 0.1909 0.0509
0.5544(01660) 0.4483(0.5700) 0.928302150) 0.98550.0153 0.9556(00543) 0.9922(0.020m 1.3555 0.5579 0.1771 20526 0.3569 0.1443 0.8089 0.1938 0.0515
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Web Table 5: Results of Example 2: Average (SD) sensitivity, specificity, and estimation

eIrors:

(C =2,d=5,n=200).

Griteria Sensitivity Specificity Ly(B;) Ly(62) Ly(7;)
Component 1 2 1 2 1 2 1 2 1 2
p—005

Oracle — — — — 1.1871 0.0771 0.7560 0.0919 0.0765 0.0919
MLLE — — — — 1.5363 0.0678 1.3980 0.0926 0.0740 0.0926
AdpLASSO 0.0878(0.1831) 0.5883(0.3630) 0.8933(0.2002) 0.9889¢0.0763y 1.7500 0.1263 1.2046 0.1338 0.1192 0.1338
Lasso 0.0822(0.1063 0.6117(0.1000) 0.8983(0.205m 0.9578(0130)  1.7360 0.1348  1.2040 0.1390 0.1189 0.1390
wer 04211105000 0.6517(0069) 0.8917(02103 0.9467(01310) 1.5986 0.0888 1.2499 0.1020 0.0956 0.1029
coan 04311105075 0.6600(02005 0.8933(0.2002) 0.9456(01260 1.5994 0.0903 12441 0.1038 0.0950 0.1038
p=0.1

Oracle — — — — 0.9970 0.0825 0.6118 0.0724 0.0991 0.0724
MLLE 1.3279 0.0844 1.0951 0.0863 0.0976 0.0863
AdpLASSO 0.2611(9.2017y 0.7367(0.3307) 0.8950(0.2198) 0.9667(0.1377y 1.6326 0.1669 1.0047 0.1540 0.1623 0.1540
LASSO 0.3211(9.3375) 0.6983(0.3877) 0.8667(0.2532) 0.8889(0.2152) 1.6067 0.1777 1.1127 0.1582 0.1578 0.1582
MeP 0.5511p.2833) 0.8167(0.2613y 0.9067(0.1951) 0.9667(0.1107y 1.3219 0.0977  0.9244 0.0872 0.1384 0.0872
scap 0.55449.2853) 0.8200(0.2572) 0.9067(0.1951) 0.9656(0.1121) 1.3189 0.0984  0.9256 0.0872 0.1370 0.0872
p=0.2

Oracle — — — — 0.9110 0.1351 0.4973 0.0793 0.2097 0.0793
ML — — — — 1.1351 0.1387 0.8888 0.0935 0.1902 0.0935
AdpLASSO 0.6233(0.2808) 0.8933(0.2450) 0.9483(0.1681) 0.9411(0.1562) 1.2894 0.1804 0.7608 0.1096 0.2777 0.1096
LASSO 0.6611(p.3550) 0.8550(0.3030) 0.8750(0.2492) 0.7433(0.2003) 1.3308 0.2158 0.9016 0.1253 0.2633 0.1253
Mo 0.6400(0.2215) 0.9100(0.1967y  0.9550(0.1433) 0.95890.1105) 1.0720 0.1371 0.7125 0.0820 0.2793 0.0820
scaD 0.6478(0.2232) 0.9167(0.1911)  0.9567(0.1409) 0.9567(0.1218) 1.0636 0.1386 0.7111 0.0819 0.2787 0.0819
p=0.3

Oracle — — — — 0.8549 0.1253 0.5063 0.0858 0.2964 0.0858
MLLE — — — — 1.0499 0.1552 0.8202 0.0929 0.3081 0.0929
sasso 0.5878(0.253 0.8850(02605  0.9700(0.1189) 0.9322001371) 11651 0.2074 07959 0.1184 0.3692 0.1184
Lasso 0.5822005181 0.8567(02011) 0.8933(0.2216) 0.84220201 1.2739 0.2632 0.9632 0.1585 0.3676 0.1585
wer 0.6022(0.1615 0.8900(0.2110)  0.9683(0.1220) 0.9733(0.0005 0.9990 0.1418 0.6924 0.0799 0.3990 0.0799
coan 0.6089(0.1620) 0.9017(02101) 0.9667(0.1240) 0.9733(0.004 0.9956 0.1412 0.6828 0.0823 0.3946 0.0823
p=04

