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Summary: Finite mixture of regressions (fmr) are commonly used to model heterogeneous effects of covariates

on a response variable in settings where there are unknown underlying subpopulations. fmrs, however, cannot

accommodate situations where covariates’ effects also vary according to an “index” variable–known as finite mixture

of varying coefficient regression (fm-vcr). Although complex, this situation occurs in real data applications: the

osteocalcin (OCN) data analyzed in this manuscript presents a heterogeneous relationship where the effect of a genetic

variant on OCN in each hidden subpopulation varies over time. Oftentimes, the number of covariates with varying

coefficients also presents a challenge: in the OCN study, genetic variants on the same chromosome are considered

jointly. The relative proportions of hidden subpopulations may also change over time. Nevertheless, existing methods

cannot provide suitable solutions for accommodating all these features in real data applications. To fill this gap, we

develop statistical methodologies based on regularized local-kernel likelihood for simultaneous parameter estimation

and variable selection in sparse fm-vcr models. We study large-sample properties of the proposed methods. We then

carry out a simulation study to evaluate the performance of various penalties adopted for our regularized approach

and ascertain the ability of a bic-type criterion for estimating the number of subpopulations. Finally, we applied

the fm-vcr model to analyze the OCN data and identified several covariates, including genetic variants, that have

age-dependent effects on osteocalcin.
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1. Introduction

Finite mixture of regression (fmr) models (McLachlan and Peel, 2000) are commonly used

to accommodate heterogeneous effects of covariates X = (X1, . . . , Xd) on a response variable

Y when the population under study is believed to consist of multiple hidden subpopulations.

While fmrs can successfully capture such heterogeneity, they fall short if the effects of Xj’s

on Y also vary as functions of an index variable, U , such as time or location. The mixing

proportions, representing the sizes of hidden subpopulations, may also change as functions

of U . It becomes even more challenging when only a few covariates among a large set have

significant effects on Y . The data from the osteocalcin (ocn) study under our consideration

presents such challenges on all fronts: there are many genetic and non-genetic covariates

(Xj’s); there may be heterogeneous relationships, also varying over age (U), between the

response variable (ocn, Y ) and only a subset of the covariates; and the relative proportions

of hidden subpopulations may also change over age.

An extension of fmrs, semi-parametric finite mixture of varying coefficient regressions (fm-

vcr), was further introduced to account for heterogeneous varying covariates’ effects (Xiang

et al., 2019). These models facilitate the use of varying coefficient regressions, as functions

of U , in studying the relationship between Y and Xj’s in a heterogeneous population. The

functional forms of varying coefficients are seldom known and left unspecified. McLachlan

and Peel (2000) and Xiang et al. (2019), discuss statistical inference and applications of

various special cases of fm-vcrs in applied sciences and machine learning.

In the ocn study, the investigators collected data on environmental and genetic factors to

study whether and how osteocalcin (the phenotype) is affected by a subset of these factors

(Liao et al., 2014). Several genetic variants in Chromosome 7 (Chr7) were implicated (Zhang,

2017), and the gene harboring these variants was in fact linked to bone morphogenetic protein

(BMP) (Harada et al., 2003). Population heterogeneity has not, however, been considered in
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these studies. Inspired by recent studies demonstrating that relationships between ocn and

some underlying factors are not the same across the population (Liu et al., 2015), we are

interested in exploring whether there exist subpopulations, where the relationships between

ocn and the factors of interest, especially the single-nucleotide polymorphisms (snps) in

Chr7, are different across the subpopulations. Further, genetic effects on a phenotype may

change over time (Zhang, 2017), which may well be the case for genes related to BMP. Finally,

it is known that aging leads to bone density loss both in men and women (Demontiero

et al., 2012); the mixing proportions of the components may well vary with age. Thus,

a reanalysis of the data to accommodate population heterogeneity, varying subpopulation

relative proportions, and varying genetic effects over time is warranted.

In this paper, motivated by the challenges in analyzing the ocn data, we study method-

ologies for sparse estimation in fm-vcr models. To the best of our knowledge, the existing

literature (Xiang et al., 2019) mainly focuses on maximum likelihood estimation (mle),

while variable selection problems are largely understudied. In fm-vcrs, even with d = 43

in the ocn study, the dimension of the parameter space is large enough to render classical

methods for variable selection almost impractical. Thus, we develop new results based on

regularized local-kernel likelihood methods, demonstrating that regularized estimation in

fm-vcrs consistently estimates the model parameters while recovering its sparse structure.

Since the seminal work of Hastie and Tibshirani (1993), varying coefficient regressions

(vcr) and their extensions to mixture models (Xiang et al., 2019) have attracted much

attention in the statistics literature. The parameters in these models can change as smooth

non-parametric functions of an index variable such as time or location, which results in

reducing modeling bias while avoiding the curse of dimensionality (Fan and Zhang, 1999).

Due to the non-parametric nature of the models, parameter estimation requires careful

consideration. Several estimation techniques are available in the literature, ranging from
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the local kernel (Huang et al., 2018), to splines and basis functions (Hastie and Tibshirani,

1993) and local polynomial approximations (Fan and Gigbels, 1996). Another line of research

particularly in vcrs has focused on variable selection, thanks to the lasso (Tibshirani, 1996),

scad (Fan and Li, 2001), adaptive lasso (adplasso) (Zou, 2006), mcp (Zhang, 2010), and

group lasso (Yuan and Lin, 2006). Among others, Wang and Xia (2009) studied variable

selection using group lasso/adplasso and basis expansion or local-kernel methods. Wei

et al. (2011) and others studied the problem in high dimensions using direct penalization or

two-stage screening and penalization.

Despite the surge of research on variable selection in vcrs, the problem in fm-vcrs under

our consideration has not been studied. The works reviewed by Xiang et al. (2019) focus

on mle in fm-vcrs and their special cases. One could use best-subset selection methods

such as the aic, bic, or their variations to perform variable selection based on the mle.

Such techniques, however, require intensive computations as there are potentially 2C×d > 106

submodels to be examined for selecting a sparse 2-components fm-vcr even with only d = 10

covariates. Variable selection based on regularization techniques such as lasso is mainly

studied in fmrs (Khalili and Chen, 2007; Städler et al., 2010; Shokoohi et al., 2019), without

allowing for varying coefficients. The challenges of sparse estimation in fm-vcrs are the

non-parametric nature of varying regression coefficients, mixing probabilities, and dispersion

parameters, and often many covariates where only a handful are significant in the model.

In this paper, we develop computationally efficient penalized local-kernel likelihood meth-

ods for sparse estimation in fm-vcrs. We establish consistency in estimation and variable

selection and oracle properties of the proposed estimators. We develop a modified em algo-

rithm (Dempster et al., 1977) for the numerical implementation of the methods. We evaluate

the finite-sample performance of the methods via simulation and analyze the ocn data.
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2. Sparse fm-vcr models

Let Y be a real-valued response variable, X be a d-dimensional vector of covariates, and U

be an index variable. In a population with C > 1 hidden subpopulations, we are interested

in the conditional distribution of Y |(X = x, U = u), for x ∈ X ⊂ Rd and u ∈ U ⊂ R.

Let C be a discrete latent variable taking values 1, . . . , C. For any x ∈ X , u ∈ U , we denote

0 < πj(u) = Pr(C = j|X = x, U = u) , j = 1, . . . , C, (1)

as non-parametric functions of u, and
∑C

j=1 πj(u) = 1. This setting differs from the mixture-

of-experts (me) and their variations (McLachlan and Peel, 2000) including finite mixtures

with concomitant variables (Dayton and Macready, 1988; Frühwirth-Schnatter et al., 2018),

wherein each πj is modeled as a parametric function of u and possibly other covariates x.

Suppose the conditional density (mass) function of Y |(X = x, U = u, C = j) is given by

f
(
y; θj(x, u), φj(u)

)
, for any y ∈ Y ⊂ R, (2)

where f belongs to a known parametric family G =
{
f(y; θ, φ) : (θ, φ) ∈ Θ× (0,∞),Θ ⊂ R

}
with respect to a σ-finite measure ν, and φ > 0 is a dispersion parameter. We assume

θj(x, u) = g(x>βj(u)), for a known link function g and the regression coefficients β>j (u) =(
βj1(u), . . . , βjd(u)

)
, where (φj(u), βjl(u)) are also unknown non-parametric functions of

u. A well-known example of f in (2) is the Gaussian density with the mean θj(x, u) =

E{Y |(x, u, j)} = x>βj(u) which corresponds to the identity link function g(η) = η, and

variance Var{Y |(x, u, j)} = φj(u); see Web Appendix F for more details. Also note that

each βj(u) and φj(u) is a function of u rather than a constant as in the me models.

By putting (1) and (2) together, the conditional density (mass) function of Y |(X = x, U =

u) in an fm-vcr model with order C is given by

f ∗C
(
y|ψ(u),x

)
=
∑C

j=1
πj(u)f

(
y; θj(x, u), φj(u)

)
, y ∈ Y (3)

where ψ(u) =
(
π>(u),φ>(u),β>1 (u), . . . ,β>C (u)

)> ∈ Rp, with p = Cd + 2C − 1, and the

sub-vectors φ(u) =
(
φ1(u), . . . , φC(u)

)> ∈ RC , π(u) =
(
π1(u), . . . , πC−1(u)

)> ∈ R(C−1).
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Identifiability is essential in mixture models; if for any C1 > 1, C2 > 1 and given (u,x),

we have f ∗C1

(
y|ψ1(u),x

)
= f ∗C2

(
y|ψ2(u),x

)
, for all y ∈ Y , then we must have C1 = C2

and ψ1(u) = ψ2(u) (up to a mixture component permutation). Sufficient conditions for

identifiability of (3) are discussed in Theorem 1 of Huang et al. (2018), and the conditions

are given in Web Appendix A. We assume that the models considered here are identifiable.

In an fm-vcr, even for moderate values of C and d, the number p = Cd + (2C − 1) of

non-parametric functions to be estimated becomes very large compared to a typical sample

size n. In our real data application for Chr7, after an initial covariate screening, we have 36

snps plus 7 extra covariates (d = 43), with 1 6 C 6 5 resulting in potentially 44 6 p 6 224

non-parametric functions to be estimated based on a sample size of n = 1704. However, not

all the covariates have significant effects on the response variable of interest, suggesting a

sparse model for the data. Thus, we assume that the true fm-vcr model is sparse, that is,

for every j = 1, . . . , C, there exists an integer 1 6 d0j < d such that

0 < E
[{
β0
jl(U)

}2]
<∞ , for all l = 1, . . . , d0j , and (4)

E
[{
β0
jl(U)

}2]
= 0 , for all l = d0j + 1, . . . , d, (5)

where E is with respect to U , and d0j is the number of non-zero β0
jl(·)’s in component j.

By (4)-(5), the total number of non-parametric functions is p0 =
∑C

j=1 d
0
j + (2C − 1) and

presumably much smaller than p. More discussion on Condition (5) is given in Remark 1 of

Web Appendix E. Next, we discuss estimation and variable selection in sparse fm-vcrs.

3. Simultaneous estimation and variable selection

Let (ui,xi, yi), i = 1, . . . , n, be the observations based on a random sample from the fm-vcr

model (3). The (conditional) log-likelihood function is given by

L =
∑n

i=1
log{f ∗C(yi|ψ(ui),xi)} =

∑n

i=1
log
{∑C

j=1
πj(ui)f

(
yi; θj(xi, ui), φj(ui)

)}
, (6)

where θj(xi, ui) = g(x>i βj(ui)). Since (πj(u), φj(u),βj(u)) are unknown non-parametric

functions, the parameter space has infinite dimension and L is thus intractable. Several
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techniques are available in the literature (Fan and Gigbels, 1996) for non-parametric function

estimation, of which the most popular are local-kernel methods, splines and local polynomial

approximations. Silverman (1984) shows that spline smoothing corresponds approximately

to smoothing by a kernel method with bandwidth depending on the local density of design

points. In the following, we use the local-kernel method where each functional parameter in

the fm-vcr model is locally approximated by constants. As a result, the locally approximated

model becomes a standard finite mixture of regression which in turn makes implementation

of our penalization method via the em algorithm easier (Huang et al., 2013).

Local log-likelihood. For any u ∈ U , we consider the local-kernel log-likelihood

`n
(
ψ(u);h

)
=
∑n

i=1
log
{∑C

j=1
πjf(yi; θj(xi), φj)

}
Kh(ui − u), (7)

where θj(xi) = g(x>i βj), and Kh(t) = h−1K(t/h) is a kernel function with a band-width

h. The locally constant vector of parameters is ψ(u) = (π>,φ>,β>1 , . . . ,β
>
C ) ∈ Rp, where

π> = (π1, . . . , πC−1), φ
> = (φ1, . . . , φC), and β>j = (βj1, . . . , βjd), j = 1, . . . , C. The entries of

ψ(u) are local-constant approximations of the functions (πj(u), φj(u), βjl(u)), which depend

on u, and for simplicity, we suppress u in the notation but keep it for ψ(u).

For any u ∈ U , the maximum local-kernel log-likelihood estimator (mlle) of ψ(u) is

defined as the maximizer of `n
(
ψ(u);h

)
, and is denoted by ψ̆n(u). In practice, the estimation

is usually done at the observed points u1, . . . , un; more discussion is given at the end of this

section. In Proposition 1 of Web Appendix D, we establish estimation consistency of ψ̆n(u).

It is, however, well-known that similar to the mle in parametric regression, ψ̆n(u) does not

provide a sparse fm-vcr model as postulated in (5), which is the main focus of our research.

Therefore, we propose a regularization method that yields fitted sparse fm-vcr models.

Penalized local log-likelihood. For j = 1, . . . , C and t = 1, . . . , n, let βj,t = (βj1,t, . . . , βjd,t)
>

be the local constant approximation of the vector βj(u) at ut’s. We denote the (n×d) matrices

Bj = (βj,1, . . . ,βj,n)>. Similarly, let π>j = (πj,1, . . . , πj,n) and φ>j = (φj,1, . . . , φj,n) be the
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local constant approximations of πj(u) and φj(u) at ut’s, respectively. Also, denote the (n×p)

matrix Ψ = (π1, . . . ,πC−1,φ1, . . . ,φC ,B1, . . . ,BC), where p = Cd+ 2C − 1.

Using (7), the corresponding (total) local-kernel log-likelihood is given by

Ln(Ψ;h) =
n∑

t=1

`n
(
ψ(ut);h

)
=

n∑
t,i=1

log
{∑C

j=1
πj,t f

(
yi; θj,t(xi), φj,t

)}
Kh(ui − ut), (8)

and θj,t(xi) = g(x>i βj,t). We estimate Ψ by maximizing the penalized local log-likelihood

L̃n(Ψ;λ, h) = Ln(Ψ;h)− Pn(Ψ;λ), (9)

Pn(Ψ;λ) =
∑C

j=1

∑d

l=1
pn(‖bjl‖/

√
n;λj), (10)

where pn is a penalty function with tuning parameters λ = (λ1, . . . , λC)> that control the

level of penalization on ‖bjl‖/
√
n. Here, bjl =

(
βjl,1, . . . , βjl,n

)>
=
(
βjl(u1), . . . , βjl(un)

)>
is

the lth column of the matrix Bj, j = 1, . . . , C, and ‖bjl‖2 =
∑n

t=1 β
2
jl(ut). Examples of pn are

the lasso, adplasso, scad, and mcp (Web Appendix C). The group penalization in (10)

(Yuan and Lin, 2006) enforces zero estimates of some of ‖bjl‖ and thus the vectors bjl. By

Condition (RC.2) on the density m(u) of U , u1, . . . , un are dense in the support U (Janson,

1987), and thus it suffices to perform estimation at only ui’s rather than on the entire U .

Given (λ, h), the maximum penalized local log-likelihood estimate (mplle) of Ψ is

Ψ̂n(λ, h) ≡ Ψ̂n = argmax
Ψ

L̃n(Ψ;λ, h). (11)

We induce zero estimates for some of the regression coefficients βjl(·) by appropriate choices

of the penalty pn, and the tuning parameters (λ, h). Thus, the mplle performs simultaneous

estimation and variable selection, resulting in a fitted sparse fm-vcr model.

4. Large-sample theory

To distinguish from earlier notation, while drawing the connection, for any u ∈ U , let

ψ0(u) be the p-dimensional parameter vector in (3) corresponding to the true sparse fm-

vcr model satisfying (4)-(5). In particular, for the observed points u1, . . . , un, the (n × p)-

dimensional parameter matrix in (8) corresponding to the true model is denoted by Ψ0
n with
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its tth row as [ψ0(ut)]
>, t = 1, . . . , n. Without loss of generality, we assume the partitioning

ψ0(u) =
(
ψ0

1(u),ψ0
2(u)

)
such that ψ0

2(u) contains only those β0
jl(·)’s that satisfy the sparsity

Condition (5), and ψ0
1(u) consists of the non-zero functions β0

jl(·) among other parameters

(π0
j (u), φ0

j(u)). By (5), we have E{‖ψ0
2(U)‖2} = 0. Thus, Conditions (C1) and (RC.2) on

βjl(·)’s and the density m(u) of U (Web Appendix A and Web Appendix B) imply that

ψ0
2(u) = 0, uniformly in u ∈ U . This results in Ψ0

n = (Ψ0
n1,Ψ

0
n2) such that Ψ0

n2 contains all

the zero regression functions, and Ψ0
n1 = {[ψ0

1(ut)]
> : t = 1, . . . , n} contains the nonzero re-

gression functions and other parameters. Denote l(ψ0(u),x, y) = log {f ∗C(y|ψ0(u),x)} , y ∈

Y , x ∈ X . For t = 1, . . . , n, define l′(ψ0(ut),x, y) and l′′(ψ0(ut),x, y), respectively, as the

gradient and Hessian of l(ψ,x, y) with respect to ψ and evaluated at ψ = ψ0(ut). Also, let

I(ut) = E(Y,X)|U=ut

[
l′(ψ0(U),X, Y )l′>(ψ0(U),X, Y )|U = ut

]
(12)

∆(u;ut) =

∫
Y

∫
X
l′(ψ0(ut),x, y)f ∗C(y|ψ0(u),x)g(x|u)dxdy, (13)

and E(X,Y )|U=ut is the expectation with respect to the distribution of (X, Y ) given U = ut.

With regard to the penalty function pn, we denote the quantity

r1n = max
{
h1/2n |p′n(θ0jl;λn)|/n3/2 : θ0jl =

√
E0{β0

jl(U)}2 6= 0, 1 6 j 6 C, 1 6 l 6 d0j
}

(14)

where p′n(θ0jl;λn) is the first derivative of pn(θjl;λn) evaluated at θjl = θ0jl 6= 0. Also, denote

V0 =

∫
U
K2(t)dt , K2 =

∫
U
t2K(t)dt. (15)

Regularity Conditions (RC.1)-(RC.5) on the mixture density f ∗C , the conditional density

g(x|u) of X|U = u, the density m(u) of U , and Conditions (KC.1)-(KC.2) and (PC.1)-

(PC.3) on the kernel K and the penalty pn, respectively, are all given in Web Appendix B.

The proofs of the following lemma and theorems are given in Web Appendix D.

Theorem 1: (Point-wise estimation consistency) Suppose that Conditions (RC.1)-(RC.4)

hold, the kernel K satisfies Conditions (KC.1)-(KC.2), and (λn, pn, hn) satisfy Conditions (PC.1)-

(PC.2). Then, there exists a local maximizer Ψ̂n of L̃n in (9) that n−1
∥∥Ψ̂n − Ψ0

n

∥∥2
F

=
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n−1
∑n

t=1

∥∥ψ̂n(Ut)− ψ0(Ut)
∥∥2 = Op

{
(1 + r1n)2(nhn)−1

}
, where r1n is given in (14), ψ̂n(Ut)

and ψ0(Ut) are the tth rows of the matrices Ψ̂n and Ψ0
n, and ‖ · ‖F is the Frobenius norm.

By Theorem 1, if r1n = O(1), Ψ̂n achieves the point-wise consistency rate {nhn}−1/2 in

estimating Ψ0
n, a property shared by the mlle (Proposition 1, Web Appendix D). This result

clearly depends on the choice of (λn, pn, hn). For the lasso, λn = O({nhn}−1/2) suffices. For

scad and mcp, as long as (λn, hn)→ 0 as n→∞, the desired rate is achieved since r1n = 0.

For adplasso, with the (possibly random) weights wjl’s, we require λn max16j6C,16l6d0
j
wjl =

op({nhn}−1/2). The practical choice of wjl is given in Remark 3 of Web Appendix E. Theorem

1, however, does not imply the sparsity of Ψ̂n. We strengthen this result by establishing the

sparsity and oracle property of the mplle, beginning with a lemma.

Lemma 1: Assume that the conditions of Theorem 1 are met, and that (λn, pn, hn) also

satisfy Condition (PC.3). Then, for any
√
nhn-consistent mplle Ψ̂n of Ψ0

n, as n → ∞,

P
({∑n

t=1 β̂
2
jl(Ut)/n

}1/2
=
∥∥b̂jl/n∥∥ = 0

)
→ 1 , j = 1, . . . , C , l = d0j+1, . . . , d.

By Lemma 1, with probability tending to one, the mplle of those βjl(u) that satisfy the

sparsity property (5) are zero at the observed index variable: β̂jl(Ut) = 0, t = 1, . . . , n (point-

wise sparsity). It is more appealing to establish a uniform sparsity. Recall the partitioning

ψ0(u) =
(
ψ0

1(u),ψ0
2(u)

)
, where ψ0

2(u) = 0 uniformly in u ∈ U . We denote the oracle

estimator ψ̂n1,orc(u) as the mlle of ψ0
1(u), having known ψ0

2(u) = 0 a priori. For any u ∈ U ,

let ψ̂n(u) =
(
ψ̂n1(u), ψ̂n2(u)

)
be the mplle of ψ0(u), where its partitioning corresponds to

that of ψ0(u). Next, we describe the behavior of ψ̂n(u) with respect to the oracle estimator.

Theorem 2: Under the conditions of Lemma 1, and Condition (RC.5), as n→∞,

(i) uniform sparsity: P
{

supu∈U
∥∥ψ̂n2(u)

∥∥ = 0
}
→ 1; (ii) oracle property: supu∈U

∥∥ψ̂n1(u)−

ψ̂n1,orc(u)
∥∥ = op

{
(log h−1n /nhn)1/2

}
; (iii) asymptotic normality: for any u ∈ U ,√

nhn
{[
I(u) + P′′n(θ01;λn)/n2m(u)

](
ψ̂n1(u)−ψ0

1(u)
)
− Bn(u)

}
→ N

(
0,V0I(u)/m(u)

)
,
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where I(u) in (12) is positive definite, the bias Bn(u) = 1
2
K2

{
∆′′(u;u)+2∆′(u;u)m′(u)/m(u)

}
h2n

− P′n(θ01;λn)/n2m(u) + op(h
2
n), and θ01 =

{
θ0jl = (E0{β0

jl(U)}2)1/2 : 1 6 j 6 C, 1 6 l 6 d0j
}

.

Theorem 2(i) implies that the mplle of those βjl(·)’s that satisfy the sparsity prop-

erty (5) are zero, that is β̂jl(u) = 0 uniformly in u ∈ U , for all j = 1, . . . , C and l =

d0j+1, . . . , d. Condition (PC.3) on (λn, pn, hn) guarantees sparsity of the mplle. For the

lasso, scad, and mcp, this condition requires
√
nhnλn →∞, and for the adplasso we need

√
nhnλn min16j6K,d0

j+16l6dwjl →∞, as n→∞. Theorem 2(ii) and (iii) imply that the mplle

asymptotically attains a similar information bound as the oracle estimator described above

(Huang et al., 2018). Regarding (iii), for all the four penalties, we have P′′n(θ01;λn) = 0. On the

other hand, with respect to the bias Bn(u), for the scad and mcp, we have P′n(θ01;λn)/n2 = 0,

and for the adplasso, P′n(θ01;λn)/n2 ∼ λn max16j6C,16l6d0
j
wjl, which tends to zero when

scaled by
√
nhn, as n → ∞. For the lasso, P′n(θ01;λn)/n2 = λn, which tends to ∞ once

scaled by
√
nhn, as required by Condition (PC.3) for sparsity. This behavior is also known in

parametric regression, as it gives sparse estimators but does not achieve the oracle property.

Finally, the asymptotic normality in (iii) is obtained from the oracle perspective that the true

sparse structure of the model is known in advance. In practice, a sparse model is typically

fitted based on the mplle. As such there are two sources of uncertainty that are caused by

variable selection and parameter estimation. The asymptotic normality does not take the

uncertainty due to variable selection into account, which is a topic of post-selection inference

(PoSI, Berk et al. (2013)). More discussion is given in Remark 2 of Web Appendix E.

5. Computational strategies

The goal is to estimate
(
πj(u), φj(u),βj(u)

)
, j = 1, . . . , C, at points u1, . . . , un, by obtaining

an approximate solution for (11). To avoid mixture label switching (Huang et al., 2013), we

use a modified em algorithm for estimation of each function simultaneously over u1, . . . , un.

We view the observations {(ui,xi, yi) : i = 1, . . . , n} as incomplete data, and introduce
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the unobserved Bernoulli variables Zij to represent the membership of the ith observation

to the jth mixture component, j = 1, . . . , C, such that Pr (Zij = 1|ui,xi, yi) = πj(ui). The

complete data are {(ui,xi, yi, zi) : i = 1, . . . , n}, where zi = (zi1, . . . , ziC)>. We define the

complete (total) local-kernel log-likelihood function as

Lc
n(Ψ;h) =

∑n

t=1

∑n

i=1

∑C

j=1
Zij

{
log πj,t + log f(yi; θj,t(xi), φj,t)

}
Kh(ui − ut),

and the penalized complete local-kernel log-likelihood as L̃c
n(Ψ;h) = Lc

n(Ψ;h) − Pn(Ψ;λ),

where the penalty Pn is given in (10). Due to the non-differentiability of pn(θ;λ) at θ = 0,

as suggested by Fan and Li (2001), we use the local quadratic approximation (lqa)

p̄n(θ; θ(0), λ) = pn(θ(0);λ) + p′n(θ(0);λ)(θ2 − θ2(0))/(2θ(0)), (16)

for pn, where θ(0) is an initial value. The lqa is used in the modified em algorithm. Given

Ψ(m), at the (m+ 1)th iteration, the algorithm proceeds as follows.

E-step. Since the Zij’s are unobservable, we compute the expectation of L̃c
n(Ψ;h) with

respect to Zij conditional on {(ui,xi, yi) : i = 1, . . . , n} and Ψ(m). For all i = 1, . . . , n , j =

1, . . . , C, it boils down to the computation of the conditional expectations

E(Zij|Ψ(m), ui,xi, yi) ≡ w
(m)
ij =

π
(m)
j (ui)f

(
yi; θ

(m)
j (xi, ui), φ

(m)
j (ui)

)∑C
j=1 π

(m)
j (ui)f

(
yi; θ

(m)
j (xi, ui)), φ

(m)
j (ui)

) .
M-step. Using the lqa (16) evaluated at θ = ‖bjl‖2/

√
n and θ(m) = ‖b(m)

jl ‖2/
√
n, we

maximize the objective function (up to some constants)

Q̃(Ψ; Ψ(m)) =
C∑

j=1

n∑
t=1

{ n∑
i=1

w
(m)
ij

{
log πj,t+log f(yi; θj,t(xi), φj,t)

}
Kh(ui−ut)−β>j,tΣ

(m)
j βj,t/2

}
with respect to Ψ, where θj,t(xi) = g(x>i βj,t) with the vector βj,t =

(
βj1(ut), . . . , βjd(ut)

)>
,

the diagonal matrices Σ
(m)
j = diag{τ (m)

jl : l = 1, . . . , d} and τ
(m)
jl = p′n

(
θ(m);λj

)
/[nθ(m)].

