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1 Introduction

In a lot of situations that arise in the analysis of PET and fMRI data, we often seek rela-
tionships between a set of dependent variables Y and a set of predictor variables X. For
example, we want to study how brain functional activity (Y ) changes with the experimental
condition of the stimulus (X), how brain structure (Y ) changes with the status of the subject
(X), e.g. normal or diseased, female or male, etc. The predictor variables X contain both
variables whose effects are of interest, and variables whose effects are not of interest but have
predicting power on Y , e.g., confounding variables.

The most widely used method for assessing such a relationship is the general linear model.
For a detailed account of this in brain mapping, one should refer to Friston et. al (1995) and
Worsley & Friston (1995). The model can be expressed as follows:

Y (t) = Xβ(t) + σ(t)ε(t), t in C

where t represents a voxel in the brain region C. Y (t) is a vector of brain activity measures,
X is a design matrix whose columns are the predictor variables. β(t), the vector of regression
coefficients, represents on average, how Y (t) changes with a unit change in X. σ(t) is the
(scalar) standard deviation of Y (t) and the vector ε(t), the noise process, represents random
changes in Y (t) that are not captured by the linear relation Xβ(t). We assume that the
components of ε(t) are independent and identically distributed isotropic Gaussian random
fields (GRF) with zero mean and unit variance.

Note X is usually external and hence voxel independent. In the following discussion, we
shall refer to the brain region C where linear relations between Y and X are assessed as the
search region. To assess an effect of interest such as a linear combination of the components
of β(t), we perform the following hypothesis test:

Null model: c′β(t) = 0 for all t in C (1)

Alternative: c′β(t) 6= 0 for some t in C, (2)

where c is a vector of contrasts that define the linear combination of the parameters that
we wish to test. For future convenience, we shall refer to the areas for which such an effect
exists as activated regions, and the value of c′β at activations as activations or signals.

2 Test Statistics

To assess the effect c′β(t) at each voxel, a statistic T (t) is calculated at each voxel t. This
gives rise to a statistical map or SPM (Statistical Parametric Map). To test for distributed
activations, the sum of squares of the statistic at all voxels has been proposed (Worsley et
al., 1995). For localized and intense signals, the maximum of the statistical image Tmax

has been proposed as a test statistic (Friston et al., 1991; Worsley et al., 1992). This is
especially powerful for detecting signals whose shape matches the correlation function of the
noise process provided that the noise is stationary Gaussian (Siegmund & Worsley, 1995).
In the light of this, some spatial smoothing of Y is usually performed before applying this
test statistic. For signals with different extent, different amounts of smoothing should be
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applied to optimally detect them. This leads to the scale space approach first suggested by
Poline et al. (1994a, 1994b) and later developed by Siegmund & Worsley (1995), Worsley et
al. (1996) and Worsley et al. (1998). Shafie (1998) extends this to rotated as well as scaled
filters. The spatial extent Smax of the largest set of contiguous voxels above a threshold has
also been proposed as the test statistic (Friston et al., 1994), which favors the detection of
diffuse and broad signals. A combination based on both spatial extent and intensity of the
signal has also been proposed by Poline et al. (1997).

3 Distribution of the test statistics based on random

field theory

The distribution of these test statistics under the null model can be obtained based on random
field theory. The classical book on random fields most relevant to our discussion is the book
by Adler (1981) on the geometry of random fields. Once the distribution of the test statistic
is found, the hypothesis testing in the previous sections can be completed. For example, if
Tmax is used as the test statistic, a threshold based on the upper quantiles of its distribution
under the null model would be chosen and areas where the statistical image T (t) exceeds
that threshold are declared to be statistically significant activations. Under the assumption
that the errors form a smooth isotropic Gaussian random field, the statistical image T (t) is
a random field of the appropriate kind depending on how the statistic is calculated. Table 1
gives some common random fields and examples of their applications.

Table 1: Random fields and their applications

Random field σ(t) # contrasts # Y’s
Gaussian known 1 1
χ2 known ≥1 1
t unknown 1 1
F unknown ≥1 1
Hotelling’s T 2 unknown 1 ≥1
Wilk’s Λ unknown ≥1 ≥1

In the following, we give some basic principles of how distributions of test statistics, Tmax

and Smax, are derived using random field theory.