Oracle 0.9225 0.1649 0.5525 0.0980 0.3561 0.0980
LB 1.1974 0.2172 0.9813 0.1080 0.3574 0.1080
AdpLASSO 0.4978(0.2993) 0.8600(0.2720) 0.9233(0.1805) 0.9189(0.1581) 1.4347 0.3391  0.9183 0.1653 0.4358 0.1653
LASSO 0.4611(0.3782) 0.8283(0.3082) 0.8800(0.2326) 0.8278(p.2305) 1.6320 0.4374 1.1354 0.2329 0.4210 0.2329
MeP 0.5667(0.1937y 0.8767(0.2330) 0.9250(0.1788) 0.94679.1283) 1.1739 0.2178  0.7907 0.0997 0.4791 0.0997
scap 0.5678(0.1972) 0.8833(0.2307)  0.9233(0.1805) 0.9467(p.1283) 1.1718 0.2147  0.7915 0.0983 0.4769 0.0983
p=05

Oracle — — — — 0.9803 0.1717 0.5442 0.1024 0.4244 0.1024
MLLE — — — — 1.3809 0.2466 1.2807 0.1315 0.4193 0.1315
AdpLASSO 0.4678(0.2650) 0.6867(0.3660) 0.8450(0.2316) 0.9033(0.1720) 1.6332 0.3705 1.2317 0.1791 0.5217 0.1791
LASSO 0.4300(0.3083) 0.6383(0.4007) 0.8383(0.2548) 0.8744(g2062) 1.9366 0.4615 1.5444 0.2358 0.5642 0.2358
e 0.51449.2080) 0.7417(0.3433y 0.8400(0.2336) 0.8956(0.1506) 1.4062 0.2975 1.0925 0.1239 0.5012 0.1239
scAD 0.5156(0.2061) 0.7417(0.3383) 0.8383(0.2343) 0.8900(0.1728) 1.4023 0.2993 1.1004 0.1246 0.5083 0.1246
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Web Table 6: Results of Example 2: Average (SD) sensitivity, specificity, and estimation

eIrrors:

(C =2,d=5,n = 400).

Griteria Sensitivity Specificity Ly(B;) Ly(62) Ly(7;)
Component 1 2 1 2 1 2 1 2 1 2
p—005

Oracle — — — — 0.9785 0.0572 0.5666 0.0657 0.0609 0.0657
MLLE — — — — 1.3969 0.0650 1.1504 0.0748 0.0758 0.0748
sssso 01967 02ms 0.70670552m  0.8867(0223 0.97890155 1.6640 01458 1.0619 01949 0.1355 0.1949
Lasso 0.2322(05060 0.6600(05710) 0.8700(0.2552) 0.8533(02360) 1.6322 0.1719 11591 0.2366 0.1429 0.2366
wer 0.6044(00101 0.8433(0210m  0.8783(02140) 0.9544(01210) 1.3575 0.0695 1.0012 0.0881 0.0883 0.0881
coan 0.6244(0.2330) 0.8583(02365  0.8767(02150) 0.9433(01300 1.3490 0.0681 1.0176 0.0861 0.0875 0.0861
p=0.1

Oracle — — — — 0.7820 0.0814 0.4509 0.0739 0.1127 0.0739
MLE 1.2497 0.0990 0.9775 0.0916 0.1111 0.0916
sasso 0543300030 0.821700ms  0.903302101) 0.936701e 13122 0.1192 0.8449 0.1247 0.1805 0.1247
LASSO 0.5411g.3670) 0.7817(0.3320) 0.8933(0.2283) 0.8200(0.2442) 1.3590 0.1473  0.9677 0.1489 0.1835 0.1489
MeP 0.6489(0.2447) 0.8583(0.2330) 0.9083(0.1938) 0.9400(0.1394y 1.1660 0.0959 0.8370 0.0806 0.1529 0.0806
scap 0.6656(0.2384) 0.8667(0.2252) 0.9100(0.1924) 0.9278(p.1529) 1.1679 0.0956 0.8470 0.0806 0.1506 0.0806
p=0.2

