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Abstract

Images from positron emission tomography (PET) and functional magnetic resonance
imaging (fMRI) are often modelled as stationary Gaussian random fields, and a general
linear model is used to test for the effect of explanatory varaibles on a set of such images
(Friston et al., 1994; Worsley and Friston, 1995). Thompson et al. (1996) have modelled
displacements of brain surfaces as a multivariate Gaussian random field. In order to test
for significant local maxima in such fields using the theory of Adler (1981) and its recent
refinements (Worsley, 1994, 1995a, 1995b; Siegmund and Worsley, 1995), we need to estimate
the roughness of such fields. This is defined as the variance matrix of the derivative of the
random field in each dimension. Some methods have been given by Worlsey et al. (1992)
for the special case of stationary variance of the random field, and where the random field is
sampled on a uniform lattice. In this note we generalise to the case of multivariate Gaussian
data with unknown non-stationary variance matrix, and non-lattice sampling. This latter
is particularly important for studying the displacement of brain surfaces, which will be the
subject of a future publication.
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1 Model

We shall study the general case of m correlated observations at each point and a multivariate
linear model for the mean. The model for the m × 1 vector of correlated observations for
the ith image Yi(x) at position x = (x1, . . . , xd)

′ in d dimensional space is

Yi(x)′ = g′iβ(x) + εi(x)′Σ(x)1/2 (i = 1, . . . , n),

where

• gi is a p× 1 vector of explanatory variables for the ith image,

• β(x) is an p×m matrix of parameters at position x,

• Σ(x) is the m ×m variance matrix at position x, which depends on position but not
on image, and Σ(x)1/2 is the upper triangular Cholesky factor of Σ(x), defined by

Σ(x)1/2′Σ(x)1/2 = Σ(x),

• εi(x) is an m × 1 vector error term whose components are independent stationary
Gaussian random fields with zero mean, and unit standard deviation. We make the
usual assumption that ε1(x), . . . , εn(x) are independent for fixed x.

Note that this model is the only one for which the usual t and F statistics for testing
components of β(x) are stationary random fields whose null distributions do not depend on
the unknown Σ(x).

2 Estimator of the roughness

To simplify the notation, we shall drop the argument x from now on. We are interested in
estimating the roughness of the error term, measured by the d× d matrix

Λ = Var(∂ε/∂x),

where ε is any component of εi. A natural estimator is to consider the sample variance of the
derivative of a predictor of εi, pooled over components. Let Y = (Y1, . . . ,Yn)′ be the n×m
matrix of image measurements, and let G = (g1, . . . ,gn)′ be the n×p matrix of explanatory
variables. Then the usual least squares estimator of β is

β̂ = (G′G)−1G′Y,

and the residual of the ith image is

r′i = Y′i − g′iβ̂ (i = 1, . . . , n).

Then define the normalised residual

u′i = r′i

(
n∑
i=1

rir
′
i

)−1/2

(i = 1, . . . , n),
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where M−1/2 = (M1/2)−1. The proposed estimator is based on the sum of squares and cross-
products matrix of the derivatives of the normalised residuals. Let λjk be the jk element of
Λ, j, k = 1, . . . , d. Then an unbiased estimator of λjk is

λ̂jk =
ν −m− 1

m(ν −m)N

∑
x

n∑
i=1

∂u′i
∂xj

∂ui
∂xk

, (1)

where ν = n− p is the degrees of freedom of the model and N is the number of points x in
the sum.

3 Proof of unbiasedness

We now show that λ̂jk is unbiased for λjk. Let U = (u1, . . . ,un)′. We shall use the dot
notation combined with a subscript j to indicate differentiation with respect to xj. Then

the inner sumation of (1) can be written as tr(U̇′jU̇k). Let Z = (r1, . . . , rn)′Σ−1/2 so that we
can write

U = Z(Z′Z)−1/2.

Then differentiating with respect to xj

U̇j = {In − Z(Z′Z)−1Z′}Żj(Z
′Z)−1/2,

where In is the n× n identity matrix. Then

U̇′jU̇k = (Z′Z)−1/2′Ż′j{In − Z(Z′Z)−1Z′}Żk(Z
′Z)−1/2.