The maximization of Q̃ with respect to Ψ results in the following updates. The probabilities

πj(ut) and the vectors βj,t = βj(ut), t = 1, . . . , n, j = 1, . . . , C, are updated by

π
(m+1)
j,t = π

(m+1)
j (ut) =

∑n

i=1
w

(m)
ij Kh(ui − ut)

/∑n

i=1
Kh(ui − ut),
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β
(m+1)
j (ut) = arg max

βj,t∈Rd

∑n

i=1
w

(m)
ij

{
log f(yi; θj,t(xi), φj,t)

}
Kh(ui−ut)−β>j,tΣ

(m)
j βj,t/2. (17)

The dispersion parameters φj,t = φj(ut) are updated by solving the estimation equations∑n

i=1
w

(m)
ij

∂

∂φj,t

{
log f(yi; θ

(m+1)
j,t (xi), φj,t)

}
Kh(ui − ut) = 0. (18)

To solve (17)-(18), depending on f , we may need to use the Newton-Raphson method.

Details of the algorithm for Gaussian and t-distribution f are given in Web Appendix F.

Starting from an initial Ψ(0) (discussed in Web Appendix F.4), the em algorithm iterates

until a convergence criterion is satisfied. We used the stopping rule ‖Ψ(m+1) −Ψ(m)‖F < ε.

We set the estimates of the regression functions βjl(u) to zero if ‖b(m+1)
jl /n‖ < δ. In our

simulation and the real data analysis, we chose ε = δ = 10−4. We describe data-adaptive

strategies for the selection of the band-width h and the tuning parameters λj’s, and also

estimation of the mixture order C in Web Appendix G.

[Table 1 about here.]

6. Simulation study

We asses the finite-sample performance of the methods via simulations. We considered

Gaussian fm-vcrs with C = 2 and 3 components. The parameter settings for the model

with C = 2 are given in Table 1, and those for C = 3 are given in Web Table 1.

Let CEZ = # Correctly Estimated Zero, CEN = # Correctly Estimated Non-zero, IEZ = #

Incorrectly Estimated Zero, and IEN = # Incorrectly Estimated Non-zero βjl(·)’s. We define

Sensitivity = CEN/(CEN + IEZ) and Specificity = CEZ/(CEZ + IEN),

which assess the performance of the penalization method for variable selection. We measure

the estimation errors of the proposed estimators using

L2
2(β̂j) = n−1

∑n

i=1

∑d

l=0

(
β̂jl(ui)− βjl(ui)

)2
, L2

2(σ̂j) = n−1
∑n

i=1

(
σ̂j(ui)− σj(ui)

)2
,

L2
2(π̂j) = n−1

∑n

i=1

(
π̂j(ui)− πj(ui)

)2
, j = 1, . . . , C.
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Example 1: We generated the vectors xi = (xi1, . . . , xid)
>, i = 1, . . . , n, from a zero-

mean multivariate normal with a covariance matrix Σ = {σkl = (0.5)|k−l| : 1 6 k, l 6 d}.

The points u1, . . . , un were generated from Uniform[0, 1]. Given each (xi, ui), we generated

the response yi from a Gaussian fm-vcr with C = 2 and the parameter setting given in

Table 1, for the sample sizes n = 200, 400. We considered dimensions d = 5, 10, 20, 50, and

we set non-zero coefficients
(
β11(u), β12(u), β14(u)

)
and

(
β21(u), β23(u)

)
in the 1st and 2nd

components of the mixture model. In Table 1, by increasing d = 5 to 10, 20, 50, the non-zero

βjl(·)’s remain the same and we add more zeros to each component.

The average sensitivity, specificity, and estimation errors (over R = 300 simulated samples)

for the model with C = 2 and d = 5, 10, 20 are given in Table 2. An extended version of this

table which includes the results for d = 50 is given in Web Table 2.

[Table 2 about here.]

From Table 2, the average sensitivity and specificity corresponding to n = 200 vary ap-

proximately between 47% to 95% and 80% to 99%, respectively, depending on the dimension

d = 5, 10, 20, the mixture component, and the penalty function. It seems that the task of

identifying the true non-zero regression coefficients βjl(·) compared to the identification of

true zero coefficients, for the smaller sample size n = 200, is more difficult. As the sample

size increases to n = 400, all the penalties improve in terms of identifying both true non-zero

and zero regression functions. In terms of the estimation error (L2), the scad and mcp are

closer to the oracle estimator, followed by the adplasso, lasso, and mlle has the worst

performance as expected. Overall, the adplasso, scad, and mcp perform similarly in terms

of the three performance measures, followed by the lasso. The results for d = 50 given in

Web Table 2 follow the same trend with better performance for larger n.

The results for the model with C = 3, d = 5, 10, 20, 50 and n = 200, 400, 600, 800 are

given in Web Tables 3 and 4. This is clearly a more challenging setting and we can see that



14 Biometrics, January 2022

when n = 200, the sensitivity in one of the mixture components is 35% with a specificity

around 80%. For n = 800, the sensitivity reaches 75% for this component. For the other two

components, the sensitivity and specificity values are 80%-96% and 75%-92%, respectively.

Figure 1 shows the mixture order selection results based on the bic2 in (A.79), for the

model with C = 2. This figure appears in color in the electronic version of this article,

and any mention of color refers to that version. For a given dimension d, as n increases the

performance of bic2 improves. As d increases from 5 to 20, the model becomes more complex

and the model selection task becomes more difficult, as expected. Overall, the correct order

is selected most often (and the majority is over 85%) even in the most difficult scenario.

[Figure 1 about here.]

Example 2: Since the covariates in our real data are snps, we simulate xj’s to mimic

such variables. We considered discrete covariates, each taking values in {0, 1, 2}, and each

was randomly generated from the multinomial distribution MNomial
(
(0, 1, 2), [(1−p)2, 2p(1−

p), p2]
)
, where p ∈ {.05, .1, .2, .3, .4, .5}. We note that the smaller the value of p, the lesser

the variation in the simulated covariates from this model. The parameter setting for the

Gaussian fm-vcr is the same as those in Table 1. The results for d = 5 and n = 200, 400

are respectively given in Web Tables 5 and 6. The main purpose of this example is to

show that for discrete covariates like snps, even for relatively small dimension d = 5, larger

sample sizes are required to achieve a similar performance as those discussed in Example 1.

From Web Table 5, we can see that for n = 200, the task of identifying non-zero regression

coefficients (sensitivity) is more difficult for p = .05 and .10, which also results in higher

estimation errors in one of the mixture components. As the sample size increases to n = 400

(Web Table 6), the overall performance of the method improves for all penalties. This result

is encouraging for our real data analysis, since our sample size is even larger. In this setting,

scad and mcp perform better than the lasso and adplasso.



Sparse Estimation in Semi-parametric Finite Mixture of Varying Coefficient Regression Models 15

7. Real data analysis

The Fangchenggang Area Male Health and Examination Survey was conducted to identify

factors that might influence Osteocalcin (ocn) (Liao et al., 2014) and other phenotypes of

interest. ocn is believed to play a role in metabolic regulation (Lee et al., 2007). It has also

been observed that higher serum ocn levels are correlated with increases in bone mineral

density during drug treatment for osteoporosis (Bharadwaj et al., 2009). The data include

information on 2,200 unrelated healthy Chinese males, with their age, serving as our index

variable (U), ranging from 20 to 69. To guard against potential confounders, individuals

included in the study were free from a list of diseases, such as stroke, diabetes mellitus,

primary hypertension, and hyperthyroidism. Following Zhang (2017), we focus on studying

the relationship between ocn and snps in Chr7. We also include 7 other covariates: smoking

status, physical activity, drinking, (log) body mass index, sex hormone-binding globulin,

ferritin, and folic acid. After deleting individuals with missing data, snps with close to zero

variability, and those contributing little additional information in the presence of others, we

are left with d = 43 covariates (including 36 snps) and n = 1704 individuals.

In our analysis, we considered a Gaussian fm-vcr, where the effects of the covariates

(Xj’s) on ocn (Y ) and the mixing proportions (π’s) are all functions of age (U). We fitted

models with C = 1, . . . , 5, and bic selected C = 2. Since our algorithm and Example 2 based

on scad (compared to other penalties) provided more stable estimates for different initial

values of the algorithm, our results below are based on the fitted model with scad.

[Figure 2 about here.]

The density plots of the observed yi’s classified into the two components of the fitted

fm-vcr model are given in Figure 2(a). This figure appears in color in the electronic

version of this article, and any mention of color refers to that version. Component 1 can
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be interpreted as representing the high “ocn” subpopulation (hocn), and Component 2 as

the low “ocn” (locn) subpopulation. Figure 2(b) shows that as one ages, the probability

of being in the hocn decreases, which is consistent with biological theory since it has been

found that osteocalcin is related to bone mineral density (Bharadwaj et al., 2009). From

Figure 2(c,d), we observe that the estimated functional intercepts in both subpopulations

are age-dependent, with decreasing ocn values as age increases; the decrease appears to

slow down starting from age 35 for the hocn, whereas the decrease is fairly linear for the

locn. Furthermore, for the hocn subpopulation, we found the effect of log(bmi) on ocn to

be negative but non-linear (varying with age), with the negative effect generally decreasing

with age (Figure 2(e)). Among the other non-genetic covariates considered, folic acid also

has a non-linear negative effect on ocn (Web Figures 1(d)). Most significantly, rs7456421,

an snp linked to the ocn level (Zhang, 2017), is identified to have a significant effect on

ocn in the hocn subpopulation. The effect is non-constant over time; in particular, having

the snp would negatively impact the ocn at a younger age (Figure 2(f)). Further discussion

is provided in Section 8. This snp resides in gene HIPK2, which codes for homeodomain

interacting protein kinase 2, and is a multi-functional signaling molecule, including being

studied as a tumor suppressor recently (Feng et al., 2017) and as a bone morphogenetic

protein (Harada et al., 2003). There are a number of other snps that show significant

effects in the hocn subpopulation (Web Figure 1(a)-(c)). The estimated variances in both

subpopulations are given in Web Figure 1(e)-(f).

In contrast, in the locn subpopulation, beyond the finding that the ocn level decreases

with age, it is rather interesting to see that none of the other factors investigated are

selected by the penalization method. Taken together, our results not only corroborated the

findings of Zhang (2017) but also strengthened the results by providing evidence of a dynamic

relationship in one of the two subpopulations identified by the model. In the literature, ocn
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levels have been used as a biomarker for measuring osteoporosis treatment effects (Bharadwaj

et al., 2009). Therefore, our finding of the differential effects of snps and other covariates on

ocn between the two subpopulations perhaps warrants further investigation into whether the

conclusion on the use of ocn as a biomarker still holds within each of these subpopulations.

8. Discussion

We developed penalized local-kernel likelihood methods for fm-vcr models and established

their consistency in estimation and variable selection. We examined the finite-sample perfor-

mance of the methods via simulation, and they performed well for the dimensions and sample

sizes considered here. When the covariates are discrete, a larger n is required to achieve

similar performance as those with continuous covariates. We observed that the method based

on all four penalties performs similarly, and none of the penalties universally dominates the

others. Thus, in practice, we suggest analyzing a dataset using all the penalties and choosing

a final fitted sparse model that optimizes a selection criterion (e.g., bic) and has more stable

estimates based on different initial values for the em, as done in our real data analysis.

Indeed, in our ocn data analysis, we explored several ways of analyzing the data. We

fitted an fmr model which showed a lack of fit (Web Figure 2), motivating the use of an

fm-vcr model. Additional details are provided in Web Appendix I. In our fm-vcr analysis,

we used the penalties investigated in the simulation and with multiple initial values for

the em algorithm. Our results are based on the scad penalty, which provided the most

stable outcome and was selected by the bic. The fit of the model to the data is seen to

improve (Web Figure 2) over the fmr, and a number of age-dependent covariates were also

selected. Among them, snp rs7456421, implicated in the literature for its link to ocn level,

was selected in the high ocn subpopulation and shown to have a larger impact on younger

people. To further substantiate the finding of the varying effect of the snp over the age on

ocn, we added the point-wise error bars to the estimated varying coefficient plot of the snp
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(Web Figure 3(a)). We also plotted the derivative curve (approximated using Matlab) of the

estimated coefficient effect over age (Web Figure 3(b)). It is evident from these plots that the

underlying true derivate function is unlikely to be 0 over the entire age range, substantiating

the finding of a varying coefficient for the snp effect.

To gauge the performance of our proposed method under a number of conditions that

deviate from our theoretical developments, we conducted additional simulations. First, we

studied the effect of model misspecifications in terms of mixture components or the order C

in (3). When the data were generated from a t fm-vcr but fitted a misspecified Gaussian

fm-vcr, the results show that the performance of the method does not degrade much in

variable selection and estimation error for the setting considered (Web Table 7). The details

and discussion of the results are given in Web Appendix H.1. On the other hand, for a model

with true C = 2, if the order was incorrectly specified as C = 1, then the one-component

underfitted model resembles the behavior of the larger component of the correct model,

but with lower sensitivity and specificity and larger estimation errors for the corresponding

measures in Component 2 when C = 2 was fitted (Web Table 8). In contrast, if C was

incorrectly specified as larger than the true value, then the behavior of the overfitted models

is similar to those with the correct model and with lower estimation errors. These simulation

results are in line with the theoretical properties of over-fitted finite mixture models (Ho

et al., 2022). More discussion is provided in Web Appendix H.1. We recognize that our

observations are based on limited simulations; thus, further study on the effect of model

misspecification on our method, including properties of over-fitted fm-vcr, is warranted.

We also studied the effect of fitting an fm-vcr model when data were generated from an

fmr model (without allowing for varying coefficients). The parameter setting is given in Web

Appendix H.2. We observe that for sensitivity, fm-vcr (the wrong model) is generally worse

(on average based on 100 runs) than fmr (the true underlying model), with larger standard
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deviations (sds) (Web Table 9). On the other hand, for specificity, fm-vcr is consistently

better and with much smaller sds. This observation implies that fm-vcr selected fewer

variables: fewer true positives and fewer false positives, hence larger specificity and smaller

sensitivity. This observation is intuitively sensible: with a more complex model and a fixed

sample size, variable selection is harder, especially for the parameter setting considered in

this simulation where the effects of covariates (βjl’s) are weak. Thus, in practice, one may

fit both models to a data and assess the results as done in our data analysis.

In another simulation study, we also assessed the performance of the penalization method

when the dimension d exceeds the sample size n, although this case is not covered in our

theoretical results where d is fixed as n grows. We considered a setting with d = 500 and n =

200, 400 (Web Appendix H.4). Our results (Web Table 12) show that, while the specificity

remains high and similar to the dimensions already considered in Section 6 (Table 2 and

Web Table 2), there is some reduction in sensitivity, although the difference is quite small

when compared to d = 50, indicating that reasonable results are likely to be obtained by

the method even when the number of variables exceeds the sample size. Alternatively, one

may screen the covariates to reduce the dimension, which appears to be reasonable as a

preliminary step (Web Appendix H.4 and Web Tables 13–14). Nevertheless, rigorous study

of high-dimensional settings requires new theoretical and numerical tools beyond the scope

of the current paper and is a topic of future research. Finally, the mixing proportions πj may

also be considered as functions of some covariates in addition to the index variable; however,

modeling and estimation become unwieldy and thus not pursued in the current study.
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Figure 1: Example 1: Order selection results for the model with true order C = 2. This
figure appears in color in the electronic version of this article, and any mention of color refers
to that version.



Sparse Estimation in Semi-parametric Finite Mixture of Varying Coefficient Regression Models 25

0.000

0.025

0.050

0.075

20 40 60
Osteocalcin

de
ns
ity

Component
1

2

0.40

0.45

0.50

0.55

0.60

0.65

20 30 40 50 60 70
Age

M
ix

in
g 

pr
ob

ab
ilit

y

(a) (b)

26

28

30

32

20 30 40 50 60 70
Age

In
te
rc
ep
t

18

20

22

20 30 40 50 60 70
Age

In
te
rc
ep
t

(c) (d)

−2.8

−2.4

−2.0

−1.6

−1.2

20 30 40 50 60 70
Age

Ef
fe

ct
 s

ize

−10

−5

0

5

20 30 40 50 60 70
Age

Ef
fe

ct
 s

ize

(e) (f)

Figure 2: Osteocalcin data analysis; (a) Density plots: Component 1 (hOCN, red), Compo-
nent 2 (lOCN, blue); (b) Estimated mixing probabilities over time in hOCN; (c) Estimated
intercept over time in hOCN; (d) Estimated intercept over time in lOCN; (e) Estimated
effect of log(bmi) over time in hOCN; (f) Estimated effect of rs7456421 over time in hOCN.
This figure appears in color in the electronic version of this article, and any mention of color
refers to that version.
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Table 1: Parameters settings for the Gaussian fm-vcr model with C = 2.

Component(j): 1 2

parameters d(= 5, 10, 20, 50)1

βj0(u) -2 -1
βj1(u) 1 + 0.5 cos(πu) 1.5 sin(πu)
βj2(u) 1 + 0.5 cos(2πu) 0
βj3(u) 0 1.5− 0.5 sin(πu/2)
βj4(u) sin(6πu) 0
βj5(u) 0 0
...

...
...

βj,50(u) 0 0

σj(u) 0.3e(0.5u) 0.5e(−0.2u)

πj(u) e0.5u/(1 + e0.5u) (1 + e0.5u)−1

1 We keep the non-zero coefficient functions βjl(·) the same for different values of the dimension d.
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Table 2: Results of Example 1: average (sd) sensitivity, specificity, and estimation errors.

C = 2 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂2
j ) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

5 200 Oracle — — — — .650 .162 .383 .104 .321 .104

mlle — — — — 1.04 .243 .748 .127 .370 .127

AdpLASSO .687(.203) .948(.191) .967(.125) .962(.122) .934 .208 .612 .118 .500 .118

LASSO .701(.223) .847(.347) .813(.265) .824(.214) .983 .256 .812 .167 .524 .167

MCP .682(.127) .952(.153) .978(.110) .972(.120) .888 .163 .561 .094 .505 .094

SCAD .684(.127) .957(.147) .980(.106) .974(.118) .882 .165 .554 .093 .507 .093

400 Oracle — — — — .399 .083 .214 .080 .273 .080

mlle — — — — .547 .097 .389 .075 .278 .075

AdpLASSO .978(.083) .997(.058) .998(.030) .997(.043) .499 .082 .225 .074 .311 .074

LASSO .989(.060) .995(.064) .938(.179) .910(.180) .582 .116 .376 .086 .338 .086

MCP .983(.073) 1.00(.000) 1.00(.000) .999(.019) .458 .078 .208 .073 .313 .073

SCAD .984(.070) 1.00(.000) 1.00(.000) .999(.019) .458 .077 .207 .073 .313 .073

10 200 Oracle — — — — .698 .162 .397 .089 .314 .089

mlle — — — — 1.23 .287 1.02 .138 .335 .138

AdpLASSO .589(.239) .893(.259) .970(.067) .966(.061) 1.09 .288 .848 .161 .501 .161

LASSO .470(.321) .775(.401) .928(.100) .917(.087) 1.32 .383 1.15 .294 .505 .294

MCP .581(.194) .895(.245) .984(.045) .981(.048) 1.04 .238 .763 .106 .503 .106

SCAD .594(.188) .892(.243) .983(.049) .980(.050) 1.03 .237 .761 .107 .501 .107

400 Oracle — — — — .439 .089 .227 .082 .273 .082

mlle — — — — .878 .149 .607 .087 .337 .087

AdpLASSO .690(.127) .993(.057) .997(.023) .995(.029) .808 .165 .390 .069 .411 .069

LASSO .766(.230) .970(.166) .970(.066) .962(.064) .862 .232 .518 .108 .425 .108

MCP .692(.104) .992(.064) .997(.020) .998(.014) .789 .145 .374 .06 .412 .062

SCAD .688(.098) .992(.064) .996(.023) .998(.016) .792 .146 .377 .062 .412 .062

20 200 Oracle — — — — .615 .095 .297 .079 .313 .079

mlle — — — — 1.37 .225 1.30 .082 .383 .082

AdpLASSO .646(.115) .943(.202) .981(.043) .984(.042) .914 .269 .713 .056 .488 .056

LASSO .657(.120) .953(.187) .963(.059) .952(.053) .924 .336 .896 .056 .494 .056

MCP .643(.121) .953(.199) .994(.028) .995(.022) .915 .220 .619 .052 .467 .052

SCAD .641(.127) .947(.206) .994(.028) .996(.021) .918 .227 .633 .052 .472 .052

400 Oracle — — — — .353 .072 .211 .067 .251 .067

mlle — — — — .912 .102 .616 .038 .423 .038

AdpLASSO .668(.019) .998(.038) .999(.015) 1.00(.005) .798 .170 .417 .036 .484 .036

LASSO .716(.118) 1.00(.000) .978(.035) .969(.041) .823 .237 .523 .036 .499 .036

MCP .667(.047) .997(.058) .999(.010) 1.00(.007) .796 .159 .433 .036 .481 .036

SCAD .668(.051) .997(.058) .999(.011) 1.00(.007) .796 .159 .433 .036 .481 .036
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Web Appendix A. Identifiability conditions of f ∗C

The following conditions are considered for an fm-vcr model with probability density (mass)

function f ∗C in (3) of the paper to be identifiable (see Theorem 1 of Huang et al. (2018).).

(C1) For j = 1, . . . , C, πj(u) > 0 is a continuous function, and βj(u) and φj(u) are

differentiable functions of u.

(C2) Any two curves a1(u) = (βi(u), φi(u)) and a2(u) = (βj(u), φj(u)), i 6= j, are transver-

sal; i.e., for any u ∈ U , ‖a1(u)− a2(u)‖2 + ‖a′1(u)− a′2(u)‖2 6= 0, and ‖ · ‖ is the Euclidean

norm.

(C3) The support for U , denoted by U , is a compact subset of the real numbers R.

(C4) The density g(x|u) of X given U = u is a full dimensional (d-dimensional) density

function.

Web Appendix B. Regularity Conditions

In the following three subsections, we state Regularity Conditions (RC.1)-(RC.5) on the

distributions f ∗C , g, and m which is the density of U; Conditions (KC.1)-(KC.2) on the kernel

K, and Conditions (PC.1)-(PC.3) on the penalty pn and the smoothing/tuning parameters

hn and λn.

Web Appendix B.1 Conditions on f ∗C, g, and m

(RC.1) The set {(Ui,Xi, Yi), i = 1, . . . , n} is a sample of independent and identically

distributed variables drawn from its population V = (U,X, Y ) with the probability density

function fV (u,x, y) = f ∗C
(
y|ψ(u),x

)
g(x|u)m(u). The density has a common support in v

for all the parameter values ψ ∈ Ω, and fV or equivalently the mixture density f ∗C in (3) of

the paper is identifiable up to a permutation of the mixture components. (See Section Web

Appendix A for identifiability.)
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(RC.2) The density m(u) of U is positively bounded away from zero over its compact support

U ; it is continuously twice differentiable, and these derivatives are uniformly bounded over

U . The density f ∗C admits third partial derivatives with respect to its parameters ψ for all

(u,x, y); g admits its third derivatives with respect to u, for all x. The function ψ(u) has

continuous third derivatives over U .

(RC.3) There exist functions Mk(x, y), k = 1, 2, with E(X,Y ){Mm0
1 (X, Y )} < ∞ for some

m0 > 2, and E(X,Y ){M2(X, Y )} < ∞, and
∫
x,y
M1(x, y)dxdy < ∞, such that for all x and

y, and all ψ(u) in a neighbourhood of ψ0(u),∣∣∣∣∣∣∣∣
∂l(ψ,x, y)

∂ψj

∣∣∣∣∣∣∣∣ < M1(x, y) ,

∣∣∣∣∣∣∣∣
∂2l(ψ,x, y)

∂ψj∂ψk

∣∣∣∣∣∣∣∣ < M1(x, y),

and ∣∣∣∣∣∣∣∣
∂3l(ψ,x, y)

∂ψj∂ψk∂ψl

∣∣∣∣∣∣∣∣ < M2(x, y).

(RC.4) The matrix I(u) in (12) of the paper is continuous in u and positive definite for all

u ∈ U ; the vector ∆(u;ut) in (13) of the paper is continuously third time differentiable with

respect to u over U .

(RC.5) The conditions

E0

(∣∣∣∣∂l(ψ,X, Y )

∂ψj

∣∣∣∣3
)
<∞ and E0

(∣∣∣∣∂2l(ψ,X, Y )

∂ψi∂ψj

∣∣∣∣2+δ
)
<∞

hold for all i and j and some δ > 0, where E0 is the expectation with respect to the joint

distribution of (Y,X, U).

Web Appendix B.2 Conditions on the kernel K

(KC.1) K is a Lipschitz continuous and symmetric pdf with a compact support U .

(KC.2) Ki =
∫
U t

iK(t)dt, Vi =
∫
U t

iK2(t)dt, i = 0, . . . , 4, are finite; for i odd they are zero.
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Web Appendix B.3 Conditions on the penalty pn, and the tuning parameters (λn, hn)

With regard to the penalty function pn, we denote the quantities

r1n = max
16l6d0

j

16j6C

{
h
1/2
n |p′n(θ0jl;λn)|

n3/2
: θ0jl =

√
E0{β0

jl(Ut)}2 6= 0

}
, and

r2n = max
16l6d0

j

16j6C

{ |p′′n(θ0jl;λn)|
n2

: θ0jl =
√
E0{β0

jl(Ut)}2 6= 0

}
,

where p′n(θ0jl;λn) and p′′n(θ0jl;λn) are the first and second derivatives of pn(θjl;λn) evaluated

at θjl = θ0jl 6= 0.

(PC.1) pn(θ;λn) is nonnegative and symmetric in θ ∈ R, and pn(0;λn) = 0. It is also

nondecreasing and twice continuously differentiable for all but finitely many values θ ∈

(0,∞).

(PC.2) As n → ∞, λn = o(1) such that minj,l θ
0
jl/λn → ∞; and hn = o(1) such that

nhn →∞, and nh5n = O(1). Also, r1n = o(
√
nhn) and r2n = o(1).

(PC.3) Let Nhn =
{
θ; 0 < |θ| 6 log(nhn)√

nhn

}
. Then, lim

n→∞
inf

θ∈Nhn
h
1/2
n

p′n(θ;λn)

n3/2 =∞.

The smoothness Condition (RC.1) facilitates obtaining estimators of βjl(·) by differenti-

ating L̃n(Ψ;λ, h) and for studying the asymptotic properties of the estimators of the true

non-zero βjl(·). (PC.2) is required to obtain
√
nhn-consistent estimators of the true non-zero

βjl(·), while (PC.3) is required for sparsity.

Web Appendix C. Examples of the penalty function pn and the kernel K

We used the following penalties and kernel function in our simulations and analysis of the

real data.

- lasso: pn(θ;λ)/n2 = λ|θ|;

- adplasso: pn(θ;λ)/n2 = λw|θ|, for some (possibly random) known weights w;

- mcp: p′n(θ;λ)/n2 = sgn(θ) (aλ−|θ|)+
a

;



4 Biometrics, January 2022

- scad: p′n(θ;λ)/n2 = sgn(θ)
{
λI(|θ| 6 λ) + (aλ−|θ|)+

a−1 I(|θ| > λ)
}

,

where p′n(·;λ) is the first derivative of a penalty with respect to θ, and (x)+ = max{0, x}.

The Epanechnikov Kernel: K(t) = 3
4
(1− u2)+.

Web Appendix D. Proofs

The result of the following lemma is used in the sequel.

Lemma 1: (Barlett’s first and second identities) Under Conditions (RC.1)-(RC.4)

in Web Appendix B, and for any interior point ut of U , it holds that

E(Y,X)|U
[
l′(ψ0(U),X, Y )|U = ut

]
= 0,

and

E(Y,X)|U
[
l′′(ψ0(U),X, Y )|U = ut

]
= −E(Y,X)|U

[
l′(ψ0(U),X, Y )l′>(ψ0(U),X, Y )|U = ut

]
= I(ut).

Proof. Conditioning on U = ut, we prove Barlett’s first identity as follows.