Oracle — — — — 0.5718 0.0882 0.3571 0.0822 0.1707 0.0822
ML — — — — 0.9225 0.1090 0.6945 0.0853 0.1805 0.0853
AdpLASSO 0.67890.2703) 0.9233(0.1039)  0.9650(0.1278) 0.96449.1197y 1.0680 0.1257 0.6026 0.1044 0.2490 0.1044
LASSO 0.4867(0.4440) 0.7850(0.2856) 0.9367(0.1810) 0.9000(0.2103) 1.3737 0.2918 0.9929 0.2213 0.2328 0.2213
Mo 0.6644(.1442) 0.9500(0.1503)  0.9633(0.1306) 0.9733(0.0046) 0.9195 0.0933 0.5101 0.0733 0.2413 0.0733
scaD 0.6667(0.1363) 0.9517(0.1480) 0.9633(0.1306) 0.9733(0.0046) 0.9138 0.0927  0.5069 0.0731 0.2403 0.0731
p=0.3

Oracle — — — — 0.5387 0.0911 0.3518 0.0846 0.2383 0.0846
MLLE — — — — 0.7801 0.1099 0.5970 0.0855 0.2577 0.0855
samasso 0.85330.2513  0.9833(01069)  0.9917(0061) 0.9922000635 0.8353 01166 0.4036 0.0924 03013 0.0924
Lasso 0.7033(0.4308) 0.9683(0.1a11)  0.9750(0.1002) 0.9711(01ssy 1.1928 02378 07511 0.1774 03229 0.1774
wer 0.732200.1353  0.990000.0701)  0.9900(0.0701) 0.9900(0.0631 0.8046 0.0941 0.3946 0.0786 0.3138 0.0786
SCAD 0.7344(9.1573)  0.9900(0.0701)  0.9883(0.0756) 0.9900(0.0631) 0.8013 0.0949 0.3934 0.0787 0.3132 0.0787
p=04

Oracle 0.5475 0.0976 0.3481 0.0840 0.2983 0.0840
MLLE 1.0006 0.1478 0.8966 0.0999 0.2903 0.0999
AdpLASSO 0.7189(0.3605) 0.9233(0.2143)  0.9433(0.1588) 0.9478(0.1654y 1.1094 0.2103  0.7081 0.1482 0.3535 0.1482
LASSO 0.6500(0.4008) 0.9167(0.2482) 0.9033(0.1978) 0.8700(0.2009) 1.4012 0.3134 1.0900 0.2231 0.3691 0.2231
MeP 0.7533(0.2262) 0.9433(0.1588)  0.9367(0.1666) 0.9478(0.1513) 0.9008 0.1353  0.5396 0.0890 0.3476 0.0890
scap 0.74890.2200 0.9417(0.1608) 0.9367(0.1666) 0.-9478(0.1513y 0.9080 0.1382  0.5417 0.0889 0.3508 0.0889
p=05

Oracle — — — — 0.7021 0.1657 0.4427 0.1008 0.3494 0.1008
MLLE — — — — 1.0445 0.1685 0.9230 0.1127 0.3283 0.1127
AdpLASSO 0.54890.4164) 0.9017(0.2704) 0.9433(0.1588) 0.9756(0.1063) 1.3950 0.3236  0.9470 0.2220 0.4022 0.2220
o 05311040 0.88500550 0910001067 0.883301065 16108 03979 12015 02812 0.4112 0.2812
e 0.7178(0.1994) 0.94170.1608)  0.9433(0.1588) 0.9322¢0.1620) 0.9891 0.1540 0.5544 0.0961 0.4057 0.0961
scAD 0.7078(0.1951) 0.9400(0.1678)  0.9433(0.1588) 0.9433(0.1497y  0.9994 0.1551  0.5451 0.0947 0.4111 0.0947
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Web Table 7: Average (SD) sensitivity, specificity, and estimation errors over 100 replicates.