3.1 The maximum of the random field, Tmax

For a high threshold z, the probability that the maximum statistic Tmax exceeds z can
be accurately approximated by the average Euler characteristic of the excursion set of the
random field T above the threshold z (Hasofer, 1978; Adler, 1998). Here the excursion set
is defined as the set of voxels where the random field T exceeds z (see Figure 1).

Moreover, exact calculation of the average Euler characteristic is usually possible for
smooth stationary random fields. This is due to a closed form expression for the Euler
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Figure 1: The excursion set of a Gaussian random field above z = 3 for testing for an
difference in PET CBF between a hot and warm stimulus.
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characteristic derived by Adler (1981) for any smooth random field. Worsley (1995) added
a correction for when the excursion set touches the boundary of the search region and
the random field is isotropic (non-isotropic but stationary random fields can be handled
by a simple linear transformation of t). This is important especially for brain mapping
applications, since activations often appear on the cerebral cortex which is also part of the
brain boundary. An excellent review can be found in Adler (1998).

Let D be the dimension of the domain of field T . Define µi(C) to be proportional to the
i-dimensional Minkowski functional of C, as follows. Let ai = 2πi/2/Γ(i/2) be the surface
area of a unit (i − 1)-sphere in <i. Let M be the inside curvature matrix of ∂C at a point
t, and let detrj(M) be the sum of the determinants of all j × j principal minors of M . For
i = 0, . . . , d− 1

µi(C) =
1

ad−i

∫

∂C
detrd−1−i(M)dt,

and define µd(C) to be the Lebesgue measure of C. For some simple shapes:

C µ0(C) µ1(C) µ2(C) µ3(C)
Sphere, radius r 1 4r 2πr2 (4/3)πr3

Hemisphere, radius r 1 (2 + π/2)r (3/2)πr2 (2/3)πr3

Disk, radius r 1 πr πr2 0
Sphere surface, radius r 2 0 4πr2 0
Hemisphere surface, radius r 1 πr 2πr2 0
Box, a× b× c 1 a + b + c ab + bc + ac abc
Rectangle, a× b 1 a + b ab 0
Line, length a 1 a 0 0
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The i-dimensional EC intensity of T (t) is defined as:

ρi(z) = E{(T ≥ z) det(−T̈i) | Ṫi = 0}P{Ṫi = 0},

where dot notation with subscript i means differentiation with respect to the first i compo-
nents of t. Then

P{Tmax ≥ z} ≈ E{χ(Az(T, C))} =
d∑

i=0

µi(C)ρi(z),

where χ(Az(T, C)) is the excursion set of T above threshold z inside C.
Using the EC intensities for the field T , we can also find the p-values for the global

minimum Tmin, i.e. P(Tmin ≤ z). This is due to a simple relationship between E(χ(Az(T, C))
and E(χ(A−z(−T, C))) when the field T is homogeneous:

E(χ(Az(T,C)) = (−1)d−1E(χ(A−z(−T, C))).

Therefore,
P(Tmin ≤ z) ≈ E{χ(A−z(−T, C))} = (−1)d−1E{χ(Az(T, C))}.

3.2 The maximum spatial extent, Smax

Distributions of Smax are derived asymptotically as the threshold z goes to infinity, based
on the Poisson clumping heuristic (Aldous, 1989). The essence of this approach is that
connected regions in the excursion set can be viewed as clumps that are centered at points
of a Poisson process. Hence the distribution of the size of the largest connected region in
the excursion set can be derived from the distribution of the size of an individual connected
component. By approximating the underlying random process locally by a simpler, known
process, explicit calculations are possible for the distribution of the size of an individual
connected component. We now give some details of this approach.

Let S be the size of one connected component in the excursion set Az(T, C), and L be
the total number of such connected components. By the Poisson clumping heuristic (Aldous,
1989), we can express the distribution of Smax in terms of the distribution of S and E(L) by:

P(Smax ≤ s | L ≥ 1) ≈ exp{−E(L)P(S ≥ s)} − exp{−E(L)}
1− exp{−E(L)} .