E(Y,X)|U
[
l′(ψ0(U),X, Y )|U = ut

]
=

∫
Y

∫
X
l′(ψ0(ut),x, y)f ∗C(y|ψ0(ut),x)g(x|ut)dxdy

=

∫
Y

∫
X

∂l(ψ,x, y)

∂ψ

∣∣
ψ=ψ0(ut) f

∗
C(y|ψ0(ut),x)g(x|ut)dxdy

=

∫
Y

∫
X

∂ log f ∗C(y|ψ,x)

∂ψ

∣∣
ψ=ψ0(ut) f

∗
C(y|ψ0(ut),x)g(x|ut)dxdy

=

∫
Y

∫
X

∂f ∗C(y|ψ,x)

∂ψ

∣∣
ψ=ψ0(ut) g(x|ut)dxdy

=
∂

∂ψ

∫
Y

∫
X

[
C∑
c=1

πcf(y; θc(x), φc)

]
g(x|ut)dxdy

∣∣
ψ=ψ0(ut)

=
∂

∂ψ
(1) = 0.
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For a proof of Barlett’s second identity note that

− E(Y,X)|U
[
l′′(ψ0(U),X, Y )|U = ut

]
= −

∫
Y

∫
X

∂2 log f ∗C(y|ψ,x)

∂ψ∂ψ>
∣∣
ψ=ψ0(ut) f

∗
C(y|ψ0(ut),x)g(x|ut)dxdy

= −
∫
Y

∫
X

∂2f∗C(y|ψ,x)
∂ψ∂ψ>

f ∗C(y|ψ,x)−
{
∂f∗C(y|ψ,x)

∂ψ

}{
∂f∗C(y|ψ,x)

∂ψ

}>
{f ∗C(y|ψ,x)}2

∣∣
ψ=ψ0(ut)

× f ∗C(y|ψ0(ut),x)g(x|ut)dxdy

= −
∫
Y

∫
X

∂2

∂ψ∂ψ>
{f ∗C(y|ψ,x)}

∣∣
ψ=ψ0(ut) g(x|ut)dxdy

+

∫
Y

∫
X

{
∂
∂ψ
f ∗C(y|ψ,x)

}{
∂
∂ψ
f ∗C(y|ψ,x)

}>
{f ∗C(y|ψ,x)}2

∣∣
ψ=ψ0(ut) f

∗
C(y|ψ0(ut),x)g(x|ut)dxdy

= − ∂2

∂ψ∂ψ>

∫
Y

∫
X
{f ∗C(y|ψ,x)}

∣∣
ψ=ψ0(ut) g(x|ut)dxdy

+

∫
Y

∫
X
l′(ψ0(ut),x, y)l′>(ψ0(ut),x, y)f ∗C(y|ψ0(ut),x)g(x|ut)dxdy

= E(Y,X)|U
{
l′(ψ0(ut),X, Y )l′>(ψ0(ut),X, Y )|U = ut

}
.

We now provide the proofs of our main results, starting with a proposition on point-wise

consistency of the maximum local-kernel log-likelihood estimator (mlle) of the parameter

vector of ψ(u) in the fm-vcr model in (3) of the paper .

Proposition 1: Suppose that Regularity Conditions (RC.1)-(RC.4) on the parametric

family and Conditions (KC.1)-(KC.2) on the kernel K stated in Web Appendix B of this

document hold, and hn = o(1) such that nhn → ∞, and nh5n = O(1). Then for any u ∈ U ,

there exists a local maximizer ψ̆n(u) of `n
(
ψ(u);hn

)
in (7) of the paper such that: ‖ψ̆n(u)−

ψ0(u)‖2 = Op{(nhn)−1/2}.
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Proof of Proposition 1

Proof. The proof is a special case of the proof of Theorem 1 (without the penalty) and

thus omitted.

Proof of Theorem 1

Proof. First note that, for any u ∈ U ,

ψ(u) =
(
π>(u),φ>(u),β>1 (u), . . . ,β>C (u)

)> ∈ R(C(d+2)−1)×1,

and whenever necessary, we rewrite

ψ(u) =
(
ψ1(u), . . . , ψC(d+2)−1(u)

)>
without changing the order of φ>(u),π>(u),β>1 (u), . . . ,β>C (u). Otherwise, we will use the

same notation as defined in Section 2 of the paper . Let

wj,I =


wj1,I,1 . . . wjd,I,1

...
. . .

...

wj1,I,n . . . wjd,I,n

 ∈ Rn×d,

and the vectors

wj,II = (wj,II,1, . . . , wj,II,n)> ∈ Rn×1, j = 1, . . . , C,

wj,III = (wj,III,1, . . . , wj,III,n)> ∈ Rn×1, j = 1, . . . , C − 1.

We set

Wn = (w1,I , . . . ,wC,I ,w1,II , . . . ,wC,II ,w1,III , . . . ,wC−1,III) ∈ Rn×(C(d+2)−1)

which is an arbitrary matrix with rows w>t , and wj,I,t is denoted as the t-th row of wj,I , for

t = 1, . . . , n. The first Cd columns of w are denoted by v11, . . . ,v1d, . . . ,vC1, . . . ,vCd. For an

arbitrary matrix A = (aij), we define its L2 norm (i.e. the Frobenius norm) as

‖A‖F =
(∑

a2ij

)1/2
.
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Note that ‖Wn‖2F =
∑n

t=1 ‖wt‖2 and
∑C

j=1

∑d
l=1 ‖vjl‖2 6 ‖Wn‖2F. Whenever necessary, we

rewrite wt = (w1,t, . . . , wC(d+2)−1,t)
>; otherwise, we will use the same notation as defined by

wt = (w11,I,t, . . . , w1d,I,t, . . . , wC1,I,t, . . . , wCd,I,t, w1,II,t, . . . , wC,II,t, w1,III,t, . . . , wC−1,III,t)
>.

To prove the claim of the theorem, it suffices to show that for any small ε > 0, there exists

a constant Mε such that

lim
n→∞

P

{
sup

n−1‖Wn‖22=M2
ε

L̃n
(
Ψ0
n + γnWn;λn, hn

)
< L̃n

(
Ψ0
n;λn, hn

)}
> 1− ε, (A.1)

where γn = (1 + r1n)(nhn)−1/2.

To show (A.1), we proceed as follows. Let

Dn(Wn) = hnn
−1
{
L̃n
(
Ψ0
n + γnWn;λn, hn

)
− L̃n

(
Ψ0
n;λn, hn

)}
.

By the definition of penalized local log-likelihood L̃n in (9) of the paper, we have

L̃n
(
Ψ0
n + γnWn;λn, hn

)
=

n∑
t=1

n∑
i=1

l
(
ψ0(Ut) + γnwt,Xi, Yi

)
Khn(Ui−Ut)−Pn(Ψ0

n+γnWn;λn)

and

L̃n
(
Ψ0
n;λn, hn

)
=

n∑
t=1

n∑
i=1

l
(
ψ0(Ut),Xi, Yi

)
Khn(Ui − Ut)− Pn(Ψ0

n;λn),

where l(ψ0(u),x, y) = log {f ∗C (y|ψ0(u),x)}, f ∗C is the mixture density given in (3) of the

paper, and the penalty

Pn(Ψn;λn) =
C∑
j=1

d∑
l=1

pn(‖bjl‖2/
√
n;λnj).

By Condition (PC.1) on the penalty, we have pn(0;λnj) = 0. Thus,

Dn(Wn) = hnn
−1

n∑
t=1

n∑
i=1

{
l
(
ψ0(Ut) + γnwt,Xi, Yi

)
− l
(
ψ0(Ut),Xi, Yi

)}
Khn(Ui − Ut)

−hnn−1
C∑
j=1

d∑
l=1

{
pn

(∥∥b0jl + γnvjl
∥∥
2
/
√
n;λnj

)
− pn

(∥∥b0jl∥∥2 /√n;λnj

)}
6 hnn

−1
n∑
t=1

n∑
i=1

{
l
(
ψ0(Ut) + γnwt,Xi, Yi

)
− l
(
ψ0(Ut),Xi, Yi

)}
Khn(Ui − Ut)

−hnn−1
C∑
j=1

d0
j∑

l=1

{
pn

(∥∥b0jl + γnvjl
∥∥
2
/
√
n;λnj

)
− pn

(∥∥b0jl∥∥2 /√n;λnj

)}
= Dn,I(Wn)−Dn,II(Wn), (A.2)
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where Dn,I(Wn) and Dn,II(Wn) are respectively the differences in the local-kernel log-

likelihood and the penalty functions. In what follows, we first perform an order assessment

of the two differences for large n, in two steps:

Step 1: (Order assessment of the local log-likelihood difference)

Following the first part of (A.2), we rewrite the difference as

Dn,I(Wn) = n−1
n∑
t=1

dn,I(Ut,wt), (A.3)

where for each t = 1, . . . , n,

dn,I(Ut,wt) = hn

n∑
i=1

{
l
(
ψ0(Ut) + γnwt,Xi, Yi

)
− l
(
ψ0(Ut),Xi, Yi

)}
Khn(Ui − Ut).

By the differentiability Condition (RC.2) on f ∗C and using a third-order Taylor expansion,

dn,I(Ut,wt) = hn

n∑
i=1

{
γnw

>
t l
′ (ψ0(Ut),Xi, Yi

)
+

1

2
γ2n [w>t l

′′ (ψ0(Ut),Xi, Yi
)
wt]

+
1

6
γ3n

C(d+2)−1∑
j,k,l=1

∂3

∂ψj∂ψk∂ψl
l(ψ̃0(Ut),Xi, Yi) wj,twk,twl,t

 Khn(Ui − Ut),

where ψ̃0(Ut) is between ψ0(Ut) and ψ0(Ut) + γnwt, for t = 1, . . . , n. We then have

dn,I(Ut,wt) = w>t l
′
n,hn(Ut) +

1

2
w>t {l′′n,hn(Ut)}wt +

hnγ
3
n

6

n∑
i=1

R
(
ψ̃0(Ut),Xi, Yi

)
, (A.4)

where

l′n,hn(Ut) =

√
hn
n

(1 + r1n)
n∑
i=1

l′
(
ψ0(Ut),Xi, Yi

)
Khn(Ui − Ut), (A.5)

l′′n,hn(Ut) =
1

n
(1 + r1n)2

n∑
i=1

l′′(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)

and

R
(
ψ̃0(Ut),Xi, Yi

)
=

C(d+2)−1∑
j,k,l=1

∂3

∂ψj∂ψk∂ψl
l
(
ψ̃0(Ut),Xi, Yi

)
Khn(Ui − Ut)wj,twk,twl,t.

We now perform an order assessment of the three terms in (A.4), by first focusing on

l′n,hn(Ut). Under our regularity conditions, we will show that l′n,hn(Ut) = Op(1). Using Pro-

horov’s Theorem and Example 2.6 on pages 8-10 of van der Vaart (1998), it is sufficient to

show that E0‖l′n,hn(Ut)‖2 = O(1), where E0 is the expectation with respect to the true joint
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distribution of (Ut, Ui,Xi, Yi). Note that,

E0‖l′n,hn(Ut)‖2

= E0


∥∥∥∥∥(1 + r1n)

√
hn
n

n∑
i=1

l′(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)

∥∥∥∥∥
2


= (1 + r1n)2
hn
n
E0


∥∥∥∥∥

n∑
i=1

l′(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)

∥∥∥∥∥
2


= (1 + r1n)2
hn
n

n∑
i=1

E0

{∥∥l′ (ψ0(Ut),Xi, Yi
)∥∥2K2

hn(Ui − Ut)
}

+ 2(1 + r1n)2
hn
n

×
n∑
i<j

E0

{[
l′(ψ0(Ut),Xi, Yi)

]> [
l′
(
ψ0(Ut),Xj, Yj

)]
Khn(Ui − Ut)Khn(Uj − Ut)

}
= (1 + r1n)2

hn
n

n∑
i=1

E0[Qi,t] + 2(1 + r1n)2
hn
n

n∑
i<j

E0[Pi,j,t], (A.6)

where Qi,t and Pi,j,t are the quadratic and cross-product terms, respectively. The sth element

of the vector l′(ψ0(Ut),Xi, Yi) is denoted by l′(s)(ψ0(Ut),Xi, Yi), where s = 1, 2, . . . , d∗ =

C(d+ 2)− 1.

We now focus on E0[Qi,t] for the cases i = t and i 6= t. When i = t, by the definition of

the conditional information matrix I(ut) in (12) of the paper and denoting I(s,s)(ut) as its

(s, s)th element, we obtain

E0[Qt,t] = E0

{∥∥l′ (ψ0(Ut),Xt, Yt
)∥∥2K2

hn(0)
}

= K2
hn(0)

d∗∑
s=1

E0

{
l′(s)(ψ0(Ut),Xt, Yt)

}2
= K2

hn(0)
d∗∑
s=1

EU
{
E(X,Y )|Ut

{
[l′(s)(ψ0(Ut),Xt, Yt)]

2 | Ut
}}

= K2
hn(0)

d∗∑
s=1

EU
{
I(s,s)(Ut)

}
.

By (RC.4), the expected value in the last sum is finite. Thus, for some constant M > 0,

E0[Qt,t] 6 K2
hn(0)Md∗ =

1

h2n
K2(0)Md∗ =

C0

h2n
. (A.7)
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For i 6= t, we have

E0[Qi,t] = E0

{∥∥l′(ψ0(Ut),Xi, Yi)
∥∥2K2

hn(Ui − Ut)
}

=
d∗∑
s=1

E0

{
l′(s)(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)

}2
.

Next, we evaluate the expected value inside the sum in the above equation. Note that

(Xi, Yi, Ui) and Ut are independent when i 6= t. Thus,

E0

{
l′(s)(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)

}2
6 2E0

{
l′(s)(ψ0(Ui),Xi, Yi)Khn(Ui − Ut)

}2
+ 2E0

{[
l′(s)(ψ0(Ut),Xi, Yi)− l′(s)(ψ0(Ui),Xi, Yi)

]
Khn(Ui − Ut)

}2
= Tn,1 + Tn,2,

where Tn,1 and Tn,2 respectively represent the two expectations on the right hand side of the

above inequality. Order assessment of each term is given below.

By Condition (RC.4) on I(u), it follows that for some constant M > 0,

Tn,1 = 2

∫
U

∫
U

∫
X

∫
Y
{l′(s)(ψ0(ui),xi, yi)}2f ∗C(yi|ψ0(ui),xi)g(xi|ui)

×K2
hn(ui − ut)m(ui)m(ut)dyidxiduidut

= 2

∫
U

∫
U
I(s,s)(ui)K

2
hn(ui − ut)m(ui)m(ut)duidut

6 2M

∫
U

∫
U
K2
hn(ui − ut)m(ui)m(ut)duidut.

Applying the change of variable u∗i = (ui − ut)/hn to the above integration, we have

Tn,1 6 2Mh−1n

∫
U

∫
U∗
K2(u∗i )m(ut + hnu

∗
i )m(ut)du

∗
i dut.

Using a second-order Taylor expansion,

m(ut + hnu
∗
i ) = m(ut) + hnu

∗
i m

′(ut) + (hnu
∗
i )

2 m′′(ũi,t), (A.8)

where ũi,t is between ut and ut+hnu
∗
i . Using the boundedness Condition (RC.2) of m(u) and

its first and second derivatives over U , and the finite-moment Condition (KC.1) of K2(u),
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for some positive constants C1 and C2, we arrive at

Tn,1 6 C1h
−1
n + C2hn. (A.9)

Using a first-order Taylor expansion and by Conditions (RC.2) and (RC.3) for some

constants C3 and C4,

Tn,2 = 2E0

{[
l′(s)(ψ0(Ut),Xi, Yi)− l′(s)(ψ0(Ui),Xi, Yi)

]
Khn(Ui − Ut)

}2
6 C3E0 {M1(Xi, Yi)(Ut − Ui)Khn(Ui − Ut)}2

= C3

∫
U

∫
U

[∫
X

∫
Y
M2

1 (xi, yi)f
∗
C(yi|ψ0(ui),xi)g(xi|ui)dyidxi

]
(ui − ut)2

× K2
hn(ui − ut)m(ui)m(ut)duidut

6 C3C4

∫
U

∫
U

(ui − ut)2K2
hn(ui − ut)m(ui)m(ut)duidut.

Applying the change of variable u∗i = (ui − ut)/hn and the expansion (A.8), we have

Tn,2 6 C3C4

{
hn

∫
U

∫
U∗

(u∗i )
2K2(u∗i )m

2(ut)du
∗
i dut

+h2n

∫
U

∫
U∗

(u∗i )
3K2(u∗i )m

′(ut)m(ut)du
∗
i dut

+h3n

∫
U

∫
U∗

(u∗i )
4K2(u∗i )m

′′(ũi,t)m(ut)du
∗
i dut

}
.

Thus, by Condition (RC.2) on m(u) and its first and second derivatives, and the finite-

moment Condition (KC.1) of K2(u), for some positive constants C5 and C6, we arrive at

Tn,2 6 C5hn + C6h
3
n. (A.10)

Hence, using (A.7), (A.9), and (A.10), the first sum on the right hand side of (A.6) becomes

(1 + r1n)2
hn
n

n∑
i=1

E0[Qi,t] = (1 + r1n)2
hn
n

{
C0

h2n
+ (n− 1)

(
C1h

−1
n + C2hn + C5hn + C6h

3
n

)}
= (1 + r1n)2

{
C0

nhn
+

(n− 1)

n

[
C1 + (C2 + C5)h

2
n + C6h

4
n

]}
.

Under Condition (PC.2), we have hn → 0 and nhn →∞, as n→∞. Thus,

(1 + r1n)2
hn
n

n∑
i=1

E0[Qi,t] = O{(1 + r1n)2}. (A.11)

We now assess the second sum in (A.6). The expectation of Pi,j,t, for i > j, i 6= t and j 6= t
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is given by

E0[Pi,j,t] = E0

{
[l′(ψ0(Ut),Xi, Yi)]

>l′(ψ0(Ut),Xj, Yj)Khn(Ui − Ut)Khn(Uj − Ut)
}

=
d∗∑
s=1

E0{l′(s)(ψ0(Ut),Xi, Yi)l
′(s)(ψ0(Ut),Xj, Yj)Khn(Ui − Ut)Khn(Uj − Ut)}

=
d∗∑
s=1

EUt
{
E(Y,X,Uj ,Ui)|Ut

{
l′(s)(ψ0(Ut),Xi, Yi)l

′(s)(ψ0(Ut),Xj, Yj)

× Khn(Ui − Ut)Khn(Uj − Ut)} | Ut} . (A.12)

Conditioning on Ut, since i 6= j, (Ui,Xi, Yi) and (Uj,Xj, Yj) are independent and identi-

cally distributed. In what follows, we first evaluate the conditional expectations.

E(Y,X,Ui,Uj)|Ut
{
l′(s)(ψ0(ut),Xi, Yi)l

′(s)(ψ0(ut),Xj, Yj)Khn(Ui − ut)Khn(Uj − ut) | Ut = ut
}

= E2
(Y,X,Ui)|Ut

{
l′(s)(ψ0(ut),Xi, Yi)Khn(Ui − ut) | Ut = ut

}
, i 6= t.

Thus,

E(Y,X,Ui)|Ut
{
l′(s)(ψ0(ut),Xi, Yi)Khn(Ui − ut)|Ut = ut

}
=

∫
Y

∫
X

∫
U
l′(ψ0(ut),xi, yi)Khn(ui − ut)f ∗C(yi|ψ0(ui),xi)g(xi|ui)m(ui)duidxidyi

=

∫
U

[∫
Y

∫
X
l′(ψ0(ut),xi, yi)f

∗
C(yi|ψ0(ui),xi)g(xi|ui)dxidyi

]
Khn(ui − ut)m(ui)dui

=

∫
U

∆(ui;ut)Khn(ui − ut)m(ui)dui

=

∫
U
Khn(ui − ut)∆(ui;ut)m(ui)dui,

where ∆(ui;ut) is given in (13) of the paper. Note that by the first Bartlett identity verified

in Lemma 1, ∆(ut;ut) = 0. Denote H(ui) = ∆(ui;ut)m(ui), then

E(Y,X,Ui)|Ut
{
l′(s)

(
ψ0(ut),Xi, Yi

)
Khn(Ui − ut)|Ut = ut

}
=

∫
U
Khn(ui − ut)H(ui)dui. (A.13)

By the differentiability conditions of (f ∗C , g,m) in (RC.2), and Condition (RC.4) on ∆, the

first and second derivatives of H(ui) with respect to ui, evaluated at ui = ut, are

H ′(ut) = ∆′(ut;ut)m(ut)
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and

H ′′(ut) = ∆′′(ut;ut)m(ut) + 2∆′(ut;ut)m
′(ut),

where ∆′(·;ut) and ∆′′(·;ut) are the first and second derivatives of ∆(ui;ut) with respect to

ui. Similarly, the third derivative of H(ui) with respect to ui is calculated. Using a third-order

Taylor expansion,

H(ui) = ∆′(ut;ut)m(ut)(ui − ut) +
1

2
{∆′′(ut;ut)m(ut) + 2∆′(ut;ut)m

′(ut)} (ui − ut)2

+
1

6
{∆′′′(ũt;ut)m(ũt) + ∆′′(ũt;ut)m

′(ũt) + 2∆′′(ũt;ut)m
′(ũt) + 2∆′(ũt;ut)m

′′(ũt)} (ui − ut)3,

where ũt is between ut and ui, and ∆′′′(·;ut) is the third derivative of ∆(ui;ut) with respect

to ui. By replacing the above expansion in (A.13), and Condition (KC.2) on the kernel K(·),

E(Y,X,Ui)|Ut
{
l′(s)(ψ0(ut),Xi, Yi)Khn(Ui − ut)|Ut = ut

}
=

1

2
K2 {∆′′(ut;ut)m(ut) + 2∆′(ut;ut)m

′(ut)}h2n{1 + o(1)}. (A.14)

Thus,

E0[Pi,j,t] = {1 + o(1)}2h
4
nK2

2

4

d∗∑
s=1

∫
U
{∆′′(ut;ut)m(ut) + 2∆′(ut;ut)m

′(ut)}2m(ut)dut

= {1 + o(1)}2d
∗h4nK2

2

4

∫
U
{∆′′(ut;ut)m(ut) + 2∆′(ut;ut)m

′(ut)}2m(ut)dut.

Hence, for i > j, i 6= t and j 6= t, by the boundedness Condition (RC.2) of m(u) and its

first derivative over U , and Condition (RC.4) on ∆, it follows that, as n→∞,

E0[Pi,j,t] = O(h4n). (A.15)

For i > j, and i = t, we have

E0[Pi,j,i]

= E0

{
[l′(ψ0(Ui),Xi, Yi)]

>l′(ψ0(Ui),Xj, Yj)Khn(0)Khn(Uj − Ui)
}

= Khn(0)
d∗∑
s=1

EUi
{
E(Y,X,Uj)|Ui

{
l′(s)(ψ0(Ui),Xi, Yi)l

′(s)(ψ0(Ui),Xj, Yj)Khn(Uj − Ui)|Ui
}}

.

Now, we calculate the conditional expectations in the above sum. By the independence of
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(Xi, Yi) and (Uj,Xj, Yi) for i 6= j, and the first Bartlett identity verified in Lemma 1,

E(Y,X,Uj)|Ui
{
l′(s)(ψ0(ui),Xi, Yi)l

′(s)(ψ0(ui),Xj, Yj)Khn(Uj − ui)|Ui = ui
}

= E(Y,X)|U
{
l′(s)(ψ0(ui),Xi, Yi)|Ui = ui

}
×E(Y,X,Uj)|Ui

{
l′(s)(ψ0(ui),Xj, Yj)Khn(Uj − ui)|Ui = ui

}
= 0× E(Y,X,Uj)|Ui

{
l′(s)(ψ0(ui),Xj, Yj)Khn(Uj − ui)|Ui = ui

}
= 0.

Thus,

E0[Pi,j,i] = E0[Pi,j,j] = 0. (A.16)

Using (A.15) and (A.16), the second sum in (A.6) can be written as

2(1 + r1n)2
hn
n

n∑
i<j

E0[Pi,j,t] = 2(1 + r1n)2
hn
n


n∑
i<j
i,j 6=t

E0[Pi,j,t] + E0[Pi,j,i] + E0[Pi,j,j]


= 2(1 + r1n)2

hn
n


n∑
i<j
i,j 6=t

O(h4n) + 0 + 0


= (1 + r1n)2

(n− 1)(n− 2)

n
O(h5n) = (1 + r1n)2 O(nh5n).

Under conditions (PC.2), as n→∞, we have nh5n = O(1). Thus, for large n

2(1 + r1n)2
hn
n

n∑
i<j

E0[Pi,j,t] = O{(1 + r1n)2}. (A.17)

Hence, by putting together the order assessments in (A.11) and (A.17), and using (A.6),

for large n we arrive at E0‖l′n,hn(Ut)‖2 = O{(1 + r1n)2}, which implies that

l′n,hn(Ut) = Op{(1 + r1n)}. (A.18)
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Next, we perform an order assessment of the third term in (A.4). Using Condition (RC.3),

E0

[∣∣∣∣∣hnγ3n6

n∑
i=1

R
(
ψ̃0(Ut),Xi, Yi

)∣∣∣∣∣
]

6
hnγ

3
n

6

n∑
i=1

E0

∣∣∣R(ψ̃0(Ut),Xi, Yi

)∣∣∣
=
hnγ

3
n

6

E0

{∣∣∣R(ψ̃0(Ut),Xt, Yt

)∣∣∣}+
n∑

(t6=i)=1

E0

{∣∣∣R(ψ̃0(Ut),Xi, Yi

)∣∣∣}


=
hnγ

3
n

6
Khn(0)

d∗∑
j,k,l=1

E0

[∣∣∣∣ ∂3

∂ψj∂ψk∂ψl
l
(
ψ̃0(Ut),Xt, Yt

)
wj,twk,twl,t

∣∣∣∣]

+
hnγ

3
n

6
E0

∣∣∣∣∣∣
n∑

(t6=i)=1

d∗∑
j,k,l=1

∂3

∂ψj∂ψk∂ψl
l
(
ψ̃0(Ut),Xi, Yi

)
Khn(Ui − Ut)wj,twk,twl,t

∣∣∣∣∣∣


6
(d∗)3hnγ

3
n

6
Khn(0) E0 [M2(Xt, Yt)]

{
d∗∑
l=1

|wl,t|2
}3/2

+
(d∗)3hnγ

3
n

6

 n∑
(t6=i)=1

E0 [M2(Xi, Yi)Khn(Ui − Ut)]

 {
d∗∑
l=1

|wl,t|2
}3/2

6
(d∗)3hnγ

3
n

6
Khn(0) E0 [M2(Xt, Yt)]

{
d∗∑
l=1

|wl,t|2
}3/2

+
(d∗)3hnγ

3
n

6
nE0 [M2(Xi, Yi)Khn(Ui − Ut)]

{
d∗∑
l=1

|wl,t|2
}3/2

=
(d∗)3γ3n

6
K(0) E0 [M2(Xt, Yt)]

{
d∗∑
j=1

|wj,t|2
}3/2

+
(d∗)3hnγ

3
n

6
nE0 [M2(Xi, Yi)Khn(Ui − Ut)]

{
d∗∑
l=1

|wl,t|2
}3/2

= O(γ3n) +O(γn) = O(γn).

Thus,

hnγ
3
n

6

n∑
i=1

R
(
ψ̃0(Ut),Xi, Yi

)
= Op(γn) (A.19)

uniformly for all t = 1, 2, . . . , n. Thus, since γn → 0, (A.4) reduces to

dn,I(Ut,wt) = w>t l
′
n,hn(Ut) +

1

2
w>t l

′′
n,hn(Ut)wt + op(1). (A.20)
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On the other hand,

l′′n,hn(Ut) =
(1 + r1n)2

n

n∑
i=1

l′′
(
ψ0(Ut),Xi, Yi

)
Khn(Ui − Ut)

=
K(0)

nh
(1 + r1n)2l′′(ψ0(Ut),Xt, Yt)

+
(1 + r1n)2

n


n∑

(t6=)i=1

l′′(ψ0(Ut),Xi, Yi)Khn(Ui − Ut)


= E1n + E2n(Ut). (A.21)

Note that

−E0

{
l′′(ψ0(Ut),Xt, Yt)

}
= EU {I(Ut)}

which by Condition (RC.4) is finite and positive definite. Thus, by Condition (RC.5),

l′′
(
ψ0(Ut),Xt, Yt

)
=

{
l′′
(
ψ0(Ut),Xt, Yt

)
− E0

{
l′′
(
ψ0(Ut),Xt, Yt

)}}
+ E0{l′′(ψ0(Ut),Xt, Yt)}

= Op(1)− E0{I(Ut)} = Op(1).

