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1 Introduction

In a simple fMRI experiment, the subject is presented with a periodic stimulus x(t) at time
t and the blood flow response Y'(s, ) is measured at a spatial location s (in D dimensions)
and time ¢. Friston et al. (1994a, 1995) have modeled the noise component of Y (s,?) as a
stationary Gaussian process in both space and time. The signal component of Y'(s,t) at a
fixed location is modeled as the convolution of z(¢) with a hemodynamic response function,
itself modeled as a Gaussian function with a lag of 8 seconds and a standard deviation of
/8 seconds. The signal is then detected by cross-correlating Y (s,t) with x(t) filtered by
the hemodynamic response function, divided by an estimate of the standard deviation, to
produce a Gaussian random field Z(s) (Worsley & Friston, 1995). Z(s) is then searched for
local maxima and the P-value is assessed using standard methods based on the size of the
search region and the spatial smoothness of the data (Friston et al., 1994b; Worsley et al.,
1996a).

Some authors (Bullmore et al., 1996; Lange & Zeger, 1996) have suggested that the
hemodynamic response differs from location to location and in particular that the lag is
spatially varying. This suggests convolving the data with a spatially varying hemodynamic
response, but since the nature of the spatial variability is unknown this is not possible.
An alternative, suggested by Bullmore et al. (1996), is to cross-correlate the data with
sin(27t/T') and cos(27t/T'), where T is the period of the stimulus, to produce two Gaussian
images Z1(s) and Zs(s) (after division by an appropriate estimate of the standard deviation),
then taking the sum of squares U(s) = Z;(s)* + Za(s)?. This is the (standardised) power
spectrum of the temporal process at a frequency matching that of the stimulus, and it
should be sensitive to any periodic signal irrespective of the hemodynamic response. The
only requirement is that the hemodynamic response is a linear filter. It is then easy to show
that the resulting image U(s) is a x? random field with 2 degrees of freedom. P-values for
local maxima of such a field can be found from Worsley et al. (1996a).

2 Scale space

Our main interest here is to apply scale space searches to look for signals of any extent. This
method, first introduced by Poline & Mazoyer (1994), smoothes the data with a Gaussian
filter of varying width or scale, thus adding one extra scale dimension to the data. The scale
space data is then searched for local maxima in location as well as scale. The motivation
for this comes from the Matched Filter Theorem (see for example Rosenfeld & Kac, 1982)
which states that a signal in a background of white noise is best detected by smoothing
with a filter whose shape matches that of the signal. If the signal is Gaussian-shaped with
unknown width, then this suggests smoothing with a Gaussian filter of varying width. An
added benefit is that the location and scale at the scale space local maximum estimates the
location of the signal and its scale. This method was successfully applied to PET data by
Worsley et al. (1996b) to detect signals varying from 6mm FWHM to 22mm FWHM that
were missed at an intermediate filter width.

The key to the success of this method is setting a threshold for the scale space local
maxima that controls the false positive rate. Assessing the significance of the local maxima,



taking into account the search over scale as well as location, was solved for Gaussian data
by Siegmund & Worsley (1995) and applied to PET data in Worsley et al. (1996b).

3 ? fields

The purpose of this paper is to extend scale space ideas to x? fields, defined as the sum of
squares of standard Gaussian images each with zero mean and unit variance. The motivation
for this is as follows. Suppose we have v > 1 independent Gaussian images or SPMs, each
of which contains signal at the same location and scale, but at different amplitudes. Such
data could arise from an experiment where several different types of signal are expected to
produce activation at the same location and scale, but with different strengths, such as a
set of pain stimuli or linguistic tasks. We wish to combine information from each image in
order to make an overall test of any activation. A natural test statistic is the sum of squares
of the Gaussian images, which is a x? field with v degrees of freedom. If the scale is also
unknown, the Gaussian images should be smoothed with the same filter, to produce scale
space Gaussian images, and then the sum of squares defines the scale space y? image. Note
that the component Gaussian images are smoothed, not the x? image itself. It can be shown
that this gives the maximum likelihood estimate of the location and scale of the signal (see
Worsley, 1997).
Formally, suppose that the component Gaussian fields are modeled as

Zi(s) = Bif[(s —so)/wo] + W(s), i=1,...,v,

where f3; is an unknown amplitude, f is the functional shape of the signal, sy is an unknown
location, wy is an unknown scale, and W is standard Gaussian white-noise (uncorrelated)
error. In other words, the unknown location and scale of the signal are common to each
component, but the amplitudes are different. We wish to test the null hypothesis of no
signal, that is

ngﬁi:(), ’i:l,...,V.