C =2 Criteria Sensitivity Specificity L2(B;) L2(52) La(%;)
d n Component 1 2 1 2 1 2 1 2 1 2
Correct model: t FM-VCR
10 200 Oracle — — — — 303 .214 171 .249 .098 .098
MLLE — — — — 474 .420 .333 .326 .153 .153
AdpLASSO 482 535) -655(388)  -976(.059) -968( 062) 402 .394 234 .205  .265 .265
LASSO -500( 265) -638( 399) 955(.072) -939(.075) 407 412 273 .319 .328 .328
MCP 443 199) -T00( 305) 993 038) -985(.047) 405 350  .185 .241  .174 .174
SCAD 446 196) -702(.320) -992(.040) -985(.048) 404 .346 .186 .235 167 .167
400 Oracle — — — — .230 .153 181 .320 .092 .092
MLLE — — — — 372 .329 225 274 132 132
AdpLASSO 587 190y -940(.195)  -993(.031) -987(.03s) 327 228  .180 .190  .172 .172
LASSO 556 250) -857(.319) 968 061) -953(.063) 371 .286 233 .212 .270 .270
MCP 556 175) -945(167)  -997(020) -995(.024) 326 .221 160 .192  .154 .154
SCAD .571(167) .942(171) .997(020) .995(‘025) 319 .220 158 .195 .149 149
d n Misspecified model: Gaussian FM-VCR
10 200 Oracle — — — — 1.083 .342 .786 .181 .330 .181
MLLE — — — — 1.748 .426 1.667 .234 443 .234
AdpLASSO .394( 579y -538( 414y  -942( g5y -939(g76)  1.568 .394  1.489 .309  .387 .309
LASSO 391 335) 515(476)  -920(.090) -925(0se)  1.721 .588  1.721 425  .558 .425
MCP A41( 936) -588(368)  -943(100) 942(101) 1.508 .291  1.476 .218  .281 .218
SCAD 444 235y -583(.370) 937(.110) -937(.111) 1.509 .280 1.475 .204 271 .204
400 Oracle — — — — .809 .282 5563  .111 .199 (111
MLLE — — — — 1.450 .329 1.210 .209 .325 .209
AdpLASSO .544( 547) -82T( 342y  -967( 73y -970( g1y  1.216 .275  .986 .226  .272 .226
LASSO 453(.328) -650( 467) -933(.077) -932(.075) 1.525 .470 1.360 .373 469 .373
MCP 567(176) -892(250)  -957(113) 970(o70)  1.249 .201 897 177 219 177
SCAD 573(173) 892(2a7)  -953(127) 970( 76y  1.234 202 895 174 212 .174
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Web Table 8: Average (SD) sensitivity, specificity, and estimation errors for models with
orders C'=1,2,3,4.

c=1 Criteria Sensitivity Specificity Lg(ﬁj) Lg(a'?) La(7;)
d n Component 1 2 1 2 1 2 1 2 1 2
10 200 Oracle — — — — 357 — 634 — — —
MLLE — — — — 396 — 616 — — —
AdpLASSO .772('073) — '831(.167) — 383 — 672 — — —
LASSO .802('101) — .708('221) — 390 — 673 — — —
MCP '771(.069) — .859('151) — .375 — 667 — — —
SCAD -767(.064) — .874('137) — 371 — .668 — — —
400 Oracle — — — — .339 — 558 — — —
MLLE — — — — .365 — 554 — — —
AdpLASSO .984('102) — .712('243) — .365 — 587 — — —
LASSO .972('079) — .738('255) — 375 — 593 — — —
MCP .943('105) — .746('235) — .358 — .583 — — —
SCAD '953(.098) — .636('287) — 354 — 579 — — —
C =2 the true model
10 200 Oracle — — — — .698 .162 .397 .089 .314 .089
MLLE — — — — 1.23 .287 1.02 .138 .335 .138
AdpLASSO .589(_239) .893(‘259) '970(.067) .966(_061> 1.09 .288 .848 .161 .501 .161
LASSO .470('321) .775('401) .928<'100) '917(.087) 1.32 .383 1.15 .294 .505 .294
MCP .581(_194) .895(‘245) .984(_045) '981(.048) 1.04 .238 .763 .106 .503 .106
SCAD -594(.188) .892('243) .983<'049) .98()('050) 1.03 .237 761 .107 .501 .107
400 Oracle — — — — .439 .089 .227 .082 273 .082
MLLE — — — — 878 .149 .607 .087 .337 .087
AdpLASSO .690(_127) .993(‘057) .997(_023> .995(_029> .808 .165 .390 .069 411 .069
LASSO .766(230) '970(A166) '970(066) '962(064) .862 .232 .518 .108 425 .108
MCP .692(_104) '992(4064) .997(_020> .998(_014> .789 .145 .374 .06 412 .062
SCAD .688('098) '992(.064) .996('023) '998(.016) 792 146 377 .062 412 .062
C =3
200 Oracle — — — — .201 .111 314 .125 .083 .083
MLLE — — — — 371 .297 173 115 .216  .092
AdpLASSO .654(A140) .962(139) .987(044) .992(033) .295 .199 473 182 .121 .096
LASSO -641(.167) .938(_209) -967(.065) -963(.066) .302 .226 .510 .239 .121 .096
MCP A612(A180) '958(138) .997(025) .999(010) 319 .192 .407 .145 .157 .085
SCAD .623('177> -947(.160) 1.00(_00()) .999(_010> .310 .192 412 .153 .150 .084
10 400 Oracle — — — — .125 .067 .260 .081 .081 .082
MLLE — — — — 319 .176 .206 .096 247 .072
AdpLASSO 722(124) 100(000) 999(014) 100(007) .260 .136 401 .169 118 .062
LASSO .717('119> -997(.058) .995(_027> .994(_027> .259 .141 446 .213 .097 .068
MCP .706(A117) 1'00(000) 1.00(000) 1.00(000) .261 .138 .380 .146 .127 .059
SCAD -708(.116) 1.00(_000) 1.00(_00()) 1.00(_00()) .258 .136 .374 .145 .135 .059
C =4
10 200 Oracle — — — — .199 .106 313 .113 .083 .083
MLLE — — — — .389 .322 .119 .098 .294 .165
AdpLASSO .616('148> .963(_149) '994(.028) .993('03) .310 .204 434 .191 161 .102
LASSO .642(A140) .922(‘234) .980(1051) .977('05) 299 .225 .529 .234 156 .135
MCP -536(.188) .957(_141) 1-00(.008) .999('01) 372 .205 .342 133 .237 .090
SCAD '561(180) .948(‘152) .999(1012) .999('01) .349 .203 .356 .123 .219 .092
400 Oracle — — — — .125 .067 .260 .081 .081 .082
MLLE — — — — .338 .204 .149 .076 .306 .132
AdpLASSO -701(.105) 1.00('000) .999(014) .999(010) 266 .147 418 175 .120 .068
LASSO '702(103) .998(1029) '994(.028) '994(.026) .265 .150 452 226 .104 .076
MCP -693(.116) 1.00('000) 1.0()('000) 1.0()('000) 273 .153 .369 .120 .160 .071