Hence, by conditions r1n = O(1) and nhn →∞ (see (PC.2)), as n→∞,

E1n =
K(0)

nh
(1 + r1n)2l′′(ψ0(Ut),Xt, Yt) =

(1 + r1n)2

nhn
Op(1) = op(1). (A.22)

Next, we focus on E2n(Ut). Define the centralized (finite dimensional) matrix

Zi,n(u) = l′′(ψ0(u),Xi, Yi)Khn(Ui − u)− E0[l
′′(ψ0(u),Xi, Yi)Khn(Ui − u)], (A.23)

where E0[Zi,n(u)] = 0, for any u ∈ U . Note that, by using a change of variable νi = (ui −

u)/hn,

E0[l
′′(ψ0(u),Xi, Yi)Khn(Ui − u)]

=

∫
Y

∫
X

∫
U
l′′(ψ0(u),xi, yi)Khn(ui − u)f(ui,xi, yi)duidxidyi

=

∫
U

∫
Y

∫
X
l′′(ψ0(u),xi, yi)K(νi)f(u+ hnνi,xi, yi)dxidyidνi,

where f is the joint pdf of (Ui,Xi, Yi). By a second-order Taylor expansion,

f(u+ hnνi,xi, yi) = f(u,xi, yi) + hnνif
′(u,xi, yi) +

h2nν
2
i

2
f ′′(uni,xi, yi) (A.24)
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such that uni lies between u and u + hnνi, and f ′ and f ′′ are the partial derivatives of

f(u,xi, yi) with respect to u, which by Conditions (RC.1) and (RC.2) exist. Replacing (A.24)

in the above integration and using the boundedness Condition (KC.2) on the kernel K(·)

and by the second Bartlett identity verified in Lemma 1, we arrive at

E0[l
′′(ψ0(u),Xi, Yi)Khn(Ui − u)] = −m(u)I(u) + op(hn) , ∀u ∈ U . (A.25)

Turning to (A.23), we show that, as n→∞,

sup
u∈U

∥∥∥∥∥ 1

n

n∑
i=1

Zi,n(u)

∥∥∥∥∥
2

= Op


(

log( 1
hn

)

nhn

) 1
2

 ≡ Op(ξn) = op(1). (A.26)

Let Zjl
i,n(u) be the (j, l)-th element of the matrix Zi,n(u). Since U is compact, let

⋃Nn
k=1B(uk; ηn)

be a finite open cover of U , where B(uk; ηn) are balls centred at uk and with radius ηn, such

that ηn = o(1), as n→∞. Clearly, we have Nn = O(η−1n ). Then, we can write,

sup
u∈U

∣∣∣∣∣ 1n
n∑
i=1

Zjl
i,n(u)

∣∣∣∣∣ 6 max
16k6Nn

∣∣∣∣∣ 1n
n∑
i=1

Zjl
i,n(uk)

∣∣∣∣∣+ max
16k6Nn

sup
u∈U

∣∣∣∣∣ 1n
n∑
i=1

[
Zjl
i,n(u)− Zjl

i,n(uk)
]∣∣∣∣∣

6 max
16k6Nn

∣∣∣∣∣ 1n
n∑
i=1

Zjl
i,n(uk)

∣∣∣∣∣+ max
16k6Nn

sup
u∈B(uk;ηn)

∣∣∣∣∣ 1n
n∑
i=1

[
Zjl
i,n(u)− Zjl

i,n(uk)
]∣∣∣∣∣

= Zn1 + Zn2. (A.27)

We show that Zn1 and Zn2 follow the rate as in (A.26). We first focus on Zn2. Note that,

1

n

n∑
i=1

[
Zjl
i,n(u)− Zjl

i,n(uk)
]

=
1

n

n∑
i=1

{[
l′′jl(ψ

0(u),Xi, Yi)Khn(Ui − u)− l′′jl(ψ0(uk),Xi, Yi)Khn(Ui − uk)
]

− E0

[
l′′jl(ψ

0(u),Xi, Yi)Khn(Ui − u)− l′′jl(ψ0(uk),Xi, Yi)Khn(Ui − uk)
]}
,

where l′′jl is the (j, l)-th element of the matrix l′′. The expression in the first square bracket

can be rewritten as[
l′′jl(ψ

0(u),Xi, Yi)Khn(Ui − u)− l′′jl(ψ0(uk),Xi, Yi)Khn(Ui − uk)
]

= l′′jl(ψ
0(u),Xi, Yi) [Khn(Ui − u)−Khn(Ui − uk)]

+
[
l′′jl(ψ

0(u),Xi, Yi)− l′′jl(ψ0(uk),Xi, Yi)
]
Khn(Ui − uk).
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By the Lipschitz condition in (KC.1) on the kernel K, and Conditions (RC.3) and (RC.5)

on l(ψ(u),x, y), we have that, for large n,∣∣∣∣∣ 1n
n∑
i=1

l′′jl(ψ
0(u),Xi, Yi) [Khn(Ui − u)−Khn(Ui − uk)]

∣∣∣∣∣
6

∣∣∣∣∣ 1n
n∑
i=1

l′′jl(ψ
0(u),Xi, Yi)

∣∣∣∣∣ C|u− uk|h2n
= Op

(
ηn
h2n

)
.

Similarly, by the above conditions and also Condition (RC.2), the Condition (KC.1) on

the kernel K(·), and using the mean value theorem, for large n,

1

n

n∑
i=1

{∣∣l′′jl(ψ0(u),Xi, Yi)− l′′jl(ψ0(uk),Xi, Yi)
∣∣Khn(Ui − uk)

}
6 Op(1)

|u− uk|
hn

= Op

(
ηn
hn

)
.

Hence, by the putting together the above order assessments, we have that, for large n,∣∣∣∣∣ 1n
n∑
i=1

[
Zjl
i,n(u)− Zjl

i,n(uk)
]∣∣∣∣∣ = Op

(
rn
h2n

)
+Op

(
ηn
hn

)
= Op

(
ηn
h2n

)
which implies that if we choose ηn = h2nξn, we have, for large n,

Zn2 = Op

(
ηn
h2n

)
= Op(ξn). (A.28)

Next, we focus on the order assessment of Zn1 in (A.27). Denote the random variables,

Z
jl

i,n(u) = Zjl
i,n(u) 1{|l′′jl(ψ0(u),Xi, Yi)| 6 C2n

1/m0} (A.29)

and

Z̃jl
i,n(u) = Zjl

i,n(u) 1{|l′′jl(ψ0(u),Xi, Yi)| > C2n
1/m0} (A.30)

such that Zjl
i,n(u) = Z

jl

i,n(u)+Z̃jl
i,n(u), for some constant C2 > 0, and 1{} is indicator function.

Note that E0{Zjl
i,n(u)} = 0. Then, we have that

Zn1 = max
16k6Nn

∣∣∣∣∣ 1n
n∑
i=1

Zjl
i,n(uk)

∣∣∣∣∣
6 max

16k6Nn

∣∣∣∣∣ 1n
n∑
i=1

[
Z
jl

i,n(uk)− E{Z
jl

i,n(uk)}
]∣∣∣∣∣+ max

16k6Nn

∣∣∣∣∣ 1n
n∑
i=1

[
Z̃jl
i,n(uk)− E{Z̃jl

i,n(uk)}
]∣∣∣∣∣

= Jn1 + Jn2. (A.31)
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For some constant C3 > 0, any ε > 0, by using the Markov inequality and Condition (RC.3),

P (Jn2 > C3ξn) 6 P

(
max

16k6Nn

n⋃
i=1

{
|l′′jl(ψ0(uk),Xi, Yi)| > C2n

1/m0
})

6 P

(
n⋃
i=1

{
|M1(Xi, Yi)| > C2n

1/m0
})

6
n∑
i=1

P (M1(Xi, Yi) > C2n
1/m0)

6
n∑
i=1

E0{Mm0
1 (Xi, Yi)} (C2n

1/m0)−m0 = E0{Mm0
1 (Xi, Yi)}C−m0

2 < ε

if we choose C2 > ε−1/m0 [E0{Mm0
1 (Xi, Yi)}]1/m0 . Since ε > 0 can be arbitrarily small, we

then have that, for large n,

Jn2 = Op(ξn). (A.32)

We use the Bernstein inequality, Lemma 2.2.9 of van der Vaart and Wellner (1996), to

assess the large sample behavior of Jn1 in (A.31). First, we verify the conditions of the

lemma. Note that, by the definitions in (A.23) and (A.29), and the boundedness of K(·),∣∣∣Zjl

i,n(uk)− E{Z
jl

i,n(uk)}
∣∣∣ 6 C4C2n

1/m0

hn
, V ar{Zjl

i,n(uk)} 6
C4

hn
(A.33)

for some constant C4 > 0. By the Bernstein inequality,

P (Jn1 > C3ξn) 6 2Nn exp

{
− C2

3n
2ξ2n

2nC4/hn + 2nC4ξnC3C2n1/m0/3hn

}
.

If we choose C3 such that C3 > 3C4, then by the definition of ξn,

C2
3n

2ξ2n
2nC4/hn + 2nC4ξnC3C2n1/m0/3hn

>
(3C3/2) log h−1n

1 + C2C4ξnn1/m0
.

Also if, for large n,

n1/m0ξn =

(
n2/m0 log( 1

hn
)

nhn

) 1
2

= o(1) , Nn exp{−C3 log h−1n } = o(1) (A.34)

Thus, for large n, we have that P (Jn1 > C3ξn) 6 o(1), which implies that

Jn1 = Op(ξn). (A.35)

Hence, in summary, by (A.28), and also applying (A.32) and (A.35) to (A.31), we have

proved (A.26).
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Therefore, for any u ∈ U , and using (A.25),

1

n

{
n∑
i=1

l′′(ψ0(u),Xi, Yi)Khn(Ui − u)

}

=
1

n

n∑
i=1

Zi,n(u) + E0

[
l′′(ψ0(u),Xi, Yi)Khn(Ui − u)

]
=

1

n

n∑
i=1

Zi,n(u)−m(u)I(u) + op(hn) (A.36)

and then, using (A.26), we have that

sup
u∈U

∥∥∥∥∥ 1

n

n∑
i=1

l′′(ψ0(u),Xi, Yi)Khn(Ui − u) +m(u)I(u)

∥∥∥∥∥
2

= sup
u∈U

∥∥∥∥∥ 1

n

n∑
i=1

Zi,n(u)

∥∥∥∥∥
2

+ op(hn) = Op(ξn + hn). (A.37)

This implies that, for large n,

sup
u∈U
‖l′′n,hn(u) + (1 + r1n)2m(u)I(u)‖2

= sup
u∈U
‖op{(1 + r1n)2}+ E2n(u) + (1 + r1n)2m(u)I(u)‖2

= (1 + r1n)2Op(ξn + hn) = op{(1 + r1n)2} (A.38)

since, by Condition (PC.2), nhn →∞.

Using (A.20) and taking into account (A.38), then (A.3) reduces to

Dn,I(Wn) =
1

n

n∑
t=1

[
w>t l

′
n,hn(Ut) +

1

2
w>t l

′′
n,hn(Ut)wt

]
+ op(1)

=
1

n

n∑
t=1

[
w>t l

′
n,hn(Ut) +

1

2
w>t

{
l′′n,hn(Ut) + (1 + r1n)2m(Ut)I(Ut)− (1 + r1n)2m(Ut)I(Ut)

}
wt

]
+ op(1)

6
1

n

n∑
t=1

[
w>t l

′
n,hn(Ut)−

(1 + r1n)2

2
w>t {m(Ut)I(Ut) + op(1)}wt

]
+ op(1)

=
1

n

n∑
t=1

[
w>t l

′
n,hn(Ut)−

(1 + r1n)2

2
w>t {m(Ut)I(Ut)}wt

]
+ op(1). (A.39)

By conditions (RC.2) and (RC.4), the matrix m(Ut)I(Ut) is positive definite, and thus all

of its eigenvalues are positive. Let λmin
t be the smallest eigenvalue of m(Ut)I(Ut). Also, let

λmin = min{λmin
t , t = 1, . . . , n} and λmin

0 = infu∈U λmin

{
m(u)I(u)

}
. Inequality in (A.39)
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reduces to

Dn,I(Wn)

6
1

n

n∑
t=1

[
w>t l

′
n,hn(Ut)−

(1 + r1n)2

2
w>t λ

min
t wt

]
+ op(1)

6
1

n

[
n∑
t=1

w>t l
′
n,hn(Ut)−

(1 + r1n)2

2
× λmin ×

n∑
t=1

‖wt‖2
]

+ op(1)

6
(
n−1‖Wn‖2

) 1
2

(
n−1

n∑
t=1

‖l′n,hn(Ut)‖2
) 1

2

− (1 + r1n)2

2
× λmin ×

(
n−1‖Wn‖2

)
+ op(1)

= Mε

(
n−1

n∑
t=1

‖l′n,hn(Ut)‖2
) 1

2

− (1 + r1n)2

2
× λmin ×M2

ε + op(1)

6 Mε

(
n−1

n∑
t=1

‖l′n,hn(Ut)‖2
) 1

2

− (1 + r1n)2

2
× λmin

0 ×M2
ε (1 + op(1)). (A.40)

As we showed in (A.18), we have

n−1
n∑
t=1

E‖l′n,hn(Ut)‖2 = n−1
n∑
t=1

Op{(1 + r1n)2} = Op{(1 + r1n)2}

Note that λmin
0 > 0. Therefore, we can choose Mε large enough such that the second term in

(A.40) and thus Dn,I(Wn) become negative, in probability, for large n.

Step 2: (Order assessment of the penalty difference) Following the penalty difference
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in (A.2), Dn,II(Wn), which involves the grouping penalty and using Taylor expansion,

Dn,II(Wn) (A.41)

= hnn
−1

C∑
j=1

d0
j∑

l=1

{
pn
(∥∥b0jl + γnvjl

∥∥ /√n;λnj
)
− pn

(∥∥b0jl∥∥ /√n;λnj
)}

= hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t=1

γnβ
0
jl(Ut)√

n
∥∥b0jl∥∥ p′n

(∥∥b0jl∥∥ /√n;λnj
)
wjl,I,t

+hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t=1

γ2n
2
√
n

(
1

‖b0jl‖
−
[
β0
jl(Ut)

]2
‖b0jl‖3

)
p′n
(∥∥b0jl∥∥ /√n;λnj

)
w2
cj,I,t

+hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t=1

γ2n
[
β0
cj(Ut)

]2
2n
∥∥b0jl∥∥2 p′′n(‖b0jl‖/

√
n;λnκ) w

2
jl,I,t

+hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t6=l=1

−γ2nβ0
jl(Ut)β

0
jl(Ul)

√
n
∥∥b0jl∥∥3 p′n

(∥∥b0jl∥∥ /√n;λnj
)
wjl,I,twjl,I,l/2

+hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t6=l=1

γ2nβ
0
jl(Ut)β

0
jl(Ul)

n
∥∥b0jl∥∥2 p′′n(

∥∥b0jl∥∥ /√n;λnj) wjl,I,twjl,I,l/2

= d1,n,II(Wn) + d2,n,II(Wn) + d3,n,II(Wn) + d4,n,II(Wn) + d5,n,II(Wn).

We now perform order assessment of the terms d1,n,II(w), . . . , d5,n,II(w). For large n,

d1,n,II(Wn)

6 (1 + r1n)h
1
2
nn
− 4

2

C∑
j=1

d0
κ∑

l=1

n∑
t=1

|β0
jl(Ut)|∥∥b0jl∥∥ max

16l6d0
j

16j6C

∣∣p′n (∥∥b0jl∥∥ /√n;λnj
)∣∣ |wjl,I,t|

6 (1 + r1n)h
1
2
n max

16l6d0
j

16j6C

∣∣∣∣∣p′n
(∥∥b0jl∥∥ /√n;λnj

)
n3/2

∣∣∣∣∣
C∑
j=1

d0
j∑

l=1

{
n∑
t=1

w2
jl,I,t/n

}1/2

6 Mε (1 + r1n)r1n. (A.42)
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Following d2,n,II(Wn), for large n,

|d2,n,II(Wn)|

6 2−1hnn
−3/2γ2n

C∑
j=1

d0
κ∑

l=1

n∑
t=1

1

‖b0jl‖

(
1 +

[
β0
jl(Ut)

]2
‖b0jl‖2

) ∣∣p′n (∥∥b0jl∥∥ /√n;λnj
)∣∣ w2

jl,I,t

6 (1 + r1n)2n−1/2{min
j,l
‖b0jl‖/

√
n}−1 max

16l6d0
j

16j6C

∣∣∣∣∣p′n
(∥∥b0jl∥∥ /√n;λnj

)
n3/2

∣∣∣∣∣
{

n∑
t=1

w2
jl,I,t/n

}

= M2
ε r1n(1 + r1n)2{nhn}−1/2

{
min
j,l

E0

[
β2
jl(U)

]}−1/2
. (A.43)

Following d3,n,II(Wn), for large n,

|d3,n,II(Wn)| 6 hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t=1

γ2n
[
β0
jl(Ut)

]2
2n
∥∥b0jl∥∥2

∣∣p′′n (∥∥b0jl∥∥ /√n;λnj
)∣∣ w2

jl,I,t

6 (1 + r1n)2 max
16l6d0

j

16j6C

∣∣∣∣∣p′′n(
∥∥b0jl∥∥ /√n;λnj)

n2

∣∣∣∣∣
{

n∑
t=1

w2
jl,I,t/n

}

6 M2
ε r2n(1 + r1n)2. (A.44)

Following d4,n,II(Wn),

|d4,n,II(Wn)|

6 hnn
−1

C∑
j=1

d0
κ∑

l=1

n∑
t6=l=1

γ2n
∣∣β0
jl(Ut)

∣∣ ∣∣β0
jl(Ul)

∣∣
√
n
∥∥b0jl∥∥3

∣∣p′n (∥∥b0jl∥∥ /√n;λnκ
)∣∣ |wjl,I,twjl,I,l| /2

6 hnn
−3/2(1 + r1n)2(hnn)−1

{
min
j,l

∥∥b0jl∥∥}−1 max
16j6d0

κ
16κ6C

∣∣p′n (∥∥b0jl∥∥ /√n;λnj
)∣∣{ n∑

t=1

w2
jl,I,t

}

= n−1/2(1 + r1n)2
{

min
j,l

∥∥b0jl∥∥ /√n}−1 max
16l6d0

j

16j6C

∣∣∣∣∣p′n
(∥∥b0jl∥∥ /√n;λnj

)
n3/2

∣∣∣∣∣
{

n∑
t=1

w2
jl,I,t/n

}

= M2
ε {nhn}−1/2r1n(1 + r1n)2

{
min
j,l

E0

[
β2
jl(U)

]}−1/2
. (A.45)
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Following d5,n,II(Wn),

|d5,n,II(Wn)|

6 hnn
−1

C∑
j=1

d0
j∑

l=1

n∑
t6=l=1

γ2n
∣∣β0
jl(Ut)

∣∣ ∣∣β0
jl(Ul)

∣∣
n
∥∥b0jl∥∥2 p′′n

(∥∥b0jl∥∥ /√n;λnj
)
|wjl,I,twjl,I,l|/2

6 (1 + r1n)2 max
16l6d0

j

16j6C

∣∣∣∣∣p′′n
(∥∥b0jl∥∥ /√n;λnj

)
n2

∣∣∣∣∣
{

n∑
t=1

w2
jl,I,t/n

}

= M2
ε r2n(1 + r1n)2. (A.46)

Thus, by Condition (PC.2) on the penalty pn and the smoothing parameter hn, the order

assessment in (A.40) and those in (A.42)-(A.46) corresponding to the terms Dn,I(Wn) and

Dn,II(Wn) in (A.2) imply that for a sufficiently large Mε the expression

−(1 + r1n)2

2
λmin
0 M2

ε

is the sole leading term in the right side of Dn(w) in (A.2). Therefore, for any given ε > 0,

there exists a sufficiently large Mε, such that

lim
n→∞

P

{
sup

n−1‖Wn‖22=M2
ε

L̃n
(
Ψ0
n + γnWn;λn, hn

)
< L̃n

(
Ψ0
n;λn, hn

)}
> 1− ε

as needed in (A.1). This completes the proof of Theorem 1.

Proof of Lemma 1

Proof. Recall the partitioning of the true parameter matrix Ψ0
n = (Ψ0

n1,Ψ
0
n2) such that

Ψ0
n2 corresponds to all the zero regression functions, while Ψ0

n1 corresponds to the nonzero

regression functions, among other parameters, given in Section 4 of the paper. Also, consider

any matrix Ψn = (Ψn1,Ψn2) in a neighbourhood of Ψ0
n such that n−1‖Ψn − Ψ0

n‖2F =

Op

(
(nhn)−1

)
, and dim(Ψn1) = dim(Ψ0

n1) and dim(Ψn2) = dim(Ψ0
n2). The existence of such

neighbourhood is guaranteed by the result of Theorem 1. We provide the proof in two steps:

Step 1. We first prove that, with probability tending to one, as n→∞,

L̃n
(
(Ψn1,Ψn2);λn, hn

)
− L̃n

(
(Ψn1,0);λn, hn

)
< 0. (A.47)
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By the definition of the penalized likelihood function in (9) of the paper, we have that

L̃n
(
(Ψn1,Ψn2);λn, hn

)
− L̃n

(
(Ψn1,0);λn, hn

)
=

[
Ln
(
(Ψn1,Ψn2);hn

)
− Ln

(
(Ψn1,0);hn

)]
−

[
Pn
(
(Ψn1,Ψn2);λn

)
− Pn

(
(Ψn1,0);λn

)]
. (A.48)

By the definition of the penalty in (10) of the paper, we have

Pn
(
(Ψn1,Ψn2);λn

)
− Pn

(
(Ψn1,0);λn

)
=

C∑
j=1

d∑
l=d0

j+1

pn
(
‖bjl‖2 /

√
n;λnj

)
. (A.49)

On the other hand, using (7) and (8) of the paper, we can write the likelihood difference

as

Ln
(
(Ψn1,Ψn2);hn

)
− Ln

(
(Ψn1,0);hn

)
=

n∑
i=1

[
`n
(
(ψ1(ut),ψ2(ut));hn

)
− `n

(
(ψ1(ut),0);hn

)]
=

n∑
t=1

n∑
i=1

[
l
(
(ψ1(Ut),ψ2(Ut)),Xi, Yi

)
− l
(
(ψ1(Ut),0),Xi, Yi

)]
Khn(Ui − Ut), (A.50)

where l(·) is the log of the mixture density as given in (6) of the paper. Note that ψ(ut) =

(ψ1(ut),ψ2(ut)) is the t-th row of the matrix Ψn = (Ψn1,Ψn2). For any fixed Ut = u ∈ U ,

we first assess the inner sum in (A.50). We thus consider

∆n(u) =
n∑
i=1

[
l
(
(ψ1(u),ψ2(u)),Xi, Yi

)
− l
(
(ψ1(u),0),Xi, Yi

)]
Khn(Ui − u) (A.51)

By the mean value theorem, there exists a vector ξ(u) on the segment between 0 and ψ2(u)

such that

∆n(u)

=
n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u), ξ(u)),Xi, Yi)

∂ψ2(u)

]>
ψ2(u)

=
n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u), ξ(u)),Xi, Yi)

∂ψ2(u)
− ∂l((ψ0

1(u),0),Xi, Yi)

∂ψ2(u)

]>
ψ2(u)

+
n∑
i=1

Khn(Ui − u)

[
∂l((ψ0

1(u),0),Xi, Yi)

∂ψ2(u)

]>
ψ2(u) = ∆1(u) + ∆2(u), (A.52)

where ∆1(u) and ∆2(u) are respectively the two sums on the right hand side of the above

equation. Similar to (A.18), as shown in the proof of Theorem 1 for the order assessment of
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(A.5), we have that, for any u ∈ U ,

n∑
i=1

∂l((ψ0
1(u),0),Xi, Yi)

∂ψ2(u)
Khn(Ui − u) = Op{(nh−1n )

1
2}. (A.53)

Thus, since dim(ψ2(u)) <∞, using the Cauchy-Schwarz inequality we have

∆2(u) = Op{(nh−1n )
1
2}‖ψ2(u)‖1

= Op{(nh−1n )
1
2}‖ψ2(u)‖2

= Op{(nh−1n )
1
2}

 C∑
j=1

d∑
l=d0

j+1

β2
jl(u)

1/2

(A.54)

which then implies that

n∑
t=1

∆2(Ut) = Op{(nh−1n )
1
2}

n∑
t=1

‖ψ2(Ut)‖2

or using the Cauchy-Schwarz inequality,

n∑
t=1

∆2(Ut) = Op

(
n√
hn

){ n∑
t=1

‖ψ2(Ut)‖22

}1/2

(A.55)

= Op

(
n3/2

√
hn

)
c∑
j=1

d∑
l=d0

j+1

‖bjl‖2 /
√
n

 .

For the first term in (A.52), we have that

∆1(u)

=
n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u), ξ(u)),Xi, Yi)

∂ψ2(u)
− ∂l((ψ1(u),0),Xi, Yi)

∂ψ2(u)

]>
ψ2(u)

+
n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u),0),Xi, Yi)

∂ψ2(u)
− ∂l((ψ0

1(u),0),Xi, Yi)

∂ψ2(u)

]>
ψ2(u).

By the mean value theorem, there exist vectors ξ∗(u) and ψ∗1(u) respectively on segments

between 0 and ξ(u), and ψ1(u) and ψ0
1(u) such that, by Condition (RC.3),

n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u), ξ(u)),Xi, Yi)

∂ψ2(u)
− ∂l((ψ1(u),0),Xi, Yi)

∂ψ2(u)

]
=

n∑
i=1

Khn(Ui − u) [l′′ ((ψ1(u), ξ∗(u)),Xi, Yi)] ξ(u) = Op(n)‖ξ(u)‖2
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and

n∑
i=1

Khn(Ui − u)

[
∂l((ψ1(u),0),Xi, Yi)

∂ψ2(u)
− ∂l((ψ0

1(u),0),Xi, Yi)

∂ψ2(u)

]
=

n∑
i=1

Khn(Ui − u) l′′((ψ∗1(u),0),Xi, Yi)
[
ψ1(u)−ψ0

1(u)
]

= Op(n)
∥∥ψ1(u)−ψ0

1(u)
∥∥
2
.

Thus, together with the above order assessment, and again the Cauchy-Schwarz inequality,

we have that

∆1(u) = Op(n)
{
‖ξ(u)‖2 +

∥∥ψ1(u)−ψ0
1(u)

∥∥
2

}
‖ψ2(u)‖2 . (A.56)

This implies that

n∑
t=1

∆1(Ut) = Op(n)
n∑
t=1

{
‖ξ(Ut)‖2 +

∥∥ψ1(Ut)−ψ0
1(Ut)

∥∥
2

}
‖ψ2(Ut)‖2 . (A.57)

By the Cauchy–Schwarz inequality,

n∑
t=1

{
‖ξ(Ut)‖2 +

∥∥ψ1(Ut)−ψ0
1(Ut)

∥∥
2

}
‖ψ2(Ut)‖2

6

{
n∑
t=1

[
‖ξ(Ut)‖22 + ‖ψ1(Ut)−ψ0

1(Ut)‖22
]}1/2{ n∑

t=1

‖ψ2(Ut)‖22

}1/2

= {n(nhn)−1}1/2


C∑
j=1

d∑
l=d0

j+1

‖bjl‖22


1/2

6 h−1/2n


C∑
j=1

d∑
l=d0

j+1

‖bjl‖2

 .