At high thresholds, E(L) can be approximated accurately by the average Euler Characteristic
(Hasofer, 1978 and Adler, 1981):

E(L) ≈ E(χ(Az(T, C))) =
d∑

i=0

µi(C)ρi(z). (3)

To find the distribution of S, we study the conditional field

T̃z(t) = T (t) ‖ Ez,

where Ez denotes the event that T (t) has a local maximum of height z at t = 0. By using
horizontal window (or ergodic) conditioning and Slepian model process (Kac and Slepian,
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1959), we can approximate this field locally by a simpler field and hence derive the dis-
tribution of S as the threshold z goes to infinity. For any practical use of the asymptotic
distribution of S, a mean correction is always recommended to improve the approximation,
based on the following identity (Aldous, 1989 and Friston et al., 1994):

E(L)E(S) = E(|Az(T, C)|) = |C|FT (−z), (4)

where FT (·) is the cumulative density function for the marginal distribution of T , and | · | is
Lebesgue measure.

4 Results

The following table summarizes references for the distributions of the two test statistics for
random fields in Table 1, except for the Wilk’s Λ field, for which results are still unknown.
The distribution Smax for the Hotelling’s T 2 field is also not yet derived. References to other
types of random field for which results are known are also added.

Table 2: Distribution of Tmax and Smax for various random fields.

Random field Tmax Smax

Gaussian Adler (1981) Nosko (1969)
χ2, t, F Worsley (1994) Aronowich & Adler (1986, 1988);

Cao (1999)
Hotelling’s T 2 Cao & Worsley (1999a) ?
Wilk’s Λ ? ?
Correlation Cao & Worsley (1999b) Cao & Worsley (1999b)
Gaussian, scale space Siegmund & Worsley (1995) ?
χ2 scale space Worsley (1999) ?
Gaussian, rotation space Shafie et al. (1998) ?

In the following subsections, we shall list all of the known results for different random
fields from the above references for which there are explicit algebraic expressions. We give
explicit formulae of the EC intensities for d ≤ 3 dimensions, the most common case in
practical applications. General formulae for any number of dimensions can be found in the
above references. The EC intensities depend on a single parameter λ, the roughness of the
random field, defined as the variance of the derivative of any component of ε(t).

We also provide the asymptotic distribution of S for any dimension d. To be complete,
besides the distribution of S, we shall also provide the distribution of the size of one connected
region in the excursion set A−z(−T, C). To distinguish these two cases, we shall add a
superscript to S and denote them by S+ and S− respectively. When S+ and S− have the
same distribution, we omit the superscript and denote both of them by S. For simplicity
and uniformity, we express the distribution of S in the form of α S0, where α is a constant
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and S0 is a random variable. We give the expectation µ0 of the random variable S0. By the
mean correction formula (4), we have

α = |C|FT (−z)/(µ0E(L)),

where E(L) can be derived from the EC intensities using (3).
We shall use the following notation to represent distributions. Let χ2

ν denote the χ2 distri-
bution with ν degrees of freedom, Exp(µ) denote the exponential distribution with expecta-
tion µ, Beta(α, β) denote the beta distribution with parameters α and β, and Wishartd(Σ, ν)
denote Wishart distribution of a d×d matrix with expectation νΣ and ν degrees of freedom.
Finally, let I denote the identity matrix.

4.1 Gaussian field

ρ0(z) =
∫ ∞

z

1

(2π)
1
2

e−u2/2du

ρ1(z) =
λ

1
2

2π
e−z2/2

ρ2(z) =
λ

(2π)
3
2

e−z2/2z

ρ3(z) =
λ

3
2

(2π)2
e−z2/2(z2 − 1)

S ∼ α Exp(1)d/2, µ0 = Γ(d/2 + 1)

4.2 χ2 field with ν degrees of freedom

ρ0(z) =
∫ ∞

z

u
1
2
(ν−2)e−

1
2
u

2
ν
2 Γ

(
ν
2

) du

ρ1(z) =
λ

1
2

(2π)
1
2

z
1
2
(ν−1)e−

1
2
z

2
1
2
(ν−2)Γ

(
ν
2

)

ρ2(z) =
λ

(2π)

z
1
2
(ν−2)e−

1
2
z

2
1
2
(ν−2)Γ

(
ν
2

) [z − (ν − 1)]

ρ3(z) =
λ

3
2

(2π)
3
2

z
1
2
(ν−3)e−

1
2
z

2
1
2
(ν−2)Γ

(
ν
2

) [z2 − (2ν − 1)z + (ν − 1)(ν − 2)]

S+ ∼ α Exp(1)d/2, µ0 = Γ(d/2 + 1)

S− ∼ α Bd/2 det(Q)−
1
2 , µ0 =

2
d
2 Γ(d

2
+ 1)(ν − d)!