To do this, each component is then smoothed by a filter with the same shape as the signal
and width w, to produce scale space Gaussian images:

Zy(s,w) = Kw*D/2/f[(h—s)/w]Zi(h)dh, i=1,....,

where D is the number of dimensions (components of s) and the scaling constant K is chosen
so that the variance remains at one, that is

K= (/f[h]th>_l/2,

(see Worsley et al., 1996b). Then the scale space x? image is defined as

U(s,w) = zu: Zi(s,w)?



The hypothesis of no signal is rejected for large values of
Umax = IE%)X U(S, ’U)),

where the maximum is taken over all locations s in a search region and all widths in an
interval from w; to ws.
In practice, a convenient choice of smoothing filter is the Gaussian filter with unit FWHM:

1h] = expl—(41og, 2)h'h]
for which K = [8(log, 2)/7]P/*. With this choice of filter, w is the FWHM.

4 P-value of the maximum

Worsley (1997) derives an approximate formula for the P-value of the maximum of a D-
dimensional scale space x? image searched over a range of Gaussian filter widths from w; to
wy FWHM. The result, which is accurate for search regions of almost all shapes and sizes,
is:

D
P(Umax > u) ~ Z ded(u)
d=0
We define the d-dimensional resel count as
Ry=Vy/wl, d=0,...,D,

where Vj; are d-dimensional size measurements of the search region; in 3-D, V{ is the Euler
characteristic of the search region, V; is twice the average caliper diameter, V5 is half the
surface area, and V3 is the volume. For 2-D data, Vj is the Euler characteristic as before, V; is
half the perimeter, and V5 is the area (see Worsley et al. (1996a) for a more precise definition,
methods of calculation, and examples). Let r = w; /w,, then the Euler characteristic (EC)
intensities py(u) are

po(u) = AWSde+2Z§;_(ZZ \/E(—logef)
pilu) = (42?)?%2%;P6(£){1;T+ 4fu<1_r)[u_(y_1)]}
plw) = U 2F<) 2wy
n 4f:ul_;z[u?—(2u—1)u+(u—1)(y—2)+lzju]}
R 2F() 20— v =1t (- 1) - 2)
+ Zliil_grg{u?’—?ﬂ/usz?)(u—1)2u—(1/—1)(y—2)(1/—3)+g[UQ—(V—l)u]]}



5 Methods

We shall apply these results to a simple fMRI experiment where a subject was given a simple
visual stimulus, flashing red dots, presented through light-tight goggles (Ouyang et al., 1994).
The stimulus was switched off for 4 scans, then on for 4 scans, and repeated 5 times, giving
40 scans in all, The time interval between scans was 6 seconds, giving a stimulus period of
T = 48 seconds. The data set then consists of a time series of 40 2-D images, each 128 x
128 pixels on a 1.72mm pixel grid. Image number 20 is shown on the left of Figure 1, which
is an oblique slice through the visual cortex in the lower part of the image. Darker shading
represents higher blood flow. The time series at two pixels, one in the visual cortex and one
outside, are also shown. There appears to be strong correlation with the stimulus at the
lower pixel in the visual cortex, but none at the upper pixel outside the visual cortex. Let
Y (s, t) represent the blood flow at location s in D = 2 dimensions and time ¢.

The standard deviation of fMRI data is not constant across the image, so the first step
was to standardise the data to unit standard deviation at each pixel. To do this, a simple
sine wave with period T" = 48 seconds

Y (s,) = m(s) + by (s) sin(2rt/T) + by(s) cos(2nt/T)
was fitted to the blood flow data with coefficients estimated by
m(s) = Zt:Y(S’ t)/n,
bi(s) = thsin(%t/T)Y(S,t)/(n/%,
by(s) = Zt: cos(2mt/T)Y (s, 1)/(n/2),

where summation is over n = 40 scans. The pixel standard deviation is then estimated by

o(s) = (Z[Y(S, t) =Y (s, t)]*/(n — 3))é :

t

and the standardised data is

V(s 1) = [Y(s,t) —m(s)]/o(s),

which should now have equal standard deviation across all pixels.
The sine and cosine coefficients were re-estimated using the standardised data, to give

bi(s) = 3 sin(2nt/T)Y*(s,1)/(n/2),
by(s) = ;cos(2wt/T)Y*(s,t)/(n/2).