Combing the above results, for some constant C1, we arrive at,

n∑
t=1

∆1(Ut) =
C1n

3/2

√
hn


C∑
j=1

d∑
l=d0

j+1

‖bjl‖2 /
√
n

 . (A.58)

By (A.55), (A.58), and (A.50), we have that, for large n,

Ln
(
(Ψn1,Ψn2);λn, hn

)
− Ln

(
(Ψn1,0);λn, hn

)
=
C2n

3/2

√
hn


C∑
j=1

d∑
j=d0

j+1

‖bjl‖2/
√
n

 (A.59)



28 Biometrics, January 2022

for some constant C2. Finally, by using (A.49) and (A.59) in (A.48), for large n,

L̃n
(
(Ψn1,Ψn2);λn, hn

)
− L̃n

(
(Ψn1,0);λn, hn

)
=
C2n

3/2

√
hn


C∑
j=1

d∑
l=d0

j+1

‖bjl‖2/
√
n

−
C∑
j=1

d∑
l=d0

j+1

pn
(
‖bjl‖2/

√
n;λn

)
=

C∑
j=1

d∑
j=d0

j+1

{
C2n

3/2

√
hn
‖bjl‖2/

√
n− pn

(
‖bjl‖2/

√
n;λn

)}
< 0.

The last inequality is due to Condition (PC.3) on the penalty function pn. This completes

the proof of (A.47).

Step 2. Consider the penalized local log-likelihood function L̃n
(
(Ψn1,0);λn, hn

)
, which is

only a function of Ψn1. Let (Ψ̂n1,0) be its maximizer. Then for any Ψn = (Ψn1,Ψn2) with

the property (A.47) shown in Step 1, we have that,

Ln
(
(Ψn1,Ψn2);λn, hn

)
− Ln

(
(Ψ̂n1,0);λn, hn

)
=
[
Ln
(
(Ψn1,Ψn2);λn, hn

)
− Ln

(
(Ψn1,0);λn, hn

)]
−
[
Ln
(
(Ψ̂n1,0);λn, hn

)
− Ln

(
(Ψn1,0);λn, hn

)]
6 Ln

(
(Ψn1,Ψn2);λn, hn

)
− Ln

(
(Ψ̂n1,0);λn, hn

)
< 0,

where the last two inequalities are due to the definition of (Ψ̂n1,0) and the result of Step 1.

Hence, in the
√
nhn-neighbourhood of Ψ0

n guaranteed by Theorem 1, the maximizer of the

penalized local log-likelihood Ln
(
(Ψn1,Ψn2);λn, hn

)
satisfies Ψ̂n2 = 0, with probability

tending to one, as n→∞. This completes the proof of Lemma 1.

Proof of Theorem 2

Proof. (i) Recall the partitioning of the true parameter matrix Ψ0
n = (Ψ0

n1,Ψ
0
n2) such that

Ψ0
n2 corresponds to all the zero regression functions, while Ψ0

n1 corresponds to the nonzero

regression functions, among other parameters, given in Section 4 of the paper. Consider any

matrix Ψn = (Ψn1,Ψn2) in a neighbourhood of Ψ0
n such that n−1‖Ψn−Ψ0

n‖2F = Op

(
(nhn)−1

)
,

and dim(Ψn1) = dim(Ψ0
n1) and dim(Ψn2) = dim(Ψ0

n2). Note that such choice is guaranteed
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by Theorem 1. Also, for the t-th row of this matrix we have that ‖ψ(Ut) − ψ0(Ut)‖2 =

Op

(
(nhn)−1/2

)
, t = 1, . . . , n. On the other hand, for any u ∈ U , let u∗ be its nearest neighbour-

hood among the observed index values U1, . . . , Un, that is u∗ = argminũ∈{U1,U2,...,Un} |u− ũ|.

Under Condition (RC.2), we have that ‖ψ0(u) − ψ0(u∗)‖2 = Op(log n/n), (Janson, 1987).

Using the triangle inequality, we then have that ‖ψ(u) − ψ0(u)‖2 6 ‖ψ(u) − ψ(u∗)‖2 +

‖ψ(u∗)−ψ0(u∗)‖2+‖ψ0(u∗)−ψ0(u)‖2. Thus, for any u ∈ U , we have that ‖ψ(u)−ψ0(u)‖2 =

Op

(
(nhn)−1/2

)
. We provide the proof in two steps as follows.

Step 1: For any u ∈ U , using the partitioning ψ(u) = (ψ1(u),ψ2(u)) for any choice ψ(u) in

the above neighbourhood, consider the local log-likelihood given in (7) of the paper,

`n
(
(ψ1(u),ψ2(u));hn

)
=

n∑
i=1

l
(
(ψ1(u),ψ2(u)),Xi, Yi

)
Khn(Ui − u).

We now denote the following two penalized local log-likelihoods,

˜̀
n

(
ψ(u);hn,λn

)
= `n

(
(ψ1(u),ψ2(u));hn

)
− 1

n

C∑
j=1

d∑
l=1

pn
(
‖bjl‖2/

√
n;λnj

)
,

˜̀
n

(
ψ1(u);hn,λn

)
= `n

(
(ψ1(u),0);hn

)
− 1

n

C∑
j=1

d0
j∑

l=1

pn
(
‖bjl‖2/

√
n;λnj

)
.

In what follows, for any u ∈ U , we assess the order of the following difference for large n,

Dn(u) = ˜̀
n

(
ψ(u);hn,λn

)
− ˜̀

n

(
ψ1(u);hn,λn

)
=

[
`n
(
(ψ1(u),ψ2(u));hn

)
− `n

(
(ψ1(u),0);hn

)]
− 1

n

C∑
j=1

d∑
l=d0

j+1

pn
(
‖bjl‖2/

√
n;λnj

)
= ∆n(u)− 1

n

C∑
j=1

d∑
l=d0

j+1

pn
(
‖bjl‖2/

√
n;λnj

)
,

where ∆n(u) is the difference in the local log-likelihood which is also used in the proof of

Lemma 1, given in (A.51). Recall the following representation of ∆n(u) given in (A.52),

∆n(u) = ∆1(u) + ∆2(u).
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From (A.54), we have that (up to a constant), for large enough n

|∆2(u)| 6
√

n

hn

C∑
j=1

d∑
l=d0

j+1

|βjl(u)|.

Under Condition (RC.2), we have that ‖ψ0(u)−ψ0(u∗)‖2 = Op(
logn
n

). Using (A.56), for large

n, we also have that (up to a constant), for any u ∈ U ,

|∆1(u)| 6
√

n

hn

C∑
j=1

d∑
l=d0

j+1

|βjl(u)|.

Therefore, for any u ∈ U , for large n we have

Dn(u) 6

√
n

hn

C∑
j=1

d∑
l=d0

j+1

{
|βjl(u)| −

√
hn pn

(
‖bjl‖2/

√
n;λnj

)
n3/2

}
.

Also, for any u ∈ U and its corresponding u∗ as defined above, for large n we have that

|βjl(u)| 6 |βjl(u)− βjl(u∗)|+ |βjl(u∗)|

= Op (log n/n) + ‖bjl‖2/
√
n+Op({nhn}−1/2)

= ‖bjl‖2/
√
n+ op(1).

Therefore, for large n we have that by the Condition (PC.3) on the penalty, Dn(u) < 0,

uniformly in u ∈ U .

Step 2: For any u ∈ U , let ψ̂n1(u) be the maximizer of ˜̀
n

(
ψ1(u);hn,λn

)
which is considered

as only a function of ψ1(u). Then, for any u ∈ U ,

˜̀
n

(
ψ(u);hn,λn

)
− ˜̀

n

(
ψ̂1(u);hn,λn

)
=

{
˜̀
n

(
ψ(u);hn,λn

)
− ˜̀

n

(
ψ1(u);hn,λn

)}
−
{

˜̀
n

(
ψ̂n1(u);hn,λn

)
− ˜̀

n

(
ψ1(u);hn,λn

)}
< 0.

This difference is indeed negative uniformly over u ∈ U . This implies that with probability

tending to one, as n→∞, ψ̂n2(u) = 0, uniformly in u. Similar to the result of Theorem 1,

ψ̂n1(u) is a consistent estimator of ψ0
1(u), for any u ∈ U .

(ii) For any u ∈ U , recall the oracle estimator ψ̂n1,orc(u) which is the mlle of ψ0
1(u),

having known ψ0
2(u) = 0 a priori. This estimator is the maximizer of the local log-likelihood
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`
(
ψ(u);hn

)
in (7) of the paper, and it satisfies the estimating equation

`′n(ψ̂n1,orc(u);hn) = 0.

Using a Taylor’s expansion around ψ0
1(u), we arrive at

`′n(ψ0
1(u);hn) + `′′n(ψ̃0

1(u);hn)
(
ψ̂n1,orc(u)−ψ0

1(u)
)

= 0,

where ψ̃0
1(u) lies on a segment between ψ0

1(u) and ψ̂n1,orc(u), for any u ∈ U . By Proposition

1 of the paper, since ψ̂n1,orc(u) is a consistent estimator of ψ0
1(u), so is ψ̃0

1(u). Thus, for large

n,

`′n(ψ0
1(u);hn) +

{
`′′n(ψ0

1(u);hn) + op(n)
}(
ψ̂n1,orc(u)−ψ0

1(u)
)

= 0. (A.60)

Similarly, the mplle ψ̂n1(u) also satisfies the estimation equation

˜̀′
n

(
ψ̂n1(u);hn,λn

)
= 0

or equivalently,

`′n
(
ψ̂n1(u);hn

)
− P ′n(Ψ̂n1;λn) = 0,

where

Pn(Ψn1;λn) =
1

n

C∑
j=1

d0
j∑

l=1

pn
(
‖bjl‖2/

√
n;λnj

)
= Pn(Ψn1;λn)/n. (A.61)

Using a Taylor’s expansion around ψ0
1(u), and consistency of ψ̂n1(u), for large n,

{
`′n(ψ0

1(u);hn) − [P ′n(θ01;λn) + op(n)]
}

(A.62)

+
{
`′′n(ψ0

1(u);hn)− P ′′n (θ01;λn) + op(n)
}(
ψ̂n1(u)−ψ0

1(u)
)

= 0,

where P ′n and P ′′n are the gradient and Hessian of the penalty Pn in (A.61) with respect to

the parameter vector ψ1(u), and θ01 =
{
θ0jl =

√
E0{β0

jl(U)}2 : 1 6 j 6 C, 1 6 l 6 d0j
}

.
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By (A.60) and (A.62), we have that

ψ̂n1(u)− ψ̂n1,orc(u)

=
{
`′′n(ψ0

1(u);hn) + op(n)
}−1

`′n(ψ0
1(u);hn)

−
{
`′′n(ψ0

1(u);hn)− P ′′n (θ01;λn) + op(n)
}−1{

`′n(ψ0
1(u);hn)− P ′n(θ01;λn)

}
=

{{
`′′n(ψ0

1(u);hn)/n+ op(1)
}−1 − {`′′n(ψ0

1(u);hn)/n− P ′′n (θ01;λn)/n+ op(1)
}−1}

×
{
`′n(ψ0

1(u);hn)

n

}
+

{
`′′n(ψ0

1(u);hn)/n− P ′′n (θ01;λn)/n+ op(1)

}−1{
P ′n(θ01;λn)

n
+ op(1)

}
= V1n(u) + V2n(u),

where V1n(u) and V2n(u) are respectively the two vectors on the right hand side of the above

equation. By (A.25), for any u ∈ U and for large n,

`′′n(ψ0
1(u);hn)/n = −m(u)I(u)(1 + op(1)). (A.63)

Thus, due to the finiteness condition of m(u)I(u) and since r2n = o(1) by Condition (PC.2)

on the penalty, we have (in a matrix form)

{
`′′n(ψ0

1(u);hn)/n+op(1)
}−1−{`′′n(ψ0

1(u);hn)/n−P ′′n (θ01;λn)/n+op(1)
}−1

= op(1). (A.64)

Also, by (A.14) we have

E

{
`′n(ψ0

1(u);hn)

n

}
=

1

2
K2m(u)

{
∆′′(u;u)+2∆′(u;u)m′(u)/m(u)

}
h2n{1+o(1)} <∞ (A.65)

for any u ∈ U , and K2 =
∫
U t

2K(t)dt <∞. Using a similar approach to show (A.26) and the

centralizing technique as in (A.36), and since nh5n = O(1), we have that

sup
u∈U

∥∥`′n(ψ0
1(u);hn)/n

∥∥
2

= Op


(

log( 1
hn

)

nhn

) 1
2

+Op(h
2
n) = Op


(

log( 1
hn

)

nhn

) 1
2

 . (A.66)

Thus, by (A.64) and (A.66),

sup
u∈U
‖V1n(u)‖2 = op


(

log( 1
hn

)

nhn

) 1
2

 = op(ξn). (A.67)
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Also, by the positive definiteness of m(u)I(u) and condition r2n = o(1), we have that

sup
u∈U
‖V2n(u)‖2 = Op

{
r1n/

√
nhn

}
. (A.68)

Thus, using (A.67) and (A.68) we have

{(1 + r1n)ξn}−1 sup
u∈U
‖ψ̂n1(u)− ψ̂n1,orc(u)‖2

6 {(1 + r1n)ξn}−1
{

sup
u∈U
‖V1n(u)‖2 + sup

u∈U
‖V2n(u)‖2

}
= {(1 + r1n)}−1op(1) +

r1n
1 + r1n

√
1

log h−1n
= op(1).

This completes the proof.

(iii) From (A.62) and using (A.63), and the relation (A.61) we have{
m(u)I(u) +

P′′n(θ01;λn)

n2
+op(1)

}(
ψ̂n1(u)−ψ0

1(u)

)
+
Pn(θ01;λn)

n2
=
`′n(ψ0

1(u);hn)

n
. (A.69)

Using the second-order moment calculations in the proof of Theorem 2, we have

V ar

{
`′n(ψ0

1(u);hn)

n

}
=
V0
nhn

I(u)m(u)(1 + op(1)) <∞, (A.70)

where V0 =
∫
U K

2(t)dt <∞.

Using (A.65) and (A.70), we standardize both sides of the equation (A.69). Hence, by the

multivariate central limit theorem we have that√
nhn

{[
I(u) +m−1(u)

P′′n(θ01;λn)

n2

](
ψ̂n1(u)−ψ0

1(u)

)
−Bn(u)

}
∼ N

(
0,V0m−1(u)I(u)

)
,

where

Bn(u) =
1

2
K2

{
∆′′(u;u) + 2∆′(u;u)m′(u)/m(u)

}
h2n −m−1(u)

P′n(θ01;λn)

n2
+ op(h

2
n).

Web Appendix E. Remarks

Remark 1: The sparsity assumption in Equation (5) of the paper is indeed the most

common assumption in the variable selection literature. The implication is that the under-

lying data-generating process is a simple sparse model and is beneficial for interpretation
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purposes, specifically in mixture regressions when the number of covariates is relatively large.

Together with (5) and under Conditions (PC.2) and (PC.3) on the penalty function pn in

Web Appendix B , we achieve the selection consistency property as stated in Theorem 2(i).

Essentially, Conditions (PC.2) and (PC.3) imply that only those coefficients that satisfy

E{βjl(U)} > λn, where λn → 0 as n→∞, are detectable by the regularization methods and

will be estimated as non-zero, while the ones below the threshold λn, so-called weak signals,

will most likely be estimated as zero. In a sense, the aforementioned conditions are similar

to the ones considered by Wei et al. (2011) with η1 replaced by λn. Wei et al. (2011) refer to

(5) as the narrow sparsity condition (η1 = 0) under which they also show that, for example,

adplasso has the selection consistency property. By changing (5) to the one used in Wei et al.

(2011) with η1 > 0, it turns out that regularization methods only achieve certain estimation

error bounds but not really selection consistency as those weak-signal regression parameters

most likely will be estimated as zero. Hence, since our main result focuses on the variable

selection consistency property, we have decided to keep the current definition of sparsity (5)

in the fm-vcr models. Nevertheless, it is worth noting that Fang et al. (2021) proposed

a two-step procedure based on both variable selection and ridge regression estimators that

were shown to be capable of detecting weak signals and providing an estimation of both

strong and weak signals.

Remark 2: The asymptotic normality result in Theorem 2(iii) is obtained as if the true

sparse structure of the model is known in advance, i.e., an oracle’s perspective. In general,

its use in practice to perform likelihood-ratio type inference is reserved (referred to as naive

inference) as the true sparse structure of the model is not known in advance and it is esti-

mated by the penalization method. As a result, in the partitioning ψ̂n(u) =
(
ψ̂n1(u), ψ̂n2(u)

)
introduced before Theorem 2 of the paper (oracle perspective), in practice due to the variable

selection stage the dimension of the sub-vector ψ̂n1(u) is indeed random and may not be equal
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to the dimension of true non-zero vector ψ0
1(u), and hence asymptotically normal distribution

may be distorted. The extra variability due to the variable selection needs to be taken into

account for further inference and is a part of the general topic of post-selection inference

(PoSI, Berk et al. (2013)), which sees a surge of research in recent years for (generalized)

linear regression models (see Zhang et al. (2022) for a recent survey), although little for the

fmr and fm-vcr models.

Remark 3: Recall the penalty pn in (10) of the paper. If the adplasso is used, we have

pn(‖bjl‖2/
√
n;λn)/n2 = λnwjl‖bjl‖2/

√
n, j = 1, . . . , C, l = 1, . . . , d.

In practice, one needs to specify the weights wjl. As in Zou (2006), we use wjl = {‖b̆jl‖2/
√
n}−γ,

for some γ > 0, where ‖b̆jl‖22 =
∑n

t=1 β̆
2
jl(ut) and β̆jl(ut)’s are the consistent mlle dis-

cussed in Section 3 of the paper. Thus, as n → ∞, the condition λn max16j6C,16l6d0
j
wjl =

op({nhn}−1/2) in Theorem 1 becomes
√
nhnλn → 0, and the sparsity condition

√
nhnλn min16j6C,d0

j+16l6dwjl →∞ in Theorem 2 becomes (nhn)(γ+1)/2λn →∞.

Remark 4: For the adplasso, the difference Dn,II(Wn) in (A.41) has a simpler upper

bound as follows. By the definition of the penalty, we have that,

Dn,II(Wn) 6 hnn
−1

C∑
j=1

d0
j∑

l=1

{
pn
(∥∥b0jl + γnvjl

∥∥ /√n;λnj
)
− pn

(∥∥b0jl∥∥ /√n;λnj
)}

6 hnn
−1

C∑
j=1

d0
j∑

j=1

n2γnλnjwjl‖vjl‖/
√
n

6 Mε{nhn}1/2 max
16j6C,16l6d0

j

{λnjwjl}

which is dominated by the likelihood difference Dn,I(Wn) in (A.2) under the condition

{nhn}1/2 max
16j6C,16l6d0

j

{λnjwjl} = op(1).

Remark 5: For the adplasso, the penalty difference in (A.49) becomes,

Pn
(
(Ψn1,Ψn2);λn

)
− Pn

(
(Ψn1,0);λn

)
=

C∑
j=1

d∑
j=d0

j+1

n2λnjwjl(‖bjl‖/
√
n).
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Thus, the difference in (A.48) is bounded by

L̃n
(
(Ψn1,Ψn2);λn, hn

)
− L̃n

(
(Ψn1,0);λn, hn

)
6

C∑
j=1

d∑
l=d0

j+1

{
C2n

3/2

√
hn
‖bjl‖2/

√
n− n2 min

16j6C,d0
j+16l6d

{λnjwjl}(‖bjl‖/
√
n)

}
< 0

under the condition
√
nhn min16j6C,d0

j+16l6d{λnjwjl} → ∞, as n→∞.

Web Appendix F. Details of the numerical algorithm and implementation

Web Appendix F.1 Local quadratic approximation of the penalty functions

The Local Quadratic Approximation (LQA) of a penalty function is given as follows.

Pn(Ψ;λ)

=
C∑
j=1

d∑
l=1

{
pn

(∥∥∥b(m)
jl

∥∥∥
2
/
√
n;λj

)

+
p′n

(∥∥∥b(m)
jl

∥∥∥
2
/
√
n;λj

)
2
∥∥∥b(m)

jl

∥∥∥
2
/
√
n

(
b>jlbjl/n− b

(m)>
jl b

(m)
jl /n

)}
. (A.71)

For each (j, l) the derivative is given as

∂Pn(Ψ;λ)

∂bjl
=
p′n

(∥∥∥b(m)
jl

∥∥∥
2
/
√
n;λj

)
∥∥∥b(m)

jl

∥∥∥
2
/
√
n

× bjl
n
.

Specifically, for the well-known penalty functions that are used in the main paper, we have

the following expressions:

• lasso:

∂Pn(Ψ;λ)

∂bjl
=

n3/2λj∥∥∥b(m)
jl

∥∥∥
2

bjl.

• adplasso: Given the weights wjl discussed in Remark 2 of the paper, which are based in

the mlle,

∂Pn(Ψ;λ)

∂bjl
=
n3/2λjwjl∥∥∥b(m)

jl

∥∥∥
2

bjl.
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• mcp:

∂Pn(Ψ;λ)

∂bjl
=



 n3/2λj∥∥∥b(m)
jl

∥∥∥
2

− n
γ

 bjl, ∥∥∥b(m)
jl

∥∥∥
2
6
√
nγλj

0,
∥∥∥b(m)

jl

∥∥∥
2
>
√
nγλj

• scad:

=



n3/2λj∥∥∥b(m)
jl

∥∥∥
2

bjl

∥∥∥b(m)
jl

∥∥∥
2
6
√
nλj

n

γ − 1


√
nγλj∥∥∥b(m)
jl

∥∥∥
2

− 1

 bjl,
√
nλj <

∥∥∥b(m)
jl

∥∥∥
2
6
√
nγλj

0,
∥∥∥b(m)

jl

∥∥∥
2
>
√
nγλj

(A.72)

Web Appendix F.2 The em algorithm for the mlle and mplle in Gaussian fm-vcr

For a Gaussian fm-vcr, at any u ∈ U , the local-kernel log-likelihood in (7) of the paper is

given by

`n
(
ψ(u);h

)
=
∑n

i=1
log
{∑C

j=1
πjN(yi;x

>βj, σ
2
j )
}
Kh(ui − u), (A.73)

where N(y;µ, σ2) is the pdf of a Gaussian distribution with mean µ and σ2.

The locally constant vector of parameters is ψ(u) = (π>,φ>,β>1 , . . . ,β
>
C ), where π> =

(π1, . . . , πC−1), φ
> = (σ2

1, . . . , σ
2
C) and β>j = (βj1, . . . , βjd) for j = 1, . . . , C. Note that the

entries of the vector ψ(u) are local constant approximations of the functions βjl(u), l =

1, . . . , d, πj(u), and σ2
j (u), for all j = 1, . . . , C. These entries clearly depend on u, and for

simplicity, we suppress u in the notation but keep it for ψ(u).

Using (A.73), the corresponding (total) local-kernel log-likelihood in (8) of the paper is



38 Biometrics, January 2022

given by

Ln(Ψ;h) =
∑n

t=1
`n
(
ψ(ut);h

)
(A.74)

=
∑n

t,i=1
log
{∑C

j=1
πj,t N

(
yi;x

>
i βj,t, σ

2
j,t

)}
Kh(ui − ut),

where Ψ is the (n × {C(d + 2) − 1})-dimensional matrix of the locally constant vectors

ψ(ui), i = 1, . . . , n.

Web Appendix F.2.1 The EM algorithm for the mlle. We view the observed data {(ui,xi, yi) :

i = 1, . . . , n} as incomplete, and introduce the unobserved Bernoulli random variables Zij

to represent the membership of the i-th observation to the j-th component of the mixture

model, ∀j = 1, . . . , C, such that Pr (Zij = 1|ui,xi, yi) = πj(ui). The complete data consist

of {(ui,xi, yi, zi) : i = 1, . . . , n}, where zi = (zi1, . . . , ziC)>.

At any arbitrary point u ∈ U , the complete local log-likelihood function is given by

`cn
(
ψ(u);h

)
=

∑n

i=1

∑C

j=1
Zij
{

log πj + logN(yi;x
>βj, σ

2
j )
}
Kh(ui − u)

=
∑n

i=1

∑C

j=1
Zij
{

log πj −
1

2σ2
j

(
yi − x>i βj

)2 − 1

2
log(σ2

j )
}
Kh(ui − u)

Given the current value of the parameter ψ(m)(u), at the (m + 1)-th iteration, the em

algorithm proceeds in two steps as follows.

E-step: Since the Zij’s are unobservable, we compute the expectation of the complete local

log-likelihood l̃cn with respect to Zij conditional on the observations {(ui,xi, yi) : i = 1, . . . , n}

and the current parameter values ψ(m)(u). This boils down to the computation of the

conditional expectations

w
(m)
ij =

π
(m)
j N(yi;x

>
i β

(m)
j , σ

(m)2
j )∑C

j=1 π
(m)
j N(yi;x>i β

(m)
j , σ

(m)2
j )

for all i = 1, . . . , n and j = 1, . . . , C.

M-step: We maximize the objective function∑n

i=1

∑C

j=1
w

(m)
ij

{
log πj −

1

2σ2
j

(
yi − x>i βj

)2 − 1

2
log(σ2

j )
}
Kh(ui − u)
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with respect to (πj,βj, σ
2
j ). The locally-constant parameter updates are,

π
(m+1)
j (u) ≡ π

(m+1)
j =

n∑
i=1

w
(m)
ij Kh(ui − u)

/∑n

i=1
Kh(ui − u)

β
(m+1)
j (u) ≡ β(m+1)

j =
(
X>W

(m)
j X

)−1
X>W

(m)
j y

σ
2(m+1)
j (u) ≡ σ

2(m+1)
j =

n∑
i=1

w
(m)
ij Kh(ui − u)

(
yi − x>i β

(m+1)
j

)2
n∑
i=1

w
(m)
ij Kh(ui − u)

,

where X = (x1, . . . ,xn)>, y = (y1, . . . , yn)>, and

W
(m)
j (u) ≡W (m)

j = diag
{
w

(m)
ij Kh(ui − u); i = 1, . . . , n

}
.

Web Appendix F.2.2 The EM algorithm for the mplle. The complete (total) local log-

likelihood is given by

Lcn(Ψ;h) =
∑n

t=1

∑n

i=1

∑C

j=1
Zij
{

log πj,t + log f(yi; θj,t(xi), φj,t)
}
Kh(ui − ut).

Given the current value of the parameter Ψ(m), at the (m+1)th iteration, the em algorithm

proceeds in two steps as follows.

E-step: Since the Zij’s are unobservable, we compute the expectation of the penalized com-

plete local log-likelihood L̃cn with respect to Zij conditional on the observations {(ui,xi, yi) :

i = 1, . . . , n} and the current parameter values Ψ(m). This indeed boils down to the compu-

tation of the conditional expectations

w
(m)
ij =

π
(m)
j (ui)f

(
yi; θ

(m)
j (xi, ui), φ

(m)
j (ui)

)∑C
j=1 π

(m)
j (ui)f

(
yi; θ

(m)
j (xi, ui)), φ

(m)
j (ui)

)
for all i = 1, . . . , n and j = 1, . . . , C.

M-step: The objective function Q̃ in M-step of the modified em algorithm in Section 5 of

the paper becomes

Q̃(Ψ; Ψ(m))

=
C∑
j=1

n∑
t=1

{ n∑
i=1

w
(m)
ij

{
log πj,t −

1

2σ2
j,t

(
yi − x>i βj,t

)2 − 1

2
log(σ2

j,t)
}

×Kh(ui − ut)−
1

2
β>j,tΣ

(m)
j βj,t

}
,
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where Σ
(m)
j = diag{τ (m)

jl : l = 1, . . . , d} with

τ
(m)
jl =

1

n

p′n
(
‖b(m)

jl ‖/
√
n;λj

)
‖b(m)

jl ‖/
√
n

.