ν!

where B ∼ Beta(1, ν−d
2

) and Q ∼ Wishartd(I, ν + 1) independently.
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4.3 t field with ν degrees of freedom, ν ≥ d

ρ0(z) =
∫ ∞

z

Γ
(

ν+1
2

)

(νπ)
1
2 Γ

(
ν
2

)
(

1 +
u2

ν

)− 1
2
(ν+1)

du

ρ1(z) =
λ

1
2

2π

(
1 +

z2

ν

)− 1
2
(ν−1)

ρ2(z) =
λ

(2π)
3
2

Γ
(

ν+1
2

)

(
ν
2

) 1
2 Γ

(
ν
2

)
(

1 +
z2

ν

)− 1
2
(ν−1)

z

ρ3(z) =
λ

3
2

(2π)2

(
1 +

z2

ν

)− 1
2
(ν−1) (

ν − 1

ν
z2 − 1

)

S ∼ α B
d
2 U

d
2 det(Q)−

1
2 , µ0 =

Γ(d
2

+ 1)Γ(ν−d
2

+ 1)

Γ(ν
2

+ 1)

where B ∼ Beta(1, ν−d
2

), U ∼ χ2
ν+1−d and Q ∼ Wishartd(I, ν + 1), all independently.

4.4 F field with k and ν degrees of freedom, k + ν > d

ρ0(z) =
∫ ∞

z

Γ
(

ν+k
2

)

Γ
(

ν
2

)
Γ

(
k
2

) k

ν

(
ku

ν

) 1
2
(k−2) (

1 +
ku

ν

)− 1
2
(ν+k)

du

ρ1(z) =
λ

1
2

(2π)
1
2

Γ
(

ν+k−1
2

)
2

1
2

Γ
(

ν
2

)
Γ

(
k
2

)
(

kz

ν

) 1
2
(k−1) (

1 +
kz

ν

)− 1
2
(ν+k−2)

ρ2(z) =
λ

2π

Γ
(

ν+k−2
2

)

Γ
(

ν
2

)
Γ

(
k
2

)
(

kz

ν

) 1
2
(k−2) (

1 +
kz

ν

)− 1
2
(ν+k−2)

×
[
(ν − 1)

kz

ν
− (k − 1)

]

ρ3(z) =
λ

3
2

(2π)
3
2

Γ
(

ν+k−3
2

)
2−

1
2

Γ
(

ν
2

)
Γ

(
k
2

)
(

kz

ν

) 1
2
(k−3) (

1 +
kz

ν

)− 1
2
(ν+k−2)

×

(ν − 1)(ν − 2)

(
kz

ν

)2

− (2νk − ν − k − 1)

(
kz

ν

)
+ (k − 1)(k − 2)




S+ ∼ α B
d
2 U

d
2 det(Q)−

1
2 , µ0 =

2d(ν − d)! Γ(d
2

+ 1)Γ(ν+k
2

)

ν! Γ(ν+k−d
2

)
,

S− ∼ S+ for F field with ν and k degrees of freedom,

where B ∼ Beta(1, ν−d
2

), U ∼ χ2
ν+k−d and Q ∼ Wishartd(I, ν + 1), all independently.
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4.5 Hotelling’s T 2 field with k components and ν degrees of free-
dom, ν > k + d

ρ0(z) =
∫ ∞

z

Γ(ν+1
2

)

Γ(k
2
)Γ(ν−k+1

2
)

(
1 +

u

ν

)− ν+1
2 u

k−2
2

ν
k
2

du

ρ1(z) =
λ

1
2 π−

1
2 Γ(ν+1

2
)

Γ(k
2
)Γ(ν−k+2

2
)

(
1 +

z

ν

)− ν−1
2

(
z

ν

) k−1
2

ρ2(z) =
λπ−1Γ(ν+1

2
)

Γ(k
2
)Γ(ν−k+1

2
)