SCAD 696 118y 1.00( 900) 1.00( 000y  1.00( g0y  -268 .154  .356 .115  .176 .075
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Web Table 9: Result of the FMR and FM-VCR models; average (SD) Sensitivity, Specificity,

and estimation errors.

Cc =2 Criteria Sensitivity Specificity LQ(E]') L2 (&) Lo (7;)
d n Component 1 2 1 2 1 2 1 2 1 2
True Gaussian FMR model

10 200 Oracle — — — — .050 .055 .063 .074 .147 147
MLLE — — — — .115 .140 .138 .158 232 .232
AdpLASSO  .529( 364) '485(4389) .848(‘348) .837('347) .125 .133 .138 .165 .352 .352
LASSO 732(.361) .568('436) .843('279) '815(.280) .101 .126 112 .185 .321 .321
MCP 766(_277) .702(‘314) -864( 249) -806( 244) .102 .125 .115 .153 267 .267
SCAD 762(.283) -725(.287) .839('259) -775(.262) .106  .125 120 .145 .259 .259

"7 400 Oracle  — T T —_— T T 77 — 7 T T T 7 7 To27.031 ~ 031 039 .078 .078
MLLE — — — — .075 .107 .081 .115 .185 .185
AdpLASSO 708('312) .592('412) .878(318) .870(_320) .099 .127 088 .148 .306 .306
LASSO 941(.185) .790(‘374) -881( 191) -850(.194) .060 .087 .053 .118 .209 .209
MCP 943('152) .888('242) .944(A130) .885(_189) .050 .075 .062 .094 .169 .169
SCAD 951 144) .897(‘230) -922( 163) -865(.222) .050 .076 .064 .097 .166 .166

Misspecified Gaussian FM-VCR model

10 200 Oracle — — — — .050 .055 .062 .072 .139 .139
MLLE — — — — .099 .132 .060 .098 .133 .133
AdpLASSO .562( 323) -563( 356) -990(.042) -970(.060) .100 .100 102 1112 .255 .255
LASSO 643('323) -600( 359) 991 034) -965(.065) .093 .096 .086 .120 .243 .243
MCP 588(.320) -545(.310) 991 040) -976(.054) .097 .105 .077 .092 215 .215
SCAD 583(.311) .548(_304) -991( 040) '975(.058) .097 .100 .066 .080 202 .202

"7 400 oracle  — T T —_— T 777 — T T 7T T 7 7 7028 .031 030 .040 .074 .074
MLLE — — — — .073 .096 .047 .070 .125 .125
AdpLASSO 841('252) 800(_309) 993(‘032) 972(,058) .066 .073 .046 .064 172 172
LASSO 899(.211) -810(.325) 987(.043) -969(.061) .059 .072 .048 .073 77Tt
MCP 876('227) 810(_299) 993(‘032) 979('052) .054 .062 .039 .055 .144 144
SCAD 872(.234) -812( 298) 994 029) -981( 051 .051 .059 .037 .050 126 .126
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Web Table 10: Results of simultaneous selection of (h, A) with C' = 2: average (SD) sensitivity,
specificity, and estimation errors.