The locally-constant parameter updates are, t = 1, . . . , n,

π
(m+1)
j,t = π

(m+1)
j (ut) =

n∑
i=1

w
(m)
ij Kh(ui − ut)

/∑n

i=1
Kh(ui − ut)

β
(m+1)
j,t = β

(m+1)
j (ut) = arg min

βj,t∈Rd

{ n∑
i=1

w
(m)
ij

{ 1

σ
2(m)
j,t

(
yi − x>i βj,t

)2 }
Kh(ui − ut)

+β>j,tΣ
(m)
j βj,t

}

σ
2(m+1)
j,t ≡ σ

2(m+1)
j (ut) =

n∑
i=1

w
(m)
ij Kh(ui − ut)

(
yi − x>i β

(m+1)
j,t

)2
n∑
i=1

w
(m)
ij Kh(ui − u)

.

Web Appendix F.3 The em algorithm for the mlle and mplle in t fm-vcr

We adapted the EM algorithm outlined in Yao et al. (2014) for t-distribution mixtures to

our penalization method for the fm-vcr models.

In a t fm-vcr, the conditional density (mass) of Y |(X = x, U = u) is given by

f ∗C(y|ψ(u),x) =
C∑
j=1

πj(u)fT (y − x>βj(u);σj(u), vj),

where fT is the density of a t-distribution with vk degrees of freedom and

fT (εj(u);σj(u), vj) =
Γ
(
vj+1

2

)
(πvj)1/2Γ

(vj
2

){
1 +

ε2j (u)

σ2
j (u)vj

}(vj+1)/2

σj(u)

with εj(u) = y − x>βj(u).

Let (ui,xi, yi), i = 1, . . . , n be the observations based on a random sample from above

model. The (conditional) log-likelihood function is given by

L =
n∑
i=1

log

{
C∑
j=1

πj(ui)fT (yi − x>i βj(ui);σj(ui), vj)

}
.

At any u ∈ U , the local-kernel log-likelihood in (7) of the paper is given by

`n
(
ψ(u);h

)
=

n∑
i=1

log

{
C∑
j=1

πjfT (yi − x>i βj;σj, vj)

}
Kh(ui − u), (A.75)

The locally constant vector of parameters is ψ(u) = (π>,φ>,β>1 , . . . ,β
>
C ), where π> =
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(π1, . . . , πC−1), φ
> = (σ1, . . . , σC) and β>j = (βj1, . . . , βjd) for j = 1, . . . , C. Note that the

entries of the vector ψ(u) are local constant approximations of the functions βjl(u), l =

1, . . . , d, πj(u), and σj(u), for all j = 1, . . . , C. These entries clearly depend on u, and for

simplicity, we suppress u in the notation but keep it for ψ(u).

Using (A.75), the corresponding (total) local-kernel log-likelihood in (8) of the paper is

given by

Ln(Ψ;h) =
∑n

t=1
`n
(
ψ(ut);h

)
(A.76)

=
∑n

t,i=1
log

{
C∑
j=1

πj,tfT (yi − x>i βj,t;σj,t, vj)

}
Kh(ui − ut),

where Ψ is the (n × {C(d + 2) − 1})-dimensional matrix of the locally constant vectors

ψ(ui), i = 1, . . . , n.

As discussed in Yao et al. (2014), a t-distribution can be represented as a scale mixture of

normal distributions as follows. Let g be the latent variable such that

ε|g ∼ N(0, σ2/g), g ∼ Gamma(v/2, v/2),

where Gamma(α, γ) has the density

fG(g;α, γ) =
1

Γ(α)
γαgα−1e−γg, g > 0.

Then ε has a marginal t-distribution with degrees of freedom v and scale parameter σ. The

scale mixture is used in the em algorithm outlined below.

Web Appendix F.3.1 The em algorithm. We view the observed data {(ui,xi, yi) : i =

1, . . . , n} as incomplete, and introduce the unobserved Bernoulli random variables Zij to

represent the membership of the i-th observation to the j-th component of the mixture

model, ∀j = 1, . . . , C, such that Pr (Zij = 1|ui,xi, yi) = πj(ui). The complete data consist of

{(ui,xi, yi, zi, gi) : i = 1, . . . , n}, where zi = (zi1, . . . , ziC)>, and gi’s are the latent variables

in the scale mixture.
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The complete local-kernel log-Likelihood is given by

Lcn(Ψ;h)

=
n∑
t=1

n∑
i=1

C∑
j=1

zij log

{
πj,tN

(
yi;x

>
i βj,t,

σ2
j,t

gi

)
fG

(
gi,

vj
2
,
vj
2

)}
Kh(ui − ut)

=
n∑
t=1

n∑
i=1

C∑
j=1

zijKh(ui − ut) log(πj,t)

+
n∑
t=1

n∑
i=1

C∑
j=1

zijKh(ui − ut) log

{
N

(
yi;x

>
i βj,t;

σ2
j,t

gi

)}

+
n∑
t=1

n∑
i=1

C∑
j=1

zijKh(ui − ut) log
{
fG

(
gi,

vj
2
,
vj
2

)}
The em algorithm first computes the expected value of Lcn(Ψ;h), with respect to the latent

variables (zij, gi)’s conditional on the data, and the current parameter values Ψ(m).

E-step: At the (m+ 1)-th iteration, we compute

w
(m)
ij = E(Zij|Ψ(m), data) =

π
(m)
j (ui)fT

(
yi − x>i β

(m)
j (ui);σ

(m)
j (ui), vj

)
∑C

k=1 π
(m)
k (ui)fT

(
yi − x>i β

(m)
k (ui);σ

(m)
k (ui), vk

)
and

g
(m)
ij = E(gi|Ψ(m), data, Zij = 1) =

vj + 1

vj +

{
yi−x>i β

(m)
j (ui)

σ
(m)
j (ui)

}2 .

M-step: The mlle parameter updates are given as follows.

π
(m+1)
j,t = π

(m+1)
j (ut) =

∑n
i=1w

(m)
ij Kh(ui − ut)∑n

i=1Kh(ui − ut)
,

and

β
(m+1)
j,t = β

(m+1)
j (ut) =

(
X>W

(m+1)
j G

(m+1)
j X

)−1
X>W

(m+1)
j G

(m+1)
j y,

where W
(m+1)
j = diag

{
w

(m+1)
ij , i = 1, . . . , n

}
, G

(m+1)
j = diag

{
g
(m+1)
ij , i = 1, . . . , n

}
, and

σ
2(m+1)
j,t = σ

2(m+1)
j (ut) =

∑n
i=1w

(m+1)
ij g

(m+1)
ij Kh(ui − ut)

(
yi − x>i β

(m+1)
j,t

)2
∑n

i=1w
(m+1)
ij Kh(ui − ut)

.

The updates of the regression parameters based on ridge penalty are given as

β
(m+1)
j,t = β

(m+1)
j (ut) =

(
X>W

(m+1)
j G

(m+1)
j X + γId×d

)−1
X>W

(m+1)
j G

(m+1)
j y,
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where γ > 0 is the ridge tuning parameter.

Finally, the mplle updates of the regression parameters are given as

β
(m+1)
j,t = β

(m+1)
j (ut) =

(
X>W

(m+1)
j G

(m+1)
j X + γId×d + Σ

(m+1)
j

)−1
X>W

(m+1)
j G

(m+1)
j y,

where Σ
(m)
j = diag{τ (m)

jl : l = 1, . . . , d} and

τ
(m)
jl =

1

n

p′n
(
‖b(m)

jl ‖/
√
n;λj

)
‖b(m)

jl ‖/
√
n

.

Web Appendix F.4 Initial value for the em algorithm

In our simulation, we obtained Ψ(0) by adding perturbation Gaussian noises to the true value

Ψ0. In another approach, we first fit a finite mixture of polynomial regression coefficients

of a prespecified degree (five) with fixed (non-varying) mixing probabilities and dispersion

parameters (πj, φj). The resulting estimates are then used as the initial value Ψ(0) in the

modified em algorithm. In our simulations, both approaches led to similar results. In our

analysis of the real data, we adopted the second approach by the first fitting finite a mixture

of polynomial regressions based on several randomly generated initial values.

When the dimension d is comparable to the sample size n, or there is a near-singularity

among the covariates, a ridge penalty may be applied in fitting the finite mixture of polyno-

mial regression models.

Web Appendix G. Tuning parameter and mixture order selection

In practice, one needs to choose the band-width h, the tuning parameters λj’s, and the

mixture order C. It is computationally infeasible to simultaneously choose appropriate values

for all these parameters. We now describe data-adaptive strategies for their selection.

Web Appendix G.1 Band-width selection for smoothing

We use the idea of a multi-fold cross-validation (Geisser, 1975) for band-width selection.

Let D = {(ui,xi, yi), i = 1, . . . , n} represent the full data. We partition D randomly
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into subsets Pl, l = 1, . . . , J , each of size approximately n/J . For each l, we refer to Pl and

T−l = D\Pl as test and training data, respectively. For each l, and given h, let Ψ̃−l(h) ≡ Ψ̃−l

be the mlle of Ψ, by maximizing the local-kernel log-likelihood in (7) of the paper and

using the training data T−l. Inspired by Huang et al. (2018), we compute the predictive

log-likelihood

Pl(h) =
J∑
l=1

∑
i∈Pl

log

{
C∑
j=1

π̃j,−l(ui)f
(
yi; θ̃j,−l(xi, ui), φ̃j,−l(ui)

)}
, (A.77)

where θ̃j,−l(xi, ui) = g(x>i β̃j,−l(ui)). The predictive log-likelihood is computed over a grid of

h values, and we choose a value of h that maximizes Pl(h). To reduce the effect of random

partitioning, we repeat the partitioning, say B times, and maximize an average predictive

likelihood with respect to h. In our simulation, we used J = 5 and B = 10.

In what follows, we fix h at the value obtained based on the criterion in (A.77).

Web Appendix G.2 Tuning parameter for variable selection

We use a bic-type criterion (Wang et al., 2007) for choosing a presumed common tuning

parameter λ1 = · · · = λC = λ for the variable selection via penalty pn in (10) of the paper.

Using this method, one may choose different λj’s by searching over a C-dimensional grid

which is computationally more expensive.

For a value λ, let Ψ̂n(λ) be the mplle as in (11) of the paper. Note that to perform

variable selection, each non-parametric function βjl(u) is estimated at the points u1, . . . , un

by the vector b̂jl(λ) =
(
β̂jl(u1), . . . , β̂jl(un)

)>
. Thus, the total number of estimated non-zero

regression functions is given by
∑C

j=1

∑d
l=1 1{‖b̂jl(λ)‖2 > 0}. We compute

BIC1(λ) = −2L(Ψ̂n(λ)) + log n×
{∑C

j=1

∑d

l=1
1{‖b̂jl(λ)‖2 > 0}

}
× dfh, (A.78)

where L is the log-likelihood in (6) of the paper evaluated at Ψ̂n(λ), and as in Huang et al.

(2013),

dfh = τKh
−1 |U|

{
K(0)− 1

2

∫
U
K2(u)du

}
,
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where |U| is equal to the length of the support of the index variable U , and

τK =

{
K(0)− 1

2

∫
U
K2(u)du

}{∫
U

{
K(u)− 1

2
K ∗K(u)

}2

du

}−1
and K ∗ K(t) =

∫ t
0
K(u)K(t − u)du. In Web Appendix G.4 that follows, we compute the

degrees of freedom dfh for the Epanechnikov Kernel. We compute the bic over a grid of

λ-values, say λ1, . . . , λM , and then choose a value of λ that minimizes (A.78).

In our simulation and data analysis, guided by the theory in Section 4 of the paper, for

a given n, the smoothing parameter h is chosen by maximizing the predictive log-likelihood

(A.77) over the range [0.1, 2n−0.2]; the tuning parameter λ is chosen by minimizing the bic

in (A.78) over the range [10−6, 3n−0.45] for the adplasso and over the range [10−6, 3n−0.35]

for the lasso, scad, mcp. The constants involved in the ranges are chosen by trial and

error.

Web Appendix G.3 Mixture order selection

We also use a bic for selection of the mixture order C, when it is unknown. Here, we need

to take into account the total number of non-parametric mixing probabilities and dispersion

parameters that are estimated. We compute the bic

BIC2(C) = −2L(Ψ̂n(C))+log n×
{

2C−1+
∑C

j=1

∑d

l=1
1{‖b̂jl(C)‖2 > 0}

}
×dfh, (A.79)

where Ψ̂n(C) is the mplle obtained for the fitted mixture models of different orders C =

1, . . . ,K, for some pre-specified upper bound K. In Web Appendix G.4 that follows, we

compute the degrees of freedom dfh for the Epanechnikov Kernel. The mixture order is

then estimated by Ĉn that minimizes BIC2(C) over 1 6 C 6 K. Theoretically, under the

conditions of Theorem 2 in the paper, and similar to the results of Leroux (1992), the

estimator Ĉn does not underestimate the true mixture order with probability tending to one

as n→∞. Our simulation results show that Ĉn does not underestimate the mixture order,

and also the percentage of overestimation decreases as n increases.
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Web Appendix G.4 Computing the degree of freedom for the BIC

For the Epanechnikov Kernel in Web Appendix C, we have

dfh = τKh
−1 |U|

{
K(0)− 1

2

∫
U
K2(u)du

}
,

and for the bic given in Web Appendix G of the paper, where U is the support of the index

variable U , |U| is equal to the length of the support, and

τK =
K(0)− 1

2

∫
K2(u)du∫

U

{
K(u)− 1

2
K ∗K(u)

}2
du
,

with the convolution

K ∗K(t) =

∫ t

0

K(u)K(t− u)du.

For the Epanechnikov Kernel, we have

K ∗K(t) =
32

42

∫ t

0

3

4
(1− u2)3

4
(1− (t− u)2)du =

32

42

(
t− 2

3
t3 +

1

30
t5
)
,

and ∫ 1

0

{
K(u)− 1

2
K ∗K(u)

}2

dt =

∫ 1

0

{
3

4
(1− u2)− 1

2

32

42

(
u− 2

3
u3 +

1

30
u5
)}2

du

=
32

42

∫ 1

0

(
1− 3

8
u− u2 +

1

4
u3 − 1

80
u5
)2

du

= 0.2285.

Thus,

K(0) =
3

4
,

∫ 1

0

K2(u)du =

∫ 1

0

32

42

(
1− u2

)2
du =

3

10
,

and

dfh =
3/4− 3/20

0.2285

|U|
h

(3/4− 3/20) =
1.5755

h
.
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Web Appendix H. Additional simulation studies

Web Appendix H.1 Model Misspecification

Since our proposed estimation and variable selection method is likelihood-based, one expects

that a misspecification of the parametric form of the mixture components would, in general,

affect the performance of the method, although the degree of performance degradation

depends on how different the misspecified and the true models are. In terms of the number

of latent classes, if C is smaller than its true value, then the fitted model converges to

an under-specified model that minimizes the Kullback-Leibler distance to the true fm-vcr

model (Leroux, 1992). Thus, we cannot make statements about the consistent estimation of

the parameters of the true model based on an under-specified model. On the other hand,

if C is larger than its true value, then the overall behavior of the true fm-vcr model will

be captured by the over-fitted mixture model. In particular, Ho and Nguyen (2016) and Ho

et al. (2022) showed that the density function of an over-fitted standard finite mixture model

and the finite mixture of regressions (both special cases of fm-vcrs) consistently estimates

the true finite mixture density. We believe such property also holds for over-fitted fm-vcr,

although further investigation is needed to study this theoretically.

Below we investigate, through simulation, two scenarios related to model misspecification:

misspecifying the parametric form and misspecifying the number of components, with the

results presented below as (i) and (ii), respectively. Our simulations are based on the dimen-

sion d = 10 and sample sizes n = 200 and 400, representative settings of those in the paper.

The results are based on R = 100 replicates.

(i) Misspecification of the parametric form of the mixture component density

We generated random samples (ui,xi, yi), i = 1, . . . , n, from a two-components fm-vcr

model with each component density set to be a t-distribution with 10 degrees of freedom,
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which has moderately heavier tails than a Gaussian distribution. The rest of the parameter

settings are the same as those in Table 1 of the Simulation Section in the paper.

Using our proposed regularization method outlined in Section 3 of the paper, we fitted

two models to the generated data: the correct t fm-vcr from which the data were generated

and the misspecified Gaussian fm-vcr model. As in the paper, the simulation results are

summarized in terms of sensitivity, specificity, and estimation error (L2). The results are

given in Web Table 7 below. Similar to the Gaussian fm-vcr model, the details of the

numerical implementation of the penalization method for a t fm-vcr are now given in Web

Appendix F.3 above.

From Web Table 7, we observe that, overall, the results based on the correct t fm-

vcr (upper portion of the table) are reasonable in terms of all the performance measures

under consideration. The results are roughly similar to those of Table 2 of the paper based

on the correct Gaussian fm-vcr model. As expected, the performance of the method in

Component 2 (the larger component) of the mixture is better. On the other hand, the

results (lower portion of the table) based on the misspecified Gaussian model show that the

performance of the method in terms of sensitivity and specificity generally degrades but not

dramatically in terms of sensitivity, while specificity has not been affected much. The quality

of the parameter estimates in terms of estimation error has been affected particularly in

Component 1, the smaller component. As the sample size n increases, the loss in performance

is less which is expected. Overall, the misspecification for the above parameter setting has

not affected the performance much.

(ii) Misspecification of the number of mixture components (C)

We consider the Gaussian fm-vcr with the true number of components (order) C = 2

and the same parameter setting as in Table 1 of the paper. We generated random samples

(ui,xi, yi), i = 1, . . . , n, from this model and fitted Gaussian fm-vcr models with orders



Supporting Information for“Sparse Estimation in Semi-parametric Finite Mixture of Varying Coefficient Regression Models” 49

C = 1, 2, 3 and 4, to the data. For the overfitted fm-vcr models with orders C = 3, 4, we

first perform a component-matching in which we find the closest components of the over-

fitted model to those of the true model with C = 2 and then compute the performance

measures.

The simulation results are summarized in Web Table 8. The results for the fitted misspec-

ified models with orders C = 1, 3 and 4 are compared with those from the correct order

C = 2. The one-component underfitted model with C = 1 resembles the behavior of the

larger component of the correct model, i.e. Component 2, but with lower sensitivity and

specificity and larger estimation errors for the corresponding measures for Component 2

when C = 2 was fitted. On the other hand, the behavior of the models with C = 3, 4 are

similar to those with the correct model but with lower estimation errors. These simulation

results are in line with the theoretical properties of over-fitted finite mixture models (Ho and

Nguyen, 2016; Ho et al., 2022), although further work is necessary to theoretically investigate

such properties for the over-fitted fm-vcr models.

Web Appendix H.2 Comparison of fmr and fm-vcr models

We generated data from a Gaussian finite mixture of regression (fmr) model (without

allowing for varying coefficients) with the number of components C = 2, dimension d = 10,

and samples sizes n = 200 or 400. The parameter setting for the fmr model is as follows:

β>1 = [−0.5, 0.25, 0.25, 0,−0.25, 0, 0, 0, 0, 0, 0],

β>2 = [−0.25, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0, 0],

σ> = [0.39, 0.45], π> = [0.55, 0.45].

We then fitted both Gaussian fmr and fm-vcr models to each simulated sample. The

results are given in Web Table 9. We observe that, for sensitivity, fm-vcr (the wrong

model) is generally worse (on average based on 100 replicates) than fmr (the true underlying
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model), with larger standard deviations (sd). On the other hand, for specificity, fm-vcr is

consistently better and with much smaller sd. This implies that fm-vcr selected fewer

variables, hence fewer true positives and fewer false positives, thus larger specificity and

smaller sensitivity. This result makes sense because with a more complex model and more

parameters but a fixed sample size, variables are harder to be selected as significant, especially

for the parameter setting considered above where the effects of covariates (βjl’s) are weak.

Thus, in practice, one may fit both models to a dataset and assess the results as we have

done for our real data.

Web Appendix H.3 Alternative tuning parameter selection

In general, it is challenging to provide a universally dominant method for a data-dependent

choice of the three tuning parameters. In addition to the implementation of the sequential

selection of h and then λ for a prespecified mixture order C (Web Appendix G), here we

investigate an alternative tuning parameter selection approach, where h and λ are selected

simultaneously, to see whether performance can be improved although at the expense of

greater computational intensity. Specifically, we investigate the scenario in which C = 2,

dimension d = 10, and sample sizes n = 200, 400, which was considered in the paper. The

variable selection and estimation error results are given in Web Table 10, and the time (in

seconds) are given in Web Table 11.

As we can see from the computational time results, on average, the mplle based on

selecting h and then λ is at least 18 times faster than the mplle when (h, λ) are selected

simultaneously, which is expected. On the other hand, comparing the results of Web Table 10

with those in Table 2 of the paper, despite the increase in computational time, the gain in

performance of the mplle based on the simultaneous selection of (h, λ) both in terms of

variable selection and estimation error is negligible.
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Web Appendix H.4 High-dimensions

In this section, we assess the performance of the penalization method when the dimension d

exceeds the sample size n, although this case is not covered in our theoretical results where

d is fixed as n grows.

We have considered the two-component (C = 2) Gaussian fm-vcr model with the pa-

rameter setting given in Table 1 of the paper, dimension d = 500, and sample sizes n =

200, 400. In this model, covariates (x1, x2, x4) in Component 1 and covariates (x1, x3) in

Component 2 have non-zero βjk(u), and the rest have zero coefficients. There are a total

of p = Cd + 2C − 1 = 1003 non-parametric functions to be estimated by the proposed

penalization method. The results are summarized in Web Table 12.

The results show that while the specificity remains high and similar to dimensions d =

5, 10, 20, and 50 already considered in Example 1 of Section 6 in the main paper (Table 2,

and see also Web Table 2), there is some reduction in sensitivity, although the difference

is quite small when compared to d = 50, indicating that reasonable results are likely to be

obtained by the method even when the number of variables exceed the sample size.

Nevertheless, rigorous study of high-dimensional setting requires new theoretical and nu-

merical tools, which are not covered in the current paper.

In the second part of our simulation to investigate high-dimensional settings, we examined

two popular screening techniques that one could use when fitting an fm-vcr to a dataset.

(1) Screening using the Pearson’s Correlation.

We computed the sample correlation between the response and d = 500 covariates for each

simulated sample, and we kept d∗ = 50 top covariates with the highest correlation values.

This procedure was repeated for 100 replicated samples. Web Table 13 shows the top 20

covariates that have the highest frequencies of being selected out of the 100 replications.

Note that in our simulation, the covariates (x1, x2, x3, x4) have non-zero βjl(u)’s in the true



52 Biometrics, January 2022

data generating fm-vcr, and they all survived the screening process in all 100 replicates.

Some other covariates (those with zero βjl(u)’s, essentially noise) also survived with high fre-

quencies, necessitating the use of our fm-vcr method for further in-depth variable selection

and estimation.

(2) Screening using marginal likelihood of single-covariate fm-vcr model with C = 2.

In this approach, via MLE, we fitted d = 500 single-covariate fm-vcr models each of

which includes intercepts and only one covariate in both components of the mixture model.

We then rank the top d∗ = 50 covariates based on the likelihood value of their corresponding

fitted model. This procedure was repeated for 100 replicated samples. Web Table 14 below

shows the top 20 covariates with the highest frequencies of being among the top 50’s out

of the 100 replications. Again, we can see that the covariates (x1, x2, x3, x4) that have non-

zero βjl(u)’s in the true data generating fm-vcr survived the screening process in all 100

replicates, among other (noise) covariates that were in fact selected less.

Web Appendix I. More on the data analysis from the OCN study

To substantiate the need for an fm-vcr model, we carried out an analysis by fitting an

fmr model to the OCN data to show the lack of fit of this model compared to the fm-vcr

model. Specifically, using all four penalties studied in the paper, we analyzed the OCN data

by fitting fmr models with mixture orders C = 1, 2, 3, 4, and 5. An fmr model with two

components (C = 2), and based on the SCAD penalty, was selected by the bic. Similar to

the fitted sparse fm-vcr model, snp rs7456421 was also selected in the fitted sparse fmr

model, among several other covariates. The mixing proportion of Component 1 in the fmr

model is 53% which is approximately equal to the average of the varying mixing proportion

of Component 1 in the fm-vcr model. The variance of Component 1 in the fmr model is

about 62, which is close to the average of varying variance of Component 1 in the fm-vcr
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model. However, the second component of the fmr model has a much larger variance, about

149, compared to the variance of Component 2 in the fm-vcr model (which ranges from

13 to 19 as a function of age). This much larger variance of Component 2 compared to

the variance of Component 1 in the fmr can be an indication of a misspecified model. To

demonstrate the lack of fit using the fmr model and the subsequent improvement by the

fm-vcr model, we analyzed their residuals by plotting the quantiles against their normal

counterparts. As can be seen from the QQ-plots in Web Figure 2 below, the use of fm-vcr

indeed improves the fit to the data compared to fmr, especially for Component 2.

We have also supplied two plots to provide further evidence of the varying coefficient effect

of snp rs7456421 over the age on osteocalcin. In Web Figure 3(a), we have added the point-

wise error bars to the estimated varying coefficient plot of the snp, where the error bars

were calculated using the EM algorithm approximation method of ?. This substantiates our

conclusion that snp rs7456421 has an age-dependent effect on osteocalcin, and that this

snp has a significantly negative effect at a younger age, and this effect diminishes as one

ages. Web Figure 3(b) is the derivative curve (approximated using Matlab) of the estimated

coefficient curve over age. It is evident from the plot that the underlying true derivatives are

unlikely to be constant at 0 over the age range.

Web Appendix J. Additional tables and figures

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

[Table 12 about here.]

[Table 13 about here.]

[Table 14 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]
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Web Figure 1: Osteocalcin data analysis; (a) The estimated effect of rs109522346 over time
in hOCN. (b) The estimated effect of rs7456421 over time in hOCN. (c) The estimated effect
of rs4074826 over time in hOCN. (d) The estimated effect of folic acid over time in hOCN.
(e) Estimated variance over time in hOCN. (f) Estimated variance over time in lOCN.
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Web Figure 2: QQ-plots of the OCN data analyses; results of fm-vcr versus fmr model.
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Web Figure 3: The non-constant effect of snp rs7456421 on osterocalcin for Component 1
of the two-component fm-vcr model. (a) Error bar of the estimated effect size at each age;
(b) Derivatives of the non-constant effect curve.
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Web Table 1: Parameters settings for the Gaussian fm-vcr models with C = 2, 3.

Component(j) 1 2 3
Parameters d(= 5, 10, 20, 50)1

βj0(u) -2 -1 1
βj1(u) 1 + 0.5 cos(πu) 1.5 sin(πu) 0
βj2(u) 1 + 0.5 cos(2πu) 0 −1.5(cos(2πu))2

βj3(u) 0 1.5− 0.5 sin(πu/2) 0
βj4(u) sin(6πu) 0 1− 0.5 cos(3uπ/2)
βj5(u) 0 0 0
...

...
...

...
βj,50(u) 0 0 0

σj(u) 0.3e(0.5u) 0.5e(−0.2u) 0.8e(0.5u)

πj(u) e0.5u/(1 + e0.5u) (1 + e0.5u)−1 —
πj(u) e0.5u/(1 + e0.5u + e0.2u) e0.2u/(1 + e0.5u + e0.2u) (1 + e0.5u + e0.2u)−1

1 We keep the non-zero coefficient functions βjl(·) the same for different values of the dimension d.
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Web Table 2: Results of Example 1: average (sd) sensitivity, specificity, and estimation errors:
C = 2.