These were then smoothed using a Gaussian filter with FWHMs w =5.0, 6.0, 7.1, 8.5, 10.2,
12.2, 14.6, 17.5, 20.9, 25.0mm equally spaced on a log scale to give uniform coverage of scale
space (see Worsley et al., 1996b):

b; (s,w) = Zf h —s)/wlb;(h), i=1,2,



where, because we have replaced an integral by a summation,

N

K*(w) = (z ol

Note that although bf(s) is not exactly Gaussian, since it was divided by an estimated
(random) standard deviation, the central limit theorem should ensure that b} (s, w) is closer
to Gaussian, if w is reasonably large, since it is a (weighted) sum of b} (s).

However the above method of constructing Gaussian scale space images may not ensure
that b} (s, w) has unit standard deviation. This is because, although bf(s) usually has very
low spatial correlation for fMRI data, it is not quite zero and so bf(s) is not exactly white
noise. Positive correlation, for example, will increase the standard deviation of b} (s, w), and
this was in fact observed. Since b}(s) and hence b (s,w) should have constant standard
deviation across the image, this suggests that a global correction for the standard deviation
is all that is necessary. To do this, the global standard deviation of the smoothed data was
estimated separately using the coefficients at two periodicities, A = 240/6 and B = 240/4
seconds, either side of the periodicity of the signal (7" = 240/5 seconds), that is

Gifs) = Dsm(2mt/A)Y " (5,0)/(n/2),
ai(s) = ;cos(27rt/A)Y*(s,t)/(n/2).
i(s) = Lsin@nt/O)Y"(5,0)/(n/2),
(s = S eos(2nt/ )Y (5,1)/(n/2).

These were smoothed as above:

aj(s,w) = K'(w))_ fl(h—s)/wla;(h),

h

ci(s,w) = K*(w)>_ f[(h—s)/wlcj(h), i=12.

h

These four images should contain no signal, and if the global variance (averaged over all
pixels) is smooth in the frequency, then the average of these global variances, which linearly
interpolates the variance across frequency, should be a good estimator of the global variance
of bf(s,w). Thus the estimator of the global variance is

o*(w) =D _ai(s,w)” + aj(s,w)” + ci(s, w)* + ¢5(s, w)?]/(4N),

S

where N is the number of pixels in the image. This was validated by repeating the operations
for the upper part of the image, outside the visual cortex, where no signal should be present,
and there was good agreement between o?(w) and the mean sum of squares of b} (s, w). Our
final definition of the scale space Gaussian images is therefore

Zi(s,w) = bi(s,w)/o(w), i=1,2,

6



and the x? field with v = 2 degrees of freedom is
U(Su U)) - Zl<S7 w>2 + ZQ<S7 UJ)2.

The same considerations as mentioned above also affect the smoothness of the scale space
data. The P-value formula in fact depends on the effective FWHM of the image, defined as

4log_ 2 Z;
Weff = og? , A= Var (MS,U})) .

0s

This was estimated from the pure noise images a} (s, w) and ¢} (s, w) by replacing derivatives
by differences at adjacent pixels (Worsley et al., 1992), then pooling the variance over all
pixels and images. The results were we.g =6.2, 7.5, 9.2, 11.3, 13.9, 17.1, 20.7, 24.7, 29.3,
34.4mm respectively, approximately 35% higher than the nominal FWHMs. Thus w; =
6.2mm and wy = 34.4mm were used in the P-value formula in place of the nominal values
of bmm and 25mm, respectively.

6 Results

Figure 2, panels 1 and 2, show images of the sine and cosine coefficients b (s) and by(s). Some
activation is clearly present in the cosine image in the lower portion of the image, correspond-
ing to the visual cortex, as expected. To check sensitivity, three simulated Gaussian-shaped
signals were created with lags of 0, 6 and 12 seconds, and widths of 9mm, 15mm and 25mm,
respectively. Since no signal was expected outside the visual cortex (and none was in fact
detected), these three signals were located in the upper half of the image (Figure 2, panels
3 and 4) and added to by(s) and by(s). The resulting magnitude of the periodogram b;(s)
and bo(s) is shown , without the signal in Figure 2, panel 5, and with the signal added in
panel 6. The remaining panels 10 panels in Figure 2 show slices of the scale space x? fields
U(s,w).

