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We model imaging data at a voxel by a linear model with some or
all coefficients constrained to be non-negative. The model is fitted
by non-negative least-squares (NNLS) separately at every voxel.
We wish to detect those voxels where the constrained coefficients
are significantly positive. We present new random field theory
results for finding the corrected P-value that allows us to detect
such points. We apply these results to detecting activation in
fMRI using a set of extreme HRF basis functions.
Methods

The linear model for image data at a single voxel is

Y = Xβ + Zγ + ε, ε ∼ N(0,Cσ2)

where Y is an observation vector, X and Z are design matrices
common to every voxel, β and γ are vectors of unknown coeffi-
cients, and ε is an error vector with unknown variance σ2 but a
known correlation structure C common to every voxel. Without
loss of generality, we can assume that C=I, the identity matrix,
by pre-whitening the model.

The important point is that β ≥ 0 (component-wise) whereas
γ is arbitrary. Fitting the model by NNLS is straightforward [1]:

1. Do all subsets regression on X.
2. Amongst the submodels with β > 0, select the submodel

with the least error sum of squares, SSE1.
Let SSE0 be the error sum of squares of the null model H0 : β = 0
and let ν be its df. The NNLS test statistic of H0 is

FNNLS =
SSE0 − SSE1

SSE1/(ν − 1)
.

The random field theory P-value of the FNNLS SPM is [2]:

P(max FNNLS ≥ t) =
ν−1∑

j=1

pjP
(

max Fj,ν−j ≥ t
ν − j

j(ν − 1)

)
+ pν .

The P-values on the RHS are the usual random field theory P-
values for an F-statistic SPM with (j, ν − j) df. The weights are

pj = P (#{β′s > 0} = j)

under H0. In practice pj is found by one simulation of Gaussian
white noise under H0, then averaging across voxels.

Surprisingly, it is possible to have far more regressors in X
than observations! If these regressors are highly correlated then
β ≥ 0 forces pj ∼ 0 for large j. An example is the spectral method
for fitting compartmental models to PET data.
Results

We apply these results to detecting activation in fMRI using
a set of three extreme HRF basis functions:
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A subject received a 9s painful heat stimulus alternating with a
9s warm stimulus interspersed with 9s rest, repeated 10 times [3].
The three columns of X are the hot-warm stimuli convolved with
the three extreme HRFs. The columns of Z are the hot+warm
stimuli convolved with the three extreme HRFs and spline drift
regressors. The null degrees of freedom is ν = 109. The weights
were: p1 = 0.498, p2 = 0.141, p3 = 0.003. Results in a small part
of a slice through the right supplementary motor area are shown
in the following figures.
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Estimated HRF (black lines; components are coloured lines) using   � 1,� 2,� 3 unconstrainedh1 alone: � 2,� 3=0 NNLS: � 1,� 2,� 3≥0
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Conclusions
NNLS is more sensitive than either the T-statistic on the

canonical HRF, or the F-statistic for the unconstrained model.
The reason is that the T-statistic is not flexible enough to detect
departures from the canonical HRF, whereas the unconstrained
F-statistic is too flexible and wastes sensitivity on unrealistic (neg-
ative coefficient) HRFs.
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