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Abstract— We are all familiar with the correlation coefficient
between two sets of numbers. Now suppose we replace the
numbers by vector-valued images in any number of dimensions.
The correlation random field is the ’image’ of correlations at
all possible pairs of points in the two images. We use random
field theory to set a threshold on the correlations so that those
above the threshold are statistically significant, corrected for
searching over all pairs of points. We apply this idea to resting
state networks of fMRI images of brain activity, and networks
of connectivity in cortical thickness.

I. I NTRODUCTION

Suppose we have vector-valued data at each point in an
image, for example scalp EEG data at 3 different frequency
bands, so that the image space is the 2D manifold of the scalp
embedded in 3D. Suppose we also have a second image of
vector-valued data, for example fMRI BOLD response at say
4 different time points after presentation of a stimulus. This is
repeated several times, so we now have pairs of images, each
with vector valued data at every image point. We are interested
in finding those pairs of points that are “connected”, that is,
pairs of points (one on the scalp, one inside the brain) which
have high correlation of their vector-valued data. Our main
interest is to find a threshold for this correlation that controls
the false positive rate of ever finding such connectivity when
in fact no connectivity exists.

The measure of correlation that we shall use is the maximum
canonical correlation, defined as follows. LetX(s), s ∈ S ⊂
<M , and Y (t), t ∈ T ⊂ <N be matrices of the vector-
valued data at image pointss, t, with p and q columns and
the same number of rows. The vector-valued observations are
the rows, and the columns are the repetitions. We assume that
nuisance effects such as a constant term have been removed by
fitting a common linear model to the data, and the columns
of X(s) and Y (t) are the residuals from this linear model.
The residual degrees of freedom isν. Define the maximum
canonical correlation random field as

C(s, t) = max
u,v

C̃(s, t, u, v)

where

C̃(s, t, u, v) =
u′X(s)′Y (t)v

(u′X(s)′X(s)u v′Y (t)′Y (t)v)1/2
.

Note that C is the maximum of the canonical correla-
tions betweenX and Y , defined as the singular values of
(X ′X)−1/2X ′Y (Y ′Y )−1/2.

We model the data as smooth Gaussian random fields with
zero mean. The P-value of the maximum canonical correlation
maximized over searching all pairs of points inR,S is well
approximated by
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whereU is the unit sphere in<p, V is the unit sphere in<q,
µi(S) is thei-dimensionalintrinsic volumeof S [1,4] andρ is
theEC densityof the correlation random field. We now define
both these, and give examples.

The intrinsic volume of a set is, roughly speaking, a measure
of its i-dimensional content relative to the smoothness of the
random field. The intrinsic volume of a search regionS ∈ <M

of smoothed image data modelled as Gaussian white noise
smoothed with a Gaussian-shaped isotropic filter with Full
Width at Half MaximumFWHM is related to the resels by

µi(S) = (4 log 2)i/2Reselsi(S).

Resels of typical search regions are given in Table I. The
intrinsic volume of the sphereU (likewise V ) is
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if p− 1− k is even, and zero otherwise,k = 0, . . . , p− 1.
The EC densityρi,j of the (cross) correlation random field

C̃ for fixed u, v is given by
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Reselsi(S) i
M 0 1 2 3
0 1

1 1 Length(S)
FWHM

2 1
1
2 Perimeter length(S)

FWHM
Area(S)

FWHM2

3 1 2 Diameter(S)
FWHM

1
2 Surface area(S)

FWHM2
Volume(S)

FWHM3

TABLE I

Reselsi(S) FOR A CONVEX SEARCH REGIONS IN M DIMENSIONS.

FWHM IS THE EFFECTIVEFULL WIDTH AT HALF MAXIMUM OF A

GAUSSIAN KERNEL USED TO SMOOTH THE WHITE NOISE ERRORS IN THE

IMAGE DATA X . THE DIAMETER OF A CONVEX 3D SET IS THE AVERAGE

DISTANCE BETWEEN ALL PARALLEL PLANES TANGENT TO THE SET. FOR A

BALL THIS IS THE DIAMETER; FOR A BOX IT IS HALF THE SUM OF THE

SIDES.

whereD = M + N .
If there is only one set of images, so thatR = S and

X = Y , then we are only interested in auto-correlations at
voxels sufficiently far apart to avoid smoothing effects. There
are now only half as many possible pairs of correlations, so
the resulting P-value from (1) should be halved.