For the purpose of finding the P-value, the search region was approximated by a circle
of radius v = 61.7mm chosen so that its area matched that of the set of pixels shown in
Figures 1 and 2. This gives Vj = 1, V; = perimeter/2 = v = 194mm and V, = area =
mv? = 11960mm?. The P-value was then calculated as above with D = 2, w; = 6.2mm and
r =6.2/34.4 = 0.18. To find the P = 0.05 threshold, this was equated to 0.05 and solved
for u to give u = 25.3. Scale space local maxima above this threshold are marked by white
crosses on Figure 2. All three simulated signals are detected at weg =7.5, 13.9, 24.7mm
FWHM, close to their actual widths of 9, 15, 25mm FWHM, respectively (panels 8, 11 and
14). Several local maxima appear in the visual cortex, culminating in the global maximum
of Upax = 208 in panel 15 at 29.3mm FWHM smoothing.

The scale space set of supra-threshold voxels at the u = 25.3 threshold is shown in Figure
3a. Four components are clearly evident: the three simulated signals in the upper part of
the figure and the activation in the visual cortex in the lower part. The supra-threshold set
at a much higher threshold v = 175 is shown in Figure 3b, this time tilted to emphasize the
scale dimension. Four connected components are clearly visible corresponding to the three
simulated signals and the activation in the visual cortex. Note that each of the simulated
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signals is optimally detected at a filter width close to the width of the signal, as predicted
by the Matched Filter Theorem. The stimulus is detected at all scales, suggesting a mix of
sharp foci of activation embedded in a broader ‘penumbra’ of lesser activation. This is more
clearly seen at 11.3mm smoothing (Figure 2, panel 10). The sharp foci may correspond to
arterial blood flow, whereas the penumbra may correspond to blood flow in the capillaries.
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Figure 1. Blood flow (jagged lines) at two pixels chosen to illustrate
correlation (lower) and no correlation (upper) with the stimulus (dashed line)

Blood flow

Time (minutes)

Blood flow

Figure 1: One of 40 fMRI images of the human brain while the subject was responding to
an on-off visual stimulus repeated five times. The image shows an oblique slice through the
visual cortex in the lower part of the image. Darker shading represents higher cerebral blood
flow. The time series (jagged lines) at two pixels, one in the visual cortex and one outside,
are also shown. There appears to be strong correlation with the stimulus (dashed lines) at
the lower pixel in the visual cortex, but none at the upper pixel outside the visual cortex.



Figure 2. Scale space analysis of data + simulated signal
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Figure 2: Unsmoothed cross-covariance of the 40 images with sine and cosine functions
whose frequency matches that of the stimulus to give bi(s) (panel 1) and b3(s) (panel 2),
respectively. Three simulated Gaussian-shaped signals with lags of 0, 6 and 12 seconds, and
9mm, 15mm and 25mm FWHM, respectively, were added to the sine (panel 3) and cosine
(panel 4) components. Panel 5 shows the sum of squares of the sine and cosine components,
U(s). Panels 6-15 show the sum of squares of the sine and cosine components U(s, w),
separately smoothed by a Gaussian-shaped kernel varying from 6.2mm to 34.4mm effective
FWHM. Scale space local maxima above the approximate P = 0.05 critical threshold for U,
(u = 25.3) are marked by a white cross. All three simulated signals are detected at weg =7.5,
13.9, 24.7mm FWHM, close to their actual widths of 9, 15, 25mm FWHM, respectively
(panels 8, 11 and 14). Several local maxima appear in the visual cortex, culminating in the
global maximum of Uy, = 208 in panel 15 at 29.3mm FWHM smoothing.

10




Figure 3a. Scale space supra-threshold
voxels above u=25.3 (P=0.05)

15mm signal

Figure 3: The scale space set of supra-threshold voxels above (a) u = 25.3, the approximate
P = 0.05 critical threshold for Uyax, and (b) a higher threshold u = 175. Four components
are clearly evident: the three simulated signals in the upper part of the figure and the
activation in the visual cortex in the lower part. Note in (b) that each of the simulated
signals is optimally detected at a filter width close to the width of the signal, as predicted
by the Matched Filter Theorem. The stimulus is detected at all scales, suggesting a mix
of sharp foci of activation embedded in a broader ‘penumbra’ of lesser activation, visible in
Figure 2, panel 10.
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