Criteria Sensitivity Specificity L2(β̂j) L2(σ̂
2
j ) L2(π̂j)

Component 1 2 1 2 1 2 1 2 1 2

d = 5 n = 200
Oracle — — — — 0.6504 0.1619 0.3828 0.1037 0.3209 0.1037
mlle — — — — 1.0348 0.2431 0.7476 0.1273 0.3702 0.1273
AdpLASSO 0.6867(0.2030) 0.9483(0.1914) 0.9667(0.1249) 0.9622(0.1221) 0.9337 0.2077 0.6119 0.1182 0.5001 0.1182
LASSO 0.7011(0.2230) 0.8467(0.3467) 0.8133(0.2653) 0.8244(0.2136) 0.9829 0.2560 0.8119 0.1670 0.5237 0.1670
MCP 0.6822(0.1269) 0.9517(0.1535) 0.9783(0.1099) 0.9722(0.1203) 0.8885 0.1632 0.5608 0.0938 0.5046 0.0938
SCAD 0.6844(0.1266) 0.9567(0.1467) 0.9800(0.1063) 0.9744(0.1176) 0.8819 0.1655 0.5536 0.0926 0.5074 0.0926

n = 400
Oracle — — — — 0.3987 0.0831 0.2144 0.0800 0.2730 0.0800
mlle — — — — 0.5467 0.0969 0.3895 0.0749 0.2782 0.0749
AdpLASSO 0.9778(0.0833) 0.9967(0.0577) 0.9983(0.0289) 0.9967(0.0430) 0.4991 0.0819 0.2253 0.0743 0.3114 0.0743
LASSO 0.9889(0.0599) 0.9950(0.0645) 0.9383(0.1793) 0.9100(0.1799) 0.5819 0.1165 0.3759 0.0859 0.3377 0.0859
MCP 0.9833(0.0728) 1.0000(0.0000) 1.0000(0.0000) 0.9989(0.0192) 0.4582 0.0777 0.2079 0.0735 0.3128 0.0735
SCAD 0.9844(0.0704) 1.0000(0.0000) 1.0000(0.0000) 0.9989(0.0192) 0.4581 0.0774 0.2074 0.0734 0.3129 0.0734
d = 10 n = 200
Oracle — — — — 0.6983 0.1616 0.3968 0.0887 0.3143 0.0887
mlle — — — — 1.2296 0.2886 1.0160 0.1378 0.3355 0.1378
AdpLASSO 0.5889(0.2390) 0.8933(0.2592) 0.9705(0.0667) 0.9663(0.0610) 1.0894 0.2876 0.8483 0.1608 0.5007 0.1608
LASSO 0.4700(0.3206) 0.7750(0.4009) 0.9276(0.1002) 0.9167(0.0869) 1.3206 0.3829 1.1522 0.2940 0.5054 0.2940
MCP 0.5811(0.1940) 0.8950(0.2450) 0.9838(0.0454) 0.9812(0.0481) 1.0420 0.2378 0.7633 0.1056 0.5034 0.1056
SCAD 0.5944(0.1878) 0.8917(0.2435) 0.9833(0.0488) 0.9800(0.0503) 1.0294 0.2372 0.7612 0.1066 0.5010 0.1066

n = 400
Oracle — — — — 0.4393 0.0888 0.2270 0.0816 0.2728 0.0816
mlle — — — — 0.8776 0.1489 0.6068 0.0867 0.3374 0.0867
AdpLASSO 0.6900(0.1272) 0.9933(0.0574) 0.9971(0.0232) 0.9954(0.0294) 0.8079 0.1654 0.3905 0.0692 0.4110 0.0692
LASSO 0.7656(0.2302) 0.9700(0.1659) 0.9705(0.0657) 0.9617(0.0638) 0.8617 0.2322 0.5176 0.1076 0.4249 0.1076
MCP 0.6922(0.1042) 0.9917(0.0641) 0.9971(0.0200) 0.9983(0.0144) 0.7892 0.1455 0.3745 0.0616 0.4119 0.0616
SCAD 0.6878(0.0979) 0.9917(0.0641) 0.9962(0.0231) 0.9979(0.0160) 0.7919 0.1463 0.3768 0.0620 0.4122 0.0620
d = 20 n = 200
Oracle — — — — 0.6147 0.0952 0.2975 0.0790 0.3133 0.0790
mlle — — — — 1.3671 0.2255 1.3035 0.0821 0.3835 0.0821
AdpLASSO 0.6456(0.1153) 0.9433(0.2025) 0.9814(0.0434) 0.9839(0.0416) 0.9140 0.2692 0.7131 0.0563 0.4878 0.0563
LASSO 0.6567(0.1200) 0.9533(0.1870) 0.9629(0.0587) 0.9524(0.0532) 0.9240 0.3363 0.8963 0.0563 0.4940 0.0563
MCP 0.6433(0.1212) 0.9533(0.1986) 0.9941(0.0278) 0.9955(0.0218) 0.9149 0.2200 0.6193 0.0520 0.4673 0.0520
SCAD 0.6411(0.1268) 0.9467(0.2061) 0.9943(0.0277) 0.9957(0.0211) 0.9183 0.2270 0.6333 0.0524 0.4721 0.0524

n = 400
Oracle — — — — 0.3533 0.0721 0.2108 0.0670 0.2515 0.0670
mlle — — — — 0.9120 0.1019 0.6161 0.0377 0.4234 0.0377
AdpLASSO 0.6678(0.0192) 0.9978(0.0385) 0.9986(0.0148) 0.9996(0.0048) 0.7984 0.1697 0.4171 0.0356 0.4844 0.0356
LASSO 0.7156(0.1181) 1.0000(0.0000) 0.9780(0.0351) 0.9694(0.0412) 0.8226 0.2373 0.5234 0.0365 0.4995 0.0365
MCP 0.6667(0.0472) 0.9967(0.0577) 0.9994(0.0102) 0.9996(0.0068) 0.7962 0.1589 0.4331 0.0360 0.4808 0.0360
SCAD 0.6678(0.0510) 0.9967(0.0577) 0.9992(0.0107) 0.9996(0.0068) 0.7961 0.1588 0.4331 0.0360 0.4806 0.0360
d = 50 n = 200
Oracle — — — — 0.7270 0.1672 0.3934 0.0968 0.2946 0.0968
mlle — — — — 2.0960 0.2002 2.0600 0.0808 0.1598 0.0808
AdpLASSO 0.5478(0.2188) 0.7633(0.3307) 0.9882(0.0150) 0.9895(0.0157) 1.2587 0.2945 1.0778 0.1649 0.4606 0.1649
LASSO 0.5067(0.2852) 0.6983(0.4148) 0.9873(0.0147) 0.9872(0.0154) 1.3616 0.3737 1.2348 0.2622 0.4830 0.2622
MCP 0.5567(0.1617) 0.8217(0.2468) 0.9923(0.0105) 0.9925(0.0107) 1.2601 0.2437 1.0173 0.1137 0.3995 0.1137
SCAD 0.5578(0.1589) 0.8283(0.2413) 0.9930(0.0102) 0.9926(0.0109) 1.2481 0.2397 1.0028 0.1117 0.4045 0.1117

n = 400
Oracle — — — — 0.4701 0.1410 0.3067 0.0957 0.2988 0.0957
mlle — — — — 1.8860 0.2506 1.6380 0.1881 0.2752 0.1881
AdpLASSO 0.6122(0.1669) 0.8783(0.2299) 0.9906(0.0152) 0.9926(0.0125) 1.1289 0.2968 0.8221 0.0953 0.5259 0.0953
LASSO 0.6067(0.2234) 0.8750(0.2590) 0.9887(0.0156) 0.9891(0.0164) 1.1621 0.3373 0.8745 0.1454 0.5231 0.1454
MCP 0.6067(0.1593) 0.8900(0.2075) 0.9950(0.0092) 0.9953(0.0089) 1.0893 0.2396 0.7811 0.0676 0.5090 0.0676
SCAD 0.5978(0.1556) 0.8833(0.2118) 0.9948(0.0094) 0.9951(0.0090) 1.1050 0.2428 0.7983 0.0688 0.5053 0.0688
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Web Table 3: Results of Example 1: average (sd) sensitivity, specificity, and estimation errors:
C = 3.

Criteria Sensitivity Specificity L2(β̂j) L2(σ̂
2
j ) L2(π̂j)

Component 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

d = 5 n = 200
Oracle — — — — — — 1.1339 0.4871 0.0875 0.7438 0.2902 0.0865 1.0024 0.2325 0.0517
mlle — — — — — — 1.6590 0.4347 0.1254 1.8838 0.3828 0.1070 1.6658 0.2806 0.0709
AdpLASSO 0.4700(0.2689) 0.4000(0.4190) 0.5567(0.3859) 0.8350(0.2425) 0.7844(0.2427) 0.8722(0.2206) 1.6441 0.5469 0.2052 1.8992 0.4338 0.1766 1.5472 0.3074 0.1055
LASSO 0.4644(0.3021) 0.3483(0.4322) 0.4833(0.3677) 0.7417(0.2569) 0.7978(0.2261) 0.8544(0.2230) 1.7766 0.6021 0.2767 2.1098 0.4487 0.2314 1.6641 0.3258 0.1348
MCP 0.4589(0.2364) 0.4267(0.4105) 0.5567(0.3816) 0.8417(0.2365) 0.7833(0.2363) 0.8856(0.2091) 1.6661 0.5162 0.1561 1.8239 0.4479 0.1346 1.6039 0.3143 0.0860
SCAD 0.4722(0.2337) 0.4267(0.4085) 0.5517(0.3812) 0.8383(0.2413) 0.7800(0.2402) 0.8778(0.2195) 1.6562 0.5188 0.1483 1.8079 0.4530 0.1272 1.6232 0.3124 0.0861

n = 400
Oracle — — — — — — 0.7176 0.3614 0.0662 0.3425 0.1530 0.0659 0.6768 0.2011 0.0549
mlle — — — — — — 1.2502 0.4340 0.0896 1.3935 0.3189 0.0766 1.2189 0.2185 0.0532
AdpLASSO 0.6011(0.1535) 0.6833(0.4086) 0.8517(0.3122) 0.8683(0.2206) 0.8322(0.2384) 0.9022(0.2024) 1.2151 0.4796 0.0988 1.2501 0.3418 0.0859 1.0994 0.2273 0.0541
LASSO 0.6544(0.2152) 0.5483(0.4592) 0.8233(0.3329) 0.7467(0.2602) 0.7667(0.2593) 0.7867(0.2536) 1.2838 0.5554 0.1691 1.5429 0.3721 0.1500 1.1995 0.2440 0.0691
MCP 0.5900(0.1532) 0.7117(0.3828) 0.8600(0.3094) 0.8750(0.2169) 0.8333(0.2369) 0.9167(0.1987) 1.2334 0.4681 0.0849 1.2412 0.3263 0.0755 1.0959 0.2326 0.0509
SCAD 0.5956(0.1447) 0.7133(0.3829) 0.8617(0.3088) 0.8783(0.2149) 0.8333(0.2353) 0.9111(0.2028) 1.2209 0.4633 0.0825 1.2322 0.3268 0.0730 1.0902 0.2345 0.0501

n = 600
Oracle — — — — — — 0.4931 0.3087 0.0734 0.3156 0.1236 0.0690 0.4868 0.1796 0.0543
mlle — — — — — — 0.8025 0.3754 0.1115 0.9222 0.1933 0.0932 0.8227 0.1839 0.0588
AdpLASSO 0.7344(0.1597) 0.7983(0.3924) 0.9217(0.1996) 0.9150(0.1881) 0.9289(0.1892) 0.9789(0.0900) 0.8513 0.4528 0.1154 0.8243 0.2104 0.1012 0.7135 0.1739 0.0568
LASSO 0.8589(0.1780) 0.6617(0.4623) 0.9167(0.2271) 0.7717(0.2625) 0.9056(0.2120) 0.7444(0.2738) 0.8996 0.5195 0.1626 1.1124 0.2676 0.1385 0.9293 0.1838 0.0631
MCP 0.8367(0.1839) 0.8517(0.3330) 0.9767(0.1133) 0.9133(0.1896) 0.8978(0.2279) 0.9467(0.1394) 0.7811 0.4085 0.1024 0.7399 0.1825 0.0864 0.5831 0.1728 0.0554
SCAD 0.8333(0.1839) 0.8583(0.3258) 0.9767(0.1133) 0.9167(0.1867) 0.8967(0.2282) 0.9444(0.1464) 0.7975 0.4116 0.1033 0.7482 0.1825 0.0877 0.5821 0.1732 0.0553

n = 800
Oracle — — — — — — 0.4614 0.3326 0.0619 0.2413 0.0986 0.0584 0.4829 0.1581 0.0486
mlle — — — — — — 0.9958 0.3702 0.0905 1.1395 0.2504 0.0812 0.8393 0.1799 0.0512
AdpLASSO 0.7833(0.2347) 0.7717(0.3523) 0.9383(0.2133) 0.8633(0.2232) 0.8189(0.2660) 0.9633(0.1298) 0.9786 0.4266 0.0942 0.9848 0.2471 0.0841 0.7121 0.1696 0.0537
LASSO 0.8733(0.2220) 0.7583(0.3599) 0.9450(0.1990) 0.7833(0.2581) 0.7000(0.3231) 0.7411(0.2671) 1.0108 0.4708 0.1242 1.1539 0.3030 0.1123 0.8866 0.1700 0.0579
MCP 0.8411(0.2368) 0.8500(0.2848) 0.9633(0.1744) 0.8383(0.2343) 0.7856(0.2903) 0.9167(0.1831) 0.9485 0.3770 0.0784 0.9249 0.2235 0.0716 0.6262 0.1631 0.0476
SCAD 0.8378(0.2384) 0.8517(0.2842) 0.9600(0.1784) 0.8450(0.2316) 0.7867(0.2867) 0.9222(0.1784) 0.9638 0.3764 0.0773 0.9287 0.2276 0.0713 0.6278 0.1629 0.0473
d = 10 n = 200
Oracle — — — — — — 0.9505 0.4974 0.1277 0.9805 0.3235 0.1182 0.8308 0.2478 0.0637
mlle — — — — — — 1.4183 0.4360 0.1719 2.4018 0.3248 0.1455 1.7147 0.4082 0.0742
AdpLASSO 0.4978(0.2565) 0.3367(0.4069) 0.5333(0.4076) 0.9595(0.0715) 0.9362(0.0972) 0.9625(0.0741) 1.3498 0.6338 0.2486 1.9354 0.4319 0.2061 1.3817 0.3126 0.0996
LASSO 0.5011(0.2943) 0.2700(0.4175) 0.4517(0.3988) 0.9124(0.0806) 0.9333(0.0928) 0.9483(0.0794) 1.4418 0.6559 0.3217 2.1788 0.4406 0.2604 1.5181 0.3373 0.1123
MCP 0.4856(0.2007) 0.4033(0.3909) 0.5733(0.3875) 0.9643(0.0652) 0.9121(0.1185) 0.9658(0.0810) 1.3085 0.5850 0.1633 1.9423 0.4015 0.1397 1.2839 0.3119 0.0833
SCAD 0.4900(0.1992) 0.4083(0.3911) 0.5767(0.3932) 0.9657(0.0644) 0.9012(0.1317) 0.9596(0.0902) 1.3065 0.5855 0.1556 1.9433 0.4122 0.1330 1.3086 0.3125 0.0836

n = 400
Oracle — — — — — — 0.7064 0.3682 0.1009 0.5835 0.1737 0.0958 0.5880 0.1974 0.0578
mlle — — — — — — 1.1659 0.4723 0.1869 1.8652 0.2792 0.1559 1.0682 0.222 0.0531
AdpLASSO 0.6333(0.1430) 0.5383(0.4691) 0.9083(0.2435) 0.9376(0.0719) 0.9438(0.1023) 0.9792(0.0520) 1.0881 0.5651 0.1851 1.4778 0.2902 0.1525 0.8380 0.2063 0.0569
LASSO 0.6389(0.2155) 0.3733(0.4740) 0.8283(0.3163) 0.8990(0.0731) 0.9454(0.0914) 0.9312(0.1087) 1.1901 0.6027 0.2640 1.7628 0.3562 0.2239 0.9875 0.2344 0.0670
MCP 0.6033(0.1392) 0.5967(0.4431) 0.9333(0.1975) 0.9443(0.0727) 0.9054(0.1385) 0.9821(0.0535) 1.1059 0.5332 0.1566 1.5774 0.2718 0.1274 0.8055 0.1920 0.0517
SCAD 0.6111(0.1303) 0.6083(0.4356) 0.9283(0.1979) 0.9490(0.0743) 0.9017(0.1475) 0.9788(0.0606) 1.0858 0.5366 0.1554 1.5586 0.2647 0.1280 0.8064 0.1931 0.0491

n = 600
Oracle — — — — — — 0.6282 0.3691 0.0699 0.3349 0.1507 0.0656 0.6261 0.1922 0.0539
mlle — — — — — — 1.5853 0.4621 0.1178 1.8785 0.4041 0.0933 1.6192 0.2246 0.0626
AdpLASSO 0.5544(0.1879) 0.5050(0.4337) 0.7183(0.4005) 0.9300(0.0734) 0.8717(0.1205) 0.9308(0.1012) 1.5225 0.5138 0.1287 1.7028 0.4685 0.0957 1.4546 0.2560 0.0718
LASSO 0.5567(0.2395) 0.4733(0.4564) 0.6817(0.4204) 0.8943(0.0817) 0.8429(0.1596) 0.8717(0.1317) 1.5624 0.5539 0.1808 1.8107 0.4890 0.1378 1.5342 0.2823 0.0951
MCP 0.5467(0.1758) 0.5250(0.4272) 0.7400(0.3910) 0.9319(0.0838) 0.8692(0.1263) 0.9308(0.1023) 1.5513 0.4919 0.1099 1.7320 0.4426 0.0853 1.4713 0.2486 0.0604
SCAD 0.5444(0.1763) 0.5233(0.4224) 0.7367(0.3888) 0.9262(0.0886) 0.8704(0.1232) 0.9308(0.1038) 1.5480 0.4922 0.1090 1.7370 0.4425 0.0843 1.4715 0.2517 0.0598

n = 800
Oracle — — — — — — 0.4334 0.3366 0.0730 0.3427 0.1056 0.0690 0.4247 0.1583 0.0494
mlle — — — — — — 0.9388 0.4102 0.1100 1.0839 0.1892 0.0962 0.9063 0.1567 0.0424
AdpLASSO 0.6878(0.1121) 0.8150(0.3747) 0.9700(0.1500) 0.9714(0.0572) 0.9658(0.0829) 0.9942(0.0264) 0.8708 0.4872 0.0964 0.7564 0.2115 0.0852 0.6450 0.1744 0.0402
LASSO 0.7378(0.1447) 0.7983(0.3924) 0.9567(0.1913) 0.9619(0.0633) 0.9579(0.0876) 0.9012(0.1174) 0.9325 0.5133 0.1156 0.8413 0.2873 0.1076 0.7948 0.1757 0.0426
MCP 0.7378(0.1546) 0.8467(0.3369) 0.9867(0.0905) 0.9710(0.0643) 0.9304(0.1610) 0.9729(0.0666) 0.8441 0.4815 0.0949 0.8760 0.1912 0.0812 0.5877 0.1680 0.0416
SCAD 0.7322(0.1510) 0.8617(0.3168) 0.9850(0.0947) 0.9700(0.0649) 0.9204(0.1853) 0.9708(0.0836) 0.8497 0.4811 0.0947 0.8860 0.1905 0.0816 0.5908 0.1714 0.0411
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Web Table 4: Results of Example 1: average (sd) sensitivity, specificity, and estimation errors:
C = 3. (Continued from Table 3).

Criteria Sensitivity Specificity L2(β̂j) L2(σ̂
2
j ) L2(π̂j)

Component 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

d = 20 n = 200
Oracle — — — — — — 0.8847 0.4505 0.0692 0.6231 0.2354 0.0825 0.9026 0.3294 0.0928
mlle — — — — — — 2.4150 0.2449 0.0865 3.0950 0.2591 0.0847 2.6280 0.5813 0.0955
AdpLASSO 0.3922(0.2791) 0.1333(0.2615) 0.1222(0.2245) 0.9855(0.0372) 0.9486(0.0652) 0.9496(0.0628) 1.5544 0.6677 0.1387 2.3229 0.5798 0.1672 2.1041 0.4115 0.1683
LASSO 0.4956(0.2719) 0.1422(0.2681) 0.1789(0.2744) 0.9847(0.0486) 0.9431(0.0721) 0.9294(0.0795) 1.4868 0.6605 0.1442 2.2727 0.5143 0.1858 2.0811 0.4245 0.1772
MCP 0.4611(0.2476) 0.2033(0.3128) 0.1989(0.2795) 0.9825(0.0457) 0.9290(0.0654) 0.9190(0.0640) 1.4237 0.5401 0.0959 2.3932 0.4939 0.1378 2.1098 0.3868 0.1477
SCAD 0.4456(0.2506) 0.1978(0.3026) 0.1844(0.2630) 0.9814(0.0480) 0.9255(0.0678) 0.9125(0.0679) 1.4476 0.5579 0.0970 2.3869 0.5199 0.1320 2.1923 0.3921 0.1427

n = 400
Oracle — — — — — — 0.6117 0.3402 0.0597 0.3602 0.1264 0.0694 0.6735 0.2347 0.0743
mlle — — — — — — 1.5067 0.4131 0.0789 2.7800 0.3614 0.1365 2.2260 0.4047 0.1324
AdpLASSO 0.5989(0.1933) 0.3044(0.3864) 0.3011(0.3798) 0.9920(0.0303) 0.8912(0.1041) 0.8876(0.0693) 1.0889 0.5669 0.0635 2.0191 0.5990 0.1172 1.8476 0.3394 0.1215
LASSO 0.6211(0.2210) 0.2844(0.3775) 0.3344(0.3822) 0.9802(0.0492) 0.8908(0.1065) 0.8769(0.0840) 1.1582 0.5837 0.0752 2.0132 0.6125 0.1427 1.8449 0.3669 0.1568
MCP 0.6256(0.1422) 0.2944(0.3992) 0.2900(0.3884) 0.9931(0.0290) 0.8990(0.0793) 0.8878(0.0737) 0.9780 0.5352 0.0528 2.1209 0.5278 0.0948 2.0148 0.3719 0.0934
SCAD 0.6278(0.1376) 0.2889(0.3907) 0.2911(0.3813) 0.9929(0.0336) 0.8951(0.0828) 0.8876(0.0740) 0.9744 0.5253 0.0530 2.1295 0.5399 0.0920 2.0125 0.3692 0.0937

n = 600
Oracle — — — — — — 0.5206 0.3012 0.0575 0.2914 0.1123 0.0620 0.5303 0.2013 0.0652
mlle — — — — — — 1.0740 0.3920 0.0515 2.2576 0.3473 0.1071 1.9200 0.3376 0.1099
AdpLASSO 0.6456(0.1216) 0.4567(0.4658) 0.4567(0.4807) 0.9933(0.0357) 0.8822(0.1234) 0.8873(0.0755) 0.9047 0.4913 0.0428 1.6734 0.5258 0.0617 1.6541 0.3080 0.0686
LASSO 0.6567(0.1477) 0.4600(0.4621) 0.4756(0.4759) 0.9810(0.0405) 0.8604(0.1295) 0.8539(0.0824) 0.9382 0.4920 0.0467 1.7238 0.6113 0.0763 1.6019 0.2769 0.0856
MCP 0.6544(0.0916) 0.4333(0.4742) 0.4689(0.4763) 0.9945(0.0311) 0.8947(0.0972) 0.8992(0.0851) 0.8688 0.4742 0.0426 1.8228 0.4525 0.0625 1.7317 0.3384 0.0647
SCAD 0.6533(0.0894) 0.4344(0.4751) 0.4578(0.4777) 0.9943(0.0312) 0.8957(0.0991) 0.9012(0.0851) 0.8666 0.4774 0.0415 1.8015 0.4540 0.0585 1.7368 0.3476 0.0598

n = 800
Oracle — — — — — — 0.4053 0.3002 0.0544 0.2182 0.0958 0.0538 0.4650 0.1791 0.0596
mlle — — — — — — 0.9461 0.4178 0.0391 1.7950 0.3703 0.0663 1.8255 0.3372 0.0729
AdpLASSO 0.6611(0.0745) 0.5011(0.4835) 0.4956(0.4842) 0.9988(0.0144) 0.8976(0.1083) 0.8990(0.0827) 0.8429 0.4953 0.0361 1.4930 0.5105 0.0498 1.5919 0.2987 0.0569
LASSO 0.6878(0.1216) 0.5400(0.4669) 0.4956(0.4850) 0.9857(0.0362) 0.8582(0.1325) 0.8486(0.0800) 0.8838 0.5161 0.0363 1.5547 0.5969 0.0586 1.5479 0.2557 0.0662
MCP 0.6656(0.0510) 0.5000(0.4903) 0.4956(0.4873) 0.9988(0.0127) 0.9065(0.0934) 0.9051(0.0865) 0.8150 0.4965 0.0345 1.5933 0.4380 0.0495 1.6502 0.3203 0.0516
SCAD 0.6656(0.0510) 0.4989(0.4896) 0.4933(0.4857) 0.9984(0.0166) 0.9045(0.0966) 0.9051(0.0865) 0.8149 0.4966 0.0343 1.5900 0.4413 0.0505 1.6569 0.3208 0.0529
d = 50 n = 200
Oracle — — — — — — 1.1880 0.4564 0.0926 0.7124 0.2652 0.0951 0.9451 0.2230 0.0597
mlle — — — — — — 40.344 0.2321 0.0663 125.66 0.2723 0.0514 32.176 0.8198 0.0608
AdpLASSO 0.4689(0.3352) 0.4217(0.4065) 0.4383(0.3797) 0.8240(0.2484) 0.8062(0.2585) 0.7938(0.2526) 2.1951 0.4730 0.2227 2.3250 0.4201 0.1927 2.3168 0.3967 0.1750
LASSO 0.4133(0.3101) 0.3017(0.4108) 0.3450(0.3117) 0.9848(0.0211) 0.9776(0.0265) 0.9744(0.0256) 2.1437 0.5992 0.2835 2.3110 0.4974 0.2434 2.0452 0.3191 0.1897
MCP 0.3933(0.2332) 0.3350(0.3545) 0.4033(0.3712) 0.9841(0.0819) 0.9703(0.0832) 0.9708(0.0824) 2.5522 0.5669 0.1513 2.2695 0.4985 0.1327 2.4620 0.2859 0.1112
SCAD 0.4000(0.2329) 0.3317(0.3434) 0.4050(0.3772) 0.9811(0.0828) 0.9702(0.0839) 0.9703(0.0821) 2.5530 0.5914 0.1524 3.2542 0.5091 0.1344 2.5090 0.2837 0.1159

n = 400
Oracle — — — — — — 0.8292 0.4252 0.0808 0.5226 0.2399 0.0835 0.7582 0.2307 0.0641
mlle — — — — — — 2.6560 0.1830 0.0777 3.2830 0.2087 0.0595 3.7560 0.7442 0.0463
AdpLASSO 0.3767(0.2360) 0.3017(0.3856) 0.4450(0.3979) 0.9895(0.0113) 0.9801(0.0273) 0.9820(0.0238) 1.7019 0.6798 0.2610 2.1450 0.6171 0.2076 1.5710 0.2986 0.1125
LASSO 0.5156(0.2687) 0.3183(0.4436) 0.5983(0.3894) 0.9841(0.0140) 0.9753(0.0286) 0.9850(0.0205) 1.5590 0.6283 0.3020 2.0440 0.5326 0.2386 1.4284 0.3122 0.1139
MCP 0.4444(0.1934) 0.3533(0.4050) 0.6617(0.4086) 0.9861(0.0207) 0.9759(0.0261) 0.9836(0.0269) 1.5994 0.5609 0.1893 2.0424 0.5460 0.1432 1.4424 0.2625 0.0808
SCAD 0.4389(0.1898) 0.3317(0.3954) 0.6550(0.4132) 0.9864(0.0169) 0.9744(0.0263) 0.9838(0.0254) 1.6486 0.5602 0.1897 2.0740 0.5373 0.1452 1.4756 0.2723 0.0823

n = 600
Oracle — — — — — — 0.7489 0.3810 0.0840 0.4102 0.1602 0.0902 0.6591 0.2147 0.0603
mlle — — — — — — 1.9910 0.4178 0.1770 3.3130 0.3138 0.1285 3.3190 0.6631 0.0730
AdpLASSO 0.4922(0.2029) 0.3183(0.4021) 0.5867(0.3646) 0.9847(0.0114) 0.9798(0.0239) 0.9807(0.0284) 1.4228 0.6366 0.2343 2.1166 0.5214 0.1771 1.2459 0.2997 0.0858
LASSO 0.5400(0.2489) 0.2533(0.4099) 0.6017(0.3971) 0.9832(0.0092) 0.9768(0.0328) 0.9853(0.0234) 1.4331 0.6275 0.3046 2.1956 0.5131 0.2290 1.2370 0.3321 0.1055
MCP 0.5078(0.1776) 0.3450(0.3967) 0.8283(0.2972) 0.9855(0.0116) 0.9649(0.0362) 0.9872(0.0305) 1.4685 0.5357 0.1772 2.1265 0.4445 0.1354 1.1316 0.2397 0.0636
SCAD 0.4867(0.1793) 0.3633(0.3875) 0.8217(0.3099) 0.9855(0.0120) 0.9632(0.0393) 0.9859(0.0311) 1.4795 0.5362 0.1750 2.0962 0.4475 0.1354 1.1242 0.2492 0.0634

n = 800
Oracle — — — — — — 0.5805 0.3965 0.0993 0.4517 0.1583 0.0967 0.5172 0.1903 0.0560
mlle — — — — — — 1.6290 0.5095 0.2281 3.2746 0.3564 0.1757 2.5160 0.5238 0.0697
AdpLASSO 0.5678(0.1731) 0.3733(0.4277) 0.7950(0.3477) 0.9853(0.0102) 0.9795(0.0248) 0.9884(0.0207) 1.2957 0.6338 0.2102 1.9223 0.4454 0.1576 0.9566 0.2544 0.0685
LASSO 0.6178(0.1999) 0.3567(0.4379) 0.8117(0.3663) 0.9836(0.0102) 0.9823(0.0224) 0.9803(0.0231) 1.2639 0.6388 0.2336 1.9158 0.4390 0.1775 1.0092 0.2894 0.0780
MCP 0.5644(0.1656) 0.4300(0.3945) 0.9400(0.1997) 0.9845(0.0149) 0.9619(0.0469) 0.9935(0.0188) 1.3264 0.5596 0.1822 2.0416 0.3556 0.1493 0.7944 0.1909 0.0509
SCAD 0.5544(0.1669) 0.4483(0.3790) 0.9283(0.2180) 0.9855(0.0133) 0.9556(0.0543) 0.9922(0.0227) 1.3555 0.5579 0.1771 2.0526 0.3569 0.1443 0.8089 0.1938 0.0515
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Web Table 5: Results of Example 2: Average (sd) sensitivity, specificity, and estimation
errors:
(C = 2, d = 5, n = 200).