II. A PPLICATION

We apply the above methods to auto-correlations of func-
tional data (fMRI resting state networks), and anatomical data
(cortical thickness).

A. fMRI resting state network

A subject was given a 9s painful heat stimulus, followed
by 9s rest, then 9s warm (neutral) stimulus, followed by 9s
rest, repeated 10 times, fully described in [3]. 120 frames
were acquired at TR=3s; the first 3 were discarded. A linear
model was fitted to account for the hot and warm block stimuli
(convolved with an HRF), and drift was modelled as a cubic
in the acquisition time. The residuals from this linear model,
whitened to remove temporal correlation [3], were used for
further analysis, leavingν = 111 null df.

The search regionR = S is the brain and we havep =
q = 1 measurement per voxel. From (1) withν = 111 null
degrees of freedom, theP = 0.05 two-sided threshold forC
is c = ±0.563 (since we are interested in both positive and
negative correlations). Only points separated by at least 20mm
were considered. There were too many correlations above this
threshold to display, so Figure 1 shows only 6D local maxima
abovec = ±0.7 (P < 5× 10−9).

There are a large number of right-left correlations between
lateral regions in opposite hemispheres, indicating that these
regions are synchronised or ‘connected’ in resting state. There
are some long-range correlations on the midline linking large
blood vessels. A number of short-range in-slice correlations
on the right outer cortex are probably an artefact of imprecise
motion correction. Thus would displace the entire cortical
boundary in some slices, creating the illusion that boundary
voxels are correlated.

(a)

(b)

(c)

Fig. 1. fMRI resting state network. Inside the mid-cortical surface (trans-
parent), the ends of the rods join voxels where the auto-correlationC of
fMRI residuals exceededc = ±0.7 (higher than theP = 0.05 threshold of
c = ±0.563). Only 6D local maxima are shown. Red rods indicate positively
correlated voxels; blue rods indicate negatively correlated voxels (there is only
one). (a) side; (b) top; (c) back.



Fig. 2. Cortical thickness of one subject, smoothed by 20mm, plotted on the
average of the 321 mid-cortical surfaces.

B. Cortical thickness

We illustrate the method on the cortical thickness of 321
normal adult subjects aged 20-70 years, smoothed by 20mm
FWHWM, part of a much larger data set fully described in
[2] and also analyzed in [4]. The data on one subject is shown
in Figure 2. We removed a linear age, gender and age-gender
interaction effects, then calculated the auto-correlationC(s, t),
for all pairs of the 40962 triangular mesh nodes, ignoring pairs
of nodes that were too close. The search regionR = S is the
whole cortical surface, withM = N = 2, Resels0(S) = 2,
Resels1(S) = 0 (since a closed surface has no boundaries),
and Resels2(S) = 842. Again there is only one measure at
each node, sop = q = 1. From (1) withν = 319 − 4 = 317
null degrees of freedom, theP = 0.05 two-sided threshold for
C is c = ±0.340 (since we are interested in both positive and
negative correlations). Figure 3 shows only 4D local maxima
abovec inside the same hemisphere.

The most interesting correlations are the long-range negative
correlations linking occipital regions with frontal regions.
These suggest that those individuals with thicker occipital
cortex have thinner cortex in frontal regions, and vice-versa.
There are some interesting positive correlations within the
occipital region itself and between right parietal regions and
the frontal lobe.
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Fig. 3. Connectivity of cortical thickness. The ends of the rods join nodes
where the auto-correlationC of cortical thickness exceededc = ±0.340
(P = 0.05, corrected), removing a linear age, gender and age-gender
interaction (ν = 321 − 4 = 317 null degrees of freedom). Only 4D local
maxima inside the same hemisphere are shown. Yellow to red rods indicate
positively correlated nodes; blue rods indicate negatively correlated nodes. (a)
side; (b) top; (c) back.