c=2 Criteria Sensitivity Specificity Lg(ﬁj) L2(5;) La(7;)
d n Component 1 2 1 2 1 2 1 2 1 2
10 200 Oracle — — — — .699 .162 .400 .089 .314 .088
MLLE — — — — 1.229 .287 1.015 .136 .335 .136
AdpLASSO .604(234) .905('249) .965('071> ‘962(A066) 1.080 .284 .834 .154 495 154
LASSO .462('319) '783(.396) .929(_097) '920(4081) 1.332 .392 1.139 .297 .504 .297
MCP .593(202) .912('219) .981('052> .979(053) 1.035 .236 743 .106 .497 .106
SCAD .608('194) .902(_234) '980(.062) .975(‘054) 1.026 .237 747 .106 .494 .106
400 Oracle — — — — .439 .089 227 .081 .273 .081
MLLE — — — — .878 .149 .606 .086 .337 .086
AdpLASSO .768(167) .995(050) .985(050) ‘993(037) 779 156 .378 .065 .406 .065
LASSO .796('252) .967('175) ‘946(.088) .952(‘071) .865 .230 518 112 419 112
MCP .766(162) ‘992(064) .973(073) ‘997(019) 764 141 372  .060 .406 .060

SCAD 753 156) -992(.064)  -963(.0s9) -995(.025) 764 .141 373 .061  .408 .061
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Web Table 11: Comparison of the methods in terms of tuning parameter and band-width

selection time for the adaptive Lasso (AdpLASSO) penalty; C' = 2;

d n  Elapsed time Pi(h) then BIC(Alh) Simultaneous BIC,(h, \)

10 200 Time in seconds 3.64 65.45
Ratio 1 18
400 9.57 171.17

1 18

69



70 Biometrics, January 2022

Web Table 12: Average (SD) sensitivity, specificity, and estimation errors for a high-
dimensional setting.

cC= 2 Criteria Sensitivity Specificity Lg(éj) L2(5;) Lo (%)
d n Component 1 2 1 2 1 2 1 2 1 2
500 200 Oracle — — — — 0.62 0.09 0.30 0.08 0.08 0.08
MLLE — — — — 1.71 1.69 0.29 0.35 0.25 0.26
LASSO 0.50(0.31) 0.67(0439) 0.99(0.00) 0-99(0.00) 1.69 1.59 0.58 0.44 0.54 0.41
MCP 0.58(g.23) 0.80(¢.28) 0.990.02) 0.99(0.02) 1.55 1.44 0.32 0.31 0.14 0.15

SCAD 0.55(0.23) 0.76(0.31) 0.99(0.02) 0.99(0.02) 1.15 1.41 0.33 0.32 0.16 0.16
400 Oracle — — — — 0.35 0.07 0.21 0.07 0.25 0.25
MLLE — — — — 2.31 1.94 0.36 0.42 0.36 0.35
LASSO 0.54(9.26) 0.72(0.35) 0.99(0.00) 0-99(0.00) 2.87 2.10 0.34 0.34 0.41 0.41
MCP 0.61(g.25) 0.81(g.25) 0.99(0.02) 0.99(0.02) 2.99 2.20 0.29 0.26 0.40 0.40
SCAD 0.59(g.25) 0.80(¢.25) 0.990.01) 0.99(0.01) 3.09 2.18 0.29 0.26 0.40 0.39

The runs using adpLASSO did not converge; thus, no results are provided.
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Web Table 13: The top 20 covariates with the highest frequencies of being selected based on
Pearson’s correlation out of the 100 replications.

True Covariates

Other Covariates

Tj

%

1
100

2
100

3
100

4
100

74
99

153
929

155
98

5
96

269
94

218
92

268
92

66
86

79
86

329
80

330
78

154
73

118
70

156
70

193
70

103
62

71



72 Biometrics, January 2022

Web Table 14: The top 20 covariates with the highest frequencies of being selected based on
log-likelihood out of the 100 replications.

True Covariates Other Covariates

T 1 2 3 4 101 469 352 68 415 118 67 377 74 270 406 414 247 429 5 169
% 100 100 100 100 79 79 78 70 70 65 62 60 56 54 52 52 49 49 48 48
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