Criteria Sensitivity Specificity L2(β̂j) L2(σ̂
2
j ) L2(π̂j)

Component 1 2 1 2 1 2 1 2 1 2

p = 0.05
Oracle — — — — 1.1871 0.0771 0.7560 0.0919 0.0765 0.0919
mlle — — — — 1.5363 0.0678 1.3980 0.0926 0.0740 0.0926
AdpLASSO 0.0878(0.1831) 0.5883(0.3630) 0.8933(0.2092) 0.9889(0.0763) 1.7500 0.1263 1.2046 0.1338 0.1192 0.1338
LASSO 0.0822(0.1963) 0.6117(0.4090) 0.8983(0.2057) 0.9578(0.1324) 1.7360 0.1348 1.2040 0.1390 0.1189 0.1390
MCP 0.4211(0.3000) 0.6517(0.2969) 0.8917(0.2103) 0.9467(0.1340) 1.5986 0.0888 1.2499 0.1029 0.0956 0.1029
SCAD 0.4311(0.2975) 0.6600(0.2995) 0.8933(0.2092) 0.9456(0.1264) 1.5994 0.0903 1.2441 0.1038 0.0950 0.1038
p = 0.1
Oracle — — — — 0.9970 0.0825 0.6118 0.0724 0.0991 0.0724
mlle — — — — 1.3279 0.0844 1.0951 0.0863 0.0976 0.0863
AdpLASSO 0.2611(0.2917) 0.7367(0.3307) 0.8950(0.2198) 0.9667(0.1377) 1.6326 0.1669 1.0047 0.1540 0.1623 0.1540
LASSO 0.3211(0.3375) 0.6983(0.3877) 0.8667(0.2532) 0.8889(0.2152) 1.6067 0.1777 1.1127 0.1582 0.1578 0.1582
MCP 0.5511(0.2833) 0.8167(0.2613) 0.9067(0.1951) 0.9667(0.1107) 1.3219 0.0977 0.9244 0.0872 0.1384 0.0872
SCAD 0.5544(0.2853) 0.8200(0.2572) 0.9067(0.1951) 0.9656(0.1121) 1.3189 0.0984 0.9256 0.0872 0.1370 0.0872
p = 0.2
Oracle — — — — 0.9110 0.1351 0.4973 0.0793 0.2097 0.0793
mlle — — — — 1.1351 0.1387 0.8888 0.0935 0.1902 0.0935
AdpLASSO 0.6233(0.2898) 0.8933(0.2459) 0.9483(0.1681) 0.9411(0.1562) 1.2894 0.1804 0.7608 0.1096 0.2777 0.1096
LASSO 0.6611(0.3559) 0.8550(0.3030) 0.8750(0.2492) 0.7433(0.2993) 1.3308 0.2158 0.9016 0.1253 0.2633 0.1253
MCP 0.6400(0.2215) 0.9100(0.1967) 0.9550(0.1433) 0.9589(0.1195) 1.0720 0.1371 0.7125 0.0820 0.2793 0.0820
SCAD 0.6478(0.2232) 0.9167(0.1911) 0.9567(0.1409) 0.9567(0.1218) 1.0636 0.1386 0.7111 0.0819 0.2787 0.0819
p = 0.3
Oracle — — — — 0.8549 0.1253 0.5063 0.0858 0.2964 0.0858
mlle — — — — 1.0499 0.1552 0.8202 0.0929 0.3081 0.0929
AdpLASSO 0.5878(0.2283) 0.8850(0.2605) 0.9700(0.1189) 0.9322(0.1371) 1.1651 0.2074 0.7959 0.1184 0.3692 0.1184
LASSO 0.5822(0.3184) 0.8567(0.2911) 0.8933(0.2246) 0.8422(0.2101) 1.2739 0.2632 0.9632 0.1585 0.3676 0.1585
MCP 0.6022(0.1645) 0.8900(0.2410) 0.9683(0.1220) 0.9733(0.0906) 0.9990 0.1418 0.6924 0.0799 0.3990 0.0799
SCAD 0.6089(0.1624) 0.9017(0.2191) 0.9667(0.1249) 0.9733(0.0946) 0.9956 0.1412 0.6828 0.0823 0.3946 0.0823
p = 0.4
Oracle — — — — 0.9225 0.1649 0.5525 0.0980 0.3561 0.0980
mlle — — — — 1.1974 0.2172 0.9813 0.1080 0.3574 0.1080
AdpLASSO 0.4978(0.2993) 0.8600(0.2720) 0.9233(0.1805) 0.9189(0.1581) 1.4347 0.3391 0.9183 0.1653 0.4358 0.1653
LASSO 0.4611(0.3782) 0.8283(0.3082) 0.8800(0.2326) 0.8278(0.2305) 1.6320 0.4374 1.1354 0.2329 0.4210 0.2329
MCP 0.5667(0.1937) 0.8767(0.2380) 0.9250(0.1788) 0.9467(0.1283) 1.1739 0.2178 0.7907 0.0997 0.4791 0.0997
SCAD 0.5678(0.1972) 0.8833(0.2307) 0.9233(0.1805) 0.9467(0.1283) 1.1718 0.2147 0.7915 0.0983 0.4769 0.0983
p = 0.5
Oracle — — — — 0.9803 0.1717 0.5442 0.1024 0.4244 0.1024
mlle — — — — 1.3809 0.2466 1.2807 0.1315 0.4193 0.1315
AdpLASSO 0.4678(0.2659) 0.6867(0.3660) 0.8450(0.2316) 0.9033(0.1722) 1.6332 0.3705 1.2317 0.1791 0.5217 0.1791
LASSO 0.4300(0.3083) 0.6383(0.4007) 0.8383(0.2548) 0.8744(0.2062) 1.9366 0.4615 1.5444 0.2358 0.5642 0.2358
MCP 0.5144(0.2080) 0.7417(0.3433) 0.8400(0.2336) 0.8956(0.1596) 1.4062 0.2975 1.0925 0.1239 0.5012 0.1239
SCAD 0.5156(0.2061) 0.7417(0.3383) 0.8383(0.2343) 0.8900(0.1728) 1.4023 0.2993 1.1004 0.1246 0.5083 0.1246
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Web Table 6: Results of Example 2: Average (sd) sensitivity, specificity, and estimation
errors:
(C = 2, d = 5, n = 400).

Criteria Sensitivity Specificity L2(β̂j) L2(σ̂
2
j ) L2(π̂j)

Component 1 2 1 2 1 2 1 2 1 2

p = 0.05
Oracle — — — — 0.9785 0.0572 0.5666 0.0657 0.0609 0.0657
mlle — — — — 1.3969 0.0650 1.1504 0.0748 0.0758 0.0748
AdpLASSO 0.1967(0.2458) 0.7067(0.3527) 0.8867(0.2213) 0.9789(0.1153) 1.6640 0.1458 1.0619 0.1949 0.1355 0.1949
LASSO 0.2322(0.3069) 0.6600(0.3740) 0.8700(0.2582) 0.8533(0.2360) 1.6322 0.1719 1.1591 0.2366 0.1429 0.2366
MCP 0.6044(0.2404) 0.8433(0.2497) 0.8783(0.2149) 0.9544(0.1240) 1.3575 0.0695 1.0012 0.0881 0.0883 0.0881
SCAD 0.6244(0.2339) 0.8583(0.2365) 0.8767(0.2159) 0.9433(0.1394) 1.3490 0.0681 1.0176 0.0861 0.0875 0.0861
p = 0.1
Oracle — — — — 0.7820 0.0814 0.4509 0.0739 0.1127 0.0739
mlle — — — — 1.2497 0.0990 0.9775 0.0916 0.1111 0.0916
AdpLASSO 0.5433(0.2936) 0.8217(0.2725) 0.9033(0.2101) 0.9367(0.1638) 1.3122 0.1192 0.8449 0.1247 0.1805 0.1247
LASSO 0.5411(0.3670) 0.7817(0.3320) 0.8933(0.2283) 0.8200(0.2442) 1.3590 0.1473 0.9677 0.1489 0.1835 0.1489
MCP 0.6489(0.2447) 0.8583(0.2330) 0.9083(0.1938) 0.9400(0.1394) 1.1660 0.0959 0.8370 0.0806 0.1529 0.0806
SCAD 0.6656(0.2384) 0.8667(0.2252) 0.9100(0.1924) 0.9278(0.1529) 1.1679 0.0956 0.8470 0.0806 0.1506 0.0806
p = 0.2
Oracle — — — — 0.5718 0.0882 0.3571 0.0822 0.1707 0.0822
mlle — — — — 0.9225 0.1090 0.6945 0.0853 0.1805 0.0853
AdpLASSO 0.6789(0.2703) 0.9233(0.1939) 0.9650(0.1278) 0.9644(0.1197) 1.0680 0.1257 0.6026 0.1044 0.2490 0.1044
LASSO 0.4867(0.4440) 0.7850(0.2856) 0.9367(0.1810) 0.9000(0.2103) 1.3737 0.2918 0.9929 0.2213 0.2328 0.2213
MCP 0.6644(0.1442) 0.9500(0.1503) 0.9633(0.1306) 0.9733(0.0946) 0.9195 0.0933 0.5101 0.0733 0.2413 0.0733
SCAD 0.6667(0.1363) 0.9517(0.1480) 0.9633(0.1306) 0.9733(0.0946) 0.9138 0.0927 0.5069 0.0731 0.2403 0.0731
p = 0.3
Oracle — — — — 0.5387 0.0911 0.3518 0.0846 0.2383 0.0846
mlle — — — — 0.7801 0.1099 0.5970 0.0855 0.2577 0.0855
AdpLASSO 0.8533(0.2513) 0.9833(0.1069) 0.9917(0.0641) 0.9922(0.0635) 0.8353 0.1166 0.4036 0.0924 0.3013 0.0924
LASSO 0.7033(0.4308) 0.9683(0.1411) 0.9750(0.1092) 0.9711(0.1184) 1.1928 0.2378 0.7511 0.1774 0.3229 0.1774
MCP 0.7322(0.1583) 0.9900(0.0701) 0.9900(0.0701) 0.9900(0.0631) 0.8046 0.0941 0.3946 0.0786 0.3138 0.0786
SCAD 0.7344(0.1573) 0.9900(0.0701) 0.9883(0.0756) 0.9900(0.0631) 0.8013 0.0949 0.3934 0.0787 0.3132 0.0787
p = 0.4
Oracle — — — — 0.5475 0.0976 0.3481 0.0840 0.2983 0.0840
mlle — — — — 1.0006 0.1478 0.8966 0.0999 0.2903 0.0999
AdpLASSO 0.7189(0.3605) 0.9233(0.2143) 0.9433(0.1588) 0.9478(0.1654) 1.1094 0.2103 0.7081 0.1482 0.3535 0.1482
LASSO 0.6500(0.4008) 0.9167(0.2482) 0.9033(0.1978) 0.8700(0.2209) 1.4012 0.3134 1.0900 0.2231 0.3691 0.2231
MCP 0.7533(0.2262) 0.9433(0.1588) 0.9367(0.1666) 0.9478(0.1513) 0.9008 0.1353 0.5396 0.0890 0.3476 0.0890
SCAD 0.74890.2229 0.9417(0.1608) 0.9367(0.1666) 0.9478(0.1513) 0.9080 0.1382 0.5417 0.0889 0.3508 0.0889
p = 0.5
Oracle — — — — 0.7021 0.1657 0.4427 0.1008 0.3494 0.1008
mlle — — — — 1.0445 0.1685 0.9230 0.1127 0.3283 0.1127
AdpLASSO 0.5489(0.4164) 0.9017(0.2794) 0.9433(0.1588) 0.9756(0.1063) 1.3950 0.3236 0.9470 0.2220 0.4022 0.2220
LASSO 0.5311(0.4216) 0.8850(0.3156) 0.9100(0.1967) 0.8833(0.1968) 1.6108 0.3979 1.2915 0.2812 0.4112 0.2812
MCP 0.7178(0.1994) 0.9417(0.1608) 0.9433(0.1588) 0.9322(0.1620) 0.9891 0.1540 0.5544 0.0961 0.4057 0.0961
SCAD 0.7078(0.1951) 0.9400(0.1678) 0.9433(0.1588) 0.9433(0.1497) 0.9994 0.1551 0.5451 0.0947 0.4111 0.0947
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Web Table 7: Average (sd) sensitivity, specificity, and estimation errors over 100 replicates.

C = 2 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂2
j ) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

Correct model: t fm-vcr

10 200 Oracle — — — — .303 .214 .171 .249 .098 .098

mlle — — — — .474 .420 .333 .326 .153 .153

AdpLASSO .482(.235) .655(.388) .976(.059) .968(.062) .402 .394 .234 .295 .265 .265

LASSO .500(.265) .638(.399) .955(.072) .939(.075) .407 .412 .273 .319 .328 .328

MCP .443(.199) .700(.325) .993(.038) .985(.047) .405 .350 .185 .241 .174 .174

SCAD .446(.196) .702(.320) .992(.040) .985(.048) .404 .346 .186 .235 .167 .167

400 Oracle — — — — .230 .153 .181 .320 .092 .092

mlle — — — — .372 .329 .225 .274 .132 .132

AdpLASSO .587(.190) .940(.195) .993(.031) .987(.038) .327 .228 .180 .190 .172 .172

LASSO .556(.250) .857(.319) .968(.061) .953(.063) .371 .286 .233 .212 .270 .270

MCP .556(.175) .945(.167) .997(.020) .995(.024) .326 .221 .160 .192 .154 .154

SCAD .571(.167) .942(.171) .997(.020) .995(.025) .319 .220 .158 .195 .149 .149

d n Misspecified model: Gaussian fm-vcr

10 200 Oracle — — — — 1.083 .342 .786 .181 .330 .181

mlle — — — — 1.748 .426 1.667 .234 .443 .234

AdpLASSO .394(.272) .538(.414) .942(.085) .939(.076) 1.568 .394 1.489 .309 .387 .309

LASSO .391(.335) .515(.476) .920(.090) .925(.086) 1.721 .588 1.721 .425 .558 .425

MCP .441(.236) .588(.368) .943(.100) .942(.101) 1.508 .291 1.476 .218 .281 .218

SCAD .444(.235) .583(.370) .937(.110) .937(.111) 1.509 .280 1.475 .204 .271 .204

400 Oracle — — — — .809 .282 .553 .111 .199 .111

mlle — — — — 1.450 .329 1.210 .209 .325 .209

AdpLASSO .544(.247) .827(.342) .967(.073) .970(.061) 1.216 .275 .986 .226 .272 .226

LASSO .453(.328) .650(.467) .933(.077) .932(.075) 1.525 .470 1.360 .373 .469 .373

MCP .567(.176) .892(.250) .957(.113) .970(.070) 1.249 .201 .897 .177 .219 .177

SCAD .573(.173) .892(.247) .953(.127) .970(.076) 1.234 .202 .895 .174 .212 .174
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Web Table 8: Average (sd) sensitivity, specificity, and estimation errors for models with
orders C = 1, 2, 3, 4.

C = 1 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂2
j ) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

10 200 Oracle — — — — .357 — .634 — — —

mlle — — — — .396 — .616 — — —

AdpLASSO .772(.073) — .831(.167) — .383 — .672 — — —

LASSO .802(.101) — .708(.221) — .390 — .673 — — —

MCP .771(.069) — .859(.151) — .375 — .667 — — —

SCAD .767(.064) — .874(.137) — .371 — .668 — — —

400 Oracle — — — — .339 — .558 — — —

mlle — — — — .365 — .554 — — —

AdpLASSO .984(.102) — .712(.243) — .365 — .587 — — —

LASSO .972(.079) — .738(.255) — .375 — .593 — — —

MCP .943(.105) — .746(.235) — .358 — .583 — — —

SCAD .953(.098) — .636(.287) — .354 — .579 — — —

C =2 the true model

10 200 Oracle — — — — .698 .162 .397 .089 .314 .089

mlle — — — — 1.23 .287 1.02 .138 .335 .138

AdpLASSO .589(.239) .893(.259) .970(.067) .966(.061) 1.09 .288 .848 .161 .501 .161

LASSO .470(.321) .775(.401) .928(.100) .917(.087) 1.32 .383 1.15 .294 .505 .294

MCP .581(.194) .895(.245) .984(.045) .981(.048) 1.04 .238 .763 .106 .503 .106

SCAD .594(.188) .892(.243) .983(.049) .980(.050) 1.03 .237 .761 .107 .501 .107

400 Oracle — — — — .439 .089 .227 .082 .273 .082

mlle — — — — .878 .149 .607 .087 .337 .087

AdpLASSO .690(.127) .993(.057) .997(.023) .995(.029) .808 .165 .390 .069 .411 .069

LASSO .766(.230) .970(.166) .970(.066) .962(.064) .862 .232 .518 .108 .425 .108

MCP .692(.104) .992(.064) .997(.020) .998(.014) .789 .145 .374 .06 .412 .062

SCAD .688(.098) .992(.064) .996(.023) .998(.016) .792 .146 .377 .062 .412 .062

C =3

200 Oracle — — — — .201 .111 .314 .125 .083 .083

mlle — — — — .371 .297 .173 .115 .216 .092

AdpLASSO .654(.140) .962(.139) .987(.044) .992(.033) .295 .199 .473 .182 .121 .096

LASSO .641(.167) .938(.209) .967(.065) .963(.066) .302 .226 .510 .239 .121 .096

MCP .612(.180) .958(.138) .997(.025) .999(.010) .319 .192 .407 .145 .157 .085

SCAD .623(.177) .947(.160) 1.00(.000) .999(.010) .310 .192 .412 .153 .150 .084

10 400 Oracle — — — — .125 .067 .260 .081 .081 .082

mlle — — — — .319 .176 .206 .096 .247 .072

AdpLASSO .722(.124) 1.00(.000) .999(.014) 1.00(.007) .260 .136 .401 .169 .118 .062

LASSO .717(.119) .997(.058) .995(.027) .994(.027) .259 .141 .446 .213 .097 .068

MCP .706(.117) 1.00(.000) 1.00(.000) 1.00(.000) .261 .138 .380 .146 .127 .059

SCAD .708(.116) 1.00(.000) 1.00(.000) 1.00(.000) .258 .136 .374 .145 .135 .059

C =4

10 200 Oracle — — — — .199 .106 .313 .113 .083 .083

mlle — — — — .389 .322 .119 .098 .294 .165

AdpLASSO .616(.148) .963(.149) .994(.028) .993(.03) .310 .204 .434 .191 .161 .102

LASSO .642(.140) .922(.234) .980(.051) .977(.05) .299 .225 .529 .234 .156 .135

MCP .536(.188) .957(.141) 1.00(.008) .999(.01) .372 .205 .342 .133 .237 .090

SCAD .561(.180) .948(.152) .999(.012) .999(.01) .349 .203 .356 .123 .219 .092

400 Oracle — — — — .125 .067 .260 .081 .081 .082

mlle — — — — .338 .204 .149 .076 .306 .132

AdpLASSO .701(.105) 1.00(.000) .999(.014) .999(.010) .266 .147 .418 .175 .120 .068

LASSO .702(.103) .998(.029) .994(.028) .994(.026) .265 .150 .452 .226 .104 .076

MCP .693(.116) 1.00(.000) 1.00(.000) 1.00(.000) .273 .153 .369 .120 .160 .071

SCAD .696(.118) 1.00(.000) 1.00(.000) 1.00(.000) .268 .154 .356 .115 .176 .075
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Web Table 9: Result of the fmr and fm-vcr models; average (sd) Sensitivity, Specificity,
and estimation errors.

C = 2 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂j) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

True Gaussian fmr model

10 200 Oracle — — — — .050 .055 .063 .074 .147 .147

mlle — — — — .115 .140 .138 .158 .232 .232

AdpLASSO .529(.364) .485(.389) .848(.348) .837(.347) .125 .133 .138 .165 .352 .352

LASSO .732(.361) .568(.436) .843(.279) .815(.280) .101 .126 .112 .185 .321 .321

MCP .766(.277) .702(.314) .864(.249) .806(.244) .102 .125 .115 .153 .267 .267

SCAD .762(.283) .725(.287) .839(.259) .775(.262) .106 .125 .120 .145 .259 .259

400 Oracle — — — — .027 .031 .031 .039 .078 .078

mlle — — — — .075 .107 .081 .115 .185 .185

AdpLASSO .708(.312) .592(.412) .878(.318) .870(.320) .099 .127 .088 .148 .306 .306

LASSO .941(.185) .790(.374) .881(.191) .850(.194) .060 .087 .053 .118 .209 .209

MCP .943(.152) .888(.242) .944(.130) .885(.189) .050 .075 .062 .094 .169 .169

SCAD .951(.144) .897(.230) .922(.163) .865(.222) .050 .076 .064 .097 .166 .166

Misspecified Gaussian fm-vcr model

10 200 Oracle — — — — .050 .055 .062 .072 .139 .139

mlle — — — — .099 .132 .060 .098 .133 .133

AdpLASSO .562(.323) .563(.356) .990(.042) .970(.060) .100 .100 .102 .112 .255 .255

LASSO .643(.323) .600(.359) .991(.034) .965(.065) .093 .096 .086 .120 .243 .243

MCP .588(.320) .545(.310) .991(.040) .976(.054) .097 .105 .077 .092 .215 .215

SCAD .583(.311) .548(.304) .991(.040) .975(.058) .097 .100 .066 .080 .202 .202

400 Oracle — — — — .028 .031 .030 .040 .074 .074

mlle — — — — .073 .096 .047 .070 .125 .125

AdpLASSO .841(.252) .800(.309) .993(.032) .972(.058) .066 .073 .046 .064 .172 .172

LASSO .899(.211) .810(.325) .987(.043) .969(.061) .059 .072 .048 .073 .177 .177

MCP .876(.227) .810(.299) .993(.032) .979(.052) .054 .062 .039 .055 .144 .144

SCAD .872(.234) .812(.298) .994(.029) .981(.051) .051 .059 .037 .050 .126 .126
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Web Table 10: Results of simultaneous selection of (h, λ) with C = 2: average (sd) sensitivity,
specificity, and estimation errors.

C = 2 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂j) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

10 200 Oracle — — — — .699 .162 .400 .089 .314 .088

mlle — — — — 1.229 .287 1.015 .136 .335 .136

AdpLASSO .604(.234) .905(.249) .965(.071) .962(.066) 1.080 .284 .834 .154 .495 .154

LASSO .462(.319) .783(.396) .929(.097) .920(.081) 1.332 .392 1.139 .297 .504 .297

MCP .593(.202) .912(.219) .981(.052) .979(.053) 1.035 .236 .743 .106 .497 .106

SCAD .608(.194) .902(.234) .980(.062) .975(.054) 1.026 .237 .747 .106 .494 .106

400 Oracle — — — — .439 .089 .227 .081 .273 .081

mlle — — — — .878 .149 .606 .086 .337 .086

AdpLASSO .768(.167) .995(.050) .985(.050) .993(.037) .779 .156 .378 .065 .406 .065

LASSO .796(.252) .967(.175) .946(.088) .952(.071) .865 .230 .518 .112 .419 .112

MCP .766(.162) .992(.064) .973(.073) .997(.019) .764 .141 .372 .060 .406 .060

SCAD .753(.156) .992(.064) .963(.089) .995(.025) .764 .141 .373 .061 .408 .061
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Web Table 11: Comparison of the methods in terms of tuning parameter and band-width
selection time for the adaptive Lasso (adplasso) penalty; C = 2;

d n Elapsed time Pl(h) then BIC(λ|h) Simultaneous BIC1(h, λ)

10 200 Time in seconds 3.64 65.45
Ratio 1 18

400 9.57 171.17
1 18
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Web Table 12: Average (sd) sensitivity, specificity, and estimation errors for a high-
dimensional setting.

C = 2 Criteria Sensitivity Specificity L2(β̂j) L2(σ̂j) L2(π̂j)

d n Component 1 2 1 2 1 2 1 2 1 2

500 200 Oracle — — — — 0.62 0.09 0.30 0.08 0.08 0.08

mlle — — — — 1.71 1.69 0.29 0.35 0.25 0.26

LASSO 0.50(0.31) 0.67(0439) 0.99(0.00) 0.99(0.00) 1.69 1.59 0.58 0.44 0.54 0.41

MCP 0.58(0.23) 0.80(0.28) 0.99(0.02) 0.99(0.02) 1.55 1.44 0.32 0.31 0.14 0.15

SCAD 0.55(0.23) 0.76(0.31) 0.99(0.02) 0.99(0.02) 1.15 1.41 0.33 0.32 0.16 0.16

400 Oracle — — — — 0.35 0.07 0.21 0.07 0.25 0.25

mlle — — — — 2.31 1.94 0.36 0.42 0.36 0.35

LASSO 0.54(0.26) 0.72(0.35) 0.99(0.00) 0.99(0.00) 2.87 2.10 0.34 0.34 0.41 0.41

MCP 0.61(0.25) 0.81(0.25) 0.99(0.02) 0.99(0.02) 2.99 2.20 0.29 0.26 0.40 0.40

SCAD 0.59(0.25) 0.80(0.25) 0.99(0.01) 0.99(0.01) 3.09 2.18 0.29 0.26 0.40 0.39

The runs using adpLASSO did not converge; thus, no results are provided.
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Web Table 13: The top 20 covariates with the highest frequencies of being selected based on
Pearson’s correlation out of the 100 replications.

True Covariates Other Covariates

xj 1 2 3 4 74 153 155 5 269 218 268 66 79 329 330 154 118 156 193 103

% 100 100 100 100 99 99 98 96 94 92 92 86 86 80 78 73 70 70 70 62
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Web Table 14: The top 20 covariates with the highest frequencies of being selected based on
log-likelihood out of the 100 replications.

True Covariates Other Covariates

xj 1 2 3 4 101 469 352 68 415 118 67 377 74 270 406 414 247 429 5 169

% 100 100 100 100 79 79 78 70 70 65 62 60 56 54 52 52 49 49 48 48
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