Let R = In −G(G′G)−1G′. Then (Żj, Żk) is multivariate normal with mean zero and

Cov(Żj, Żk) = λjkR⊗ Im,

independent of Z. Hence conditional on Z

E{tr(U̇′jU̇k) | Z} = λjktr[R{In − Z(Z′Z)−1Z′}]tr{(Z′Z)−1}
= λjk(ν −m)tr{(Z′Z)−1}.

The last step is obtained by noting that tr(R) = ν and RZ = Z. Now Z′Z ∼Wishartm(Im, ν)
and it can be shown that the diagonal elements of (Z′Z)−1 have the same distribution as the
inverse of a χ2

ν−m+1 random variable (see for example Anderson, 1984, page 130). Hence

E{tr(U̇′jU̇k)} = λjk(ν −m)
m

ν −m− 1
.

Dividing both sides by (ν −m)m/(ν −m− 1) and averaging over x proves the result.
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4 Correlated images from fMRI

The result can be extended to the case of correlations between images, as in fMRI data.
Suppose the correlation matrix of the images, determined by the hemodynamic response
function, is V. Then following the above arguments,

Cov(Żj, Żk) = λjkRVR⊗ Im.

Hence conditional on Z

E{tr(U̇′jU̇k) | Z} = λjktr[RVR{In − Z(Z′Z)−1Z′}]tr{(Z′Z)−1}
= λjk[tr{RV} − tr{Z′VZ(Z′Z)−1}]tr{(Z′Z)−1}.

Now E(Z′Z) = tr(RV)Im and E(Z′VZ) = tr(RVRV)Im. Substituting these into the above
gives

E{tr(U̇′jU̇k)} ≈ λjk(νeff −m)
m

νeff −m− 1
.

where
νeff = tr(RV)2/tr(RVRV)

is the effective degrees of freedom as defined by Worsley and Friston (1995). Thus replacing
ν by νeff in (1) gives approximate unbiased estimators.

5 Applications

For lattice data, derivatives can be approximated numerically by differences of ui between
adjacent lattice points, divided by the lattice step size (see Worsley et al., 1992, for the
details). For non-lattice data, this provides an estimate of the variance of the derivative
only in the direction of the vector joining the two points. We now show how to obtain an
unbiased estimator of all the variances and covariances of the derivatives.

Restoring the dependence on x, denote the coordinates of a pair of adjacent points by
x and x + δh, where h is the unit vector joining the points and δ is the distance between
them. Then following the above arguments it is straightforward to show from (1) that

∆ =
ν −m− 1

m(ν −m)

n∑
i=1

||ui(x + δh)− ui(x)||2/δ2

is an unbiased estimator of h′Λh, in the limit as δ → 0. In effect, then, each pair of points
provides us with an unbiased estimator of a linear combination of the elements of Λ.

This information can be combined to provide an unbiased estimator of all the elements
of Λ by using least squares. Let ∆ be the M × 1 vector of the values of ∆ for all M pairs
of adjacent points. Let vech be the operator that arranges the distinct elements of a d × d
symmetric matrix into a d(d− 1)/2× 1 vector. Let H be an M × d(d− 1)/2 matrix whose
rows are vech(hh′) for all M corresponding pairs of adjacent points. Then the least squares
estimator of Λ is given by

vech(Λ̂) = (H′H)−1H′∆. (2)
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It is interesting to compare the estimator (2) to the more direct estimator of Worsley et
al. (1992) for lattice data, which can be generalised to this setting as follows. The diagonal
elements λjj are estimated by averaging ∆ over all pairs of points separated by one lattice
step in coordinate j. The off-diagonal elements λjk are estimated by averaging the product
of differences in coordinates j and k averaged on the sides of a square of four adjacent lattice
points; this avoids a possible bias in estimating the off-diagonal elements. It can be shown
that this estimator is identical to (2) provided the list of adjacent points contains all points
separated by one lattice step, and all points separated by a ‘diagonal’ lattice step, that is,
one step in coordinate j and one step in coordinate k. Thus the estimator of Worsley et al.
(1992) can be seen as a special case of the non-lattice estimator (2) presented here.
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