(
1 +

z

ν

)− ν−1
2

(
z

ν

) k−2
2

((
z

ν

)
− k − 1

ν − k + 1

)

ρ3(z) =
λ

3
2 π−

3
2 Γ(ν+1

2
)

Γ(k
2
)Γ(ν−k

2
)

(
1 +

z

ν

)− ν−1
2

(
z

ν

) k−3
2

((
z

ν

)2

− 2k − 1

ν − k

(
z

ν

)
+

(k − 1)(k − 2)

(ν − k + 2)(ν − k)

)

4.6 Homologous correlation field with ν degrees of freedom, ν > d

The homologous correlation field is defined as

T (t) =
X(t)′Y (t)√

X(t)′X(t) Y (t)′Y (t)
,

where the ν components of X(t) are i.i.d. isotropic Gaussian random fields with roughness
λx, and the ν components of Y (t) are i.i.d. isotropic Gaussian random fields with roughness
λy. For λx = λy, ν > d, d ≤ 3 the EC densities are shown below. Results for λx 6= λy involve
one non-explicit integral, so for simplicity we have omitted them, though they are given in
Cao & Worsley (1999b).

ρ0(z) =
∫ ∞

z

Γ(ν
2
)

π
1
2 Γ(ν−1

2
)
(1− u2)

ν−3
2 du

ρ1(z) =
λ

1
2 Γ(ν − 1

2
)

2ν−1π
1
2 Γ(ν

2
)2

(1− z2)
ν−2
2

ρ2(z) =
λΓ(ν

2
)

π
3
2 Γ(ν−1

2
)
(1− z2)

ν−3
2 z

ρ3(z) =
λ

3
2 Γ(ν − 3

2
)

2ν+1π
3
2 Γ(ν

2
)2

(1− z2)
ν−4
2 [(4ν2 − 12ν + 11)z2 − (4ν − 5)]

S ∼ α [q(1− q)]
d
2 U

d
2 B

d
2 det(Q)−

1
2 , µ0 =

(ν − d− 1)!Γ(d
2

+ 1)Γ(ν
2
)Γ(ν−d+1

2
)

Γ(ν − d
2
)Γ(ν+1

2
)Γ(ν−d

2
)

where q ∼ Beta(ν−d
2

, ν−d
2

), U ∼ χ2
2ν−d, B ∼ Beta(1, ν−d−1

2
), and Q ∼ Wishartd(I, ν), all

independently.
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4.7 Cross correlation field with ν degrees of freedom, ν > d

The cross correlation field is defined as

T (s, t) =
X(s)′Y (t)√

X(s)′X(s) Y (t)′Y (t)
,

where the ν components of X(s), s ∈ Cx are i.i.d. isotropic Gaussian random fields with
roughness λx, and the ν components of Y (t), t ∈ Cy are i.i.d. isotropic Gaussian random
fields with roughness λy. In this case,

E{χ((Cx ⊕ Cy) ∩ Az)} =
dx∑

i=0

dy∑

j=0

µi(Cx)µj(Cy)ρij(z).

Let d = dx + dy be the dimension of the random field. For ν > d, dx ≤ dy ≤ 3,

ρ0,0(z) =
∫ ∞

z

Γ(ν
2
)

π
1
2 Γ(ν−1

2
)
(1− u2)

ν−3
2 du

ρ0,1(z) = λ
1
2
y (2π)−1(1− z2)

ν−2
2

ρ0,2(z) = λy

Γ(ν
2
)

2π
3
2 Γ(ν−1

2
)
z(1− z2)

ν−3
2

ρ0,3(z) = λ
3
2
y (2π)−2(1− z2)

ν−4
2

[
(ν − 1)z2 − 1

]

ρ1,1(z) = λ
1
2
x λ

1
2
y

Γ(ν−1
2

)

2π
3
2 Γ(ν−2

2
)
z(1− z2)

ν−3
2

ρ1,2(z) = λ
1
2
x λy(2π)−2(1− z2)

ν−4
2

[
(ν − 2)z2 − 1

]

ρ1,3(z) = λ
1
2
x λ

3
2
y

Γ(ν−1
2

)

22π
5
2 Γ(ν−2

2
)
z(1− z2)

ν−5
2

[
(ν − 1)z2 − 3

]

ρ2,2(z) = λxλy

Γ(ν−2
2

)

23π
5
2 Γ(ν−1

2
)
z(1− z2)

ν−5
2

[
(ν − 2)2z2 − (3ν − 8)

]

ρ2,3(z) = λxλ
1
2
y (2π)−3(1− z2)

ν−6
2

[
(ν − 1)(ν − 2)z4 − 3(2ν − 5)z2 + 3

]

ρ3,3(z) = λ
3
2
x λ

3
2
y

Γ(ν−3
2

)

24π
7
2 Γ(ν−2

2
)
z(1− z2)

ν−7
2

×
[
(ν − 1)2(ν − 3)z4 − 2(ν − 3)(5ν − 11)z2 + 3(5ν − 17)

]

S ∼ α U
dx
2 V

dy
2 B

d
2 det(Q)−

1
2 , µ0 =

2d(ν − 1− d)! Γ(d
2

+ 1)Γ(ν
2
)2

(ν − 1)! Γ(ν−dx

2
)Γ(ν−dy

2
)

,

where U ∼ χ2
ν−dx

, V ∼ χ2
ν−dy

, B ∼ Beta(1, ν−d−1
2

) and Q ∼ Wishartd(I, ν) independently.
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4.8 Gaussian scale space field

The Gaussian scale space field is defined as

T (t, w) =
∫

w−D/2f [(t− s)/w]dZ(s)

where Z(s) is a Brownian sheet and f is an isotropic function normalised so that
∫

f 2 = 1.
Let

κ =
∫

[t′ḟ + (D/2)f ]2dt.

Then for searching in t ∈ C and w in an interval such that λ ∈ [λ1, λ2], the EC intensities
are:

ρ0(z) =
∫ ∞

z

1

(2π)
1
2

e−u2/2du +
e−z2/2

(2π)
1
2

log


λ

1
2
2

λ
1
2
1




√
κ

2π

ρ1(z) =
e−z2/2

2π





λ
1
2
1 + λ

1
2
2

2
+

(
λ

1
2
2 − λ

1
2
1

) √
κ

2π
z





ρ2(z) =
e−z2/2

(2π)
3
2

{
λ1 + λ2

2
z +

λ2 − λ1

2

√
κ

2π

[
z2 − 1 +

1

κ

]}

ρ3(z) =
e−z2/2

(2π)2





λ
3
2
1 + λ

3
2
2

2

[
z2 − 1

]
+

λ
3
2
2 − λ

3
2
1

3

√
κ

2π

[
z3 − 3z +

3z

κ

]



4.9 χ2 scale space field

The χ2 scale space field with ν degrees of freedom is defined as the sum of squares of ν i.i.d.
Gaussian scale space fields, and its EC intensities are:

ρ0(z) =
∫ ∞

z

u
ν
2
−1e−

u
2

2
ν
2 Γ

(
ν
2

) du +
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2 Γ
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2
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2
2

λ
1
2
1
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2 2
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1
2
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+
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1
2
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1
2
1

) √
κ

2πz
[z − (ν − 1)]
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z
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2 Γ
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ν
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)
{
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+
λ2 − λ1
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√
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[
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z

κ

]}

ρ3(z) =
z

ν−3
2 e−
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(2π)
3
2 2
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2 Γ

(
ν
2

)




λ
3
2
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3
2
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[
z2 − (2ν − 1)z + (ν − 1)(ν − 2)

]

+
λ

3
2
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3
2
1
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√
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2πz

[
z3 − 3νz2 + 3(ν − 1)2z − (ν − 1)(ν − 2)(ν − 3) + 3

z

κ
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4.10 Gaussian rotation space field

The Gaussian rotation space field is defined as

T (t,W ) =
∫

det(w)−1/2f [W−1(t− s)]dZ(s),

where W is a symmetric matrix with eigenvalues in a fixed range. Shafie et al. (1998) reports
EC intensities for the case D = 2 but no simple closed form expressions are available.

5 Conclusion

This article summarizes how random field theory can be applied to to test for activations in
brain mapping applications. Brain mapping has initiated a lot of recent research in random
fields and it will continue to stimulate further methodological developments. Non-stationary
random fields, random fields on manifolds, etc. are some of the future research directions
pointed out by Adler (1998). We have a lot to look forward to in the future.
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