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1 Introduction

A number of methods derived from Canonical Variates Analysis (CVA) have recently been
proposed to analyze brain functional images. Some of these are dedicated to assessing the
regional significance of experimentally induced effects while others are meant to characterize
the brain response as a global pattern. The aim of methods of characterizing global brain
response is two-fold. The first is to provide a sensitive global test of non-focal activation in
blood flow images in response to a set of predictor variables (predictors) measured for each
scan. The second is to capture, summarize, or explain, the correlation between predictors
and voxel blood flows by a small number of latent variables, one set for predictors and one
set for voxels. These latent variables take the form of weights; if the characterization is
successful, then the weighted average of the voxel blood flows should be highly correlated
with the corresponding weighted average of the predictors, over scans.

Two recent papers have characterized brain responses in PET data (McIntosh et al. ,
1996) and fMRI data (Friston et al. , 1995b) using CVA methods. Both papers have their
drawbacks. The inference for the Partial Least Squares (PLS) method of McIntosh et al.
(1996) is based on a non-parametric permutation test that cannot be applied to temporally
correlated data such as fMRI. The method of Friston et al. (1995b) uses a heuristic argument
to correct for temporal correlation, but this gives a biased test that increases the false positive
rate. In this paper we propose an alternative method based on multivariate linear models
(MLM) that overcomes these drawbacks, and which can be applied to both PET and fMRI
data. The MLM method uses CVA of corrected least squares estimators from a multivariate
linear model, but unlike PLS, our inference depends on (parametric) multivariate linear
models theory rather than simulations. The MLM method is now implemented in the SPM
package.

This paper is structured as follows. Current CVA methods, and the proposed MLM
method, are summarized in Section 2. We introduce the multivariate linear model in Section
3, and generalize the results of Worsley & Friston (1995) to testing for the effects of several
predictors simultaneously at a single voxel. In Section 4 we define a global test that gener-
alizes that of Worsley et al. (1995) to several predictors simultaneously. We then show in
Section 5 how to characterize the effect of the predictors using CVA. Section 6 summarizes
the MLM procedure, and Section 7 discusses the underlying assumptions. Procedures are
validated in Section 8 on both null and simulated signal data, then applied to the same data
set as Friston et al. (1995b) in Section 9. Technical details are relegated to an extensive
Appendix.

2 Summary of CVA methods

Generic CVA methods are summarized in Figure A.6, in which X and Y represent the scans
× predictors and scans × voxel blood flow matrices, respectively, possibly standardized to
have zero mean and unit standard deviation. Their complex covariance structure is X′Y.
U and V are the (orthonormal) latent variables × predictors and latent variables × voxels
matrices, respectively. The weighted averages, or predicted and observed temporal responses,
are XU′ and YV′ respectively. Their simpler covariance structure is the diagonal matrix of
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latent roots Λ. Particular methods for doing this are as follows.

2.1 SVD (Singular Value Decomposition)

This method was first used for estimating functional connectivity in PET data by Friston
et al. (1993). It approximates the blood flow matrix Y but does not take into account any
information in X:

Y ≈ U′ΛV.

In practice, U is first found by a Principal Components Analysis (PCA) of the smaller scans
× scans matrix YY′:

YY′ ≈ U′Λ2
U,

then the larger V is found by
V = Λ−1UY.

Note that the way this approach is implemented in the current SPM package is not in fact
independent of X since the effects of no interest are removed from the data Y before the
SVD. It is however of interest to investigate the structure of the covariance matrix of X and
Y (see below). Similar techniques have been used recently for fMRI data (see Bullmore et al.
, 1996).

2.2 PLS (Partial Least Squares)

This method, introduced by McIntosh et al. (1996), approximates the covariance matrix of
X and Y:

X′Y ≈ U′ΛV.

However the analysis is not invariant to linear transformations of predictors or voxels. This
is partly overcome by making X orthogonal; this makes it invariant to rotations of the
predictors, but not invariant to arbitrary linear transformations. What it means is that the
analysis will be different depending on how the predictors are scaled. For example, doubling a
predictor, or choosing different predictors within the same space, will give different answers.
Inference about the latent variables is performed non-parametrically using a permutation
test. This is valid for PET data, but not fMRI data, since the observations have a temporal
correlation structure.

2.3 Orthonormalized PLS

We could overcome the lack of invariance noted above by simply orthonormalizing the pre-
dictors first, as follows:

(X′X)
−1/2

X′Y ≈ U′ΛV.

This is now invariant to linear transformations of predictors, but not voxel blood flows, so
it combines some of the advantages of PLS and Canonical Variates Analysis (see below).
However the problems of temporal correlation and sequential latent root testing still remain.
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2.4 Standard CVA (Canonical Variates Analysis)

(X′X)
−1/2

X′Y(Y′Y)
−1/2 ≈ U′ΛV.

Here we orthonormalize both the predictors and blood flow responses. This is invariant to
linear transformations of predictors or voxel blood flows, but because there are more voxels
than scans, it is not possible to implement, since (Y′Y)−1/2 cannot be found.

2.5 SVD-CVA (Preliminary SVD, then CVA)

Friston et al. (1995b, 1996) overcome the problem of more voxels than scans by reducing
the number of voxels in a preliminary SVD step:

Y ≈ U∗′Λ∗V∗,

replacing Y by the reduced set of variables

Y∗ = YV∗′,

then finding canonical variates between X and Y∗:

(X′X)
−1/2

X′Y∗
(Y∗′Y∗)−1/2 ≈ U′ΛV.

Although the distribution of the data is altered by the preliminary SVD step, it can never-
theless be shown that the usual parametric statistical inference for this procedure is still valid
for independent scans such as PET (see Appendix A.1). The method has been successfully
employed by Fletcher et al. (1996). However for temporally correlated data such as fMRI
(Friston et al. , 1995b), the usual parametric statistical inference is invalid (see the note
added in proof to Worsley & Friston (1995)). Even for PET data, there is some evidence
that the proposed MLM method given next is more sensitive (see Appendix A.2).

2.6 Proposed MLM (Multivariate Linear Models)

To allow for temporal correlation, denoted by the scans × scans matrix Σ, we shall normalize
the predictors not by their sum of squares matrix X′X, but by the matrix X′ΣX, which is
the variance of a column of X′Y. This leads to

(X′ΣX)
−1/2

X′Y ≈ U′ΛV. (2.1)

Another way of motivating this is via linear models. If we fit a linear model to the blood flows
of the form Y ≈ XB, where B is a predictors × voxels matrix of least-squares regression
coefficients, then it can be shown that

(X′ΣX)
−1/2

X′Y = Var(B)−1/2B, (2.2)

where Var(B) is the variance matrix of any column of B, corresponding to a single voxel.
Thus our proposed method attempts to approximate the normalised matrix of linear model
coefficients by a simpler SVD structure U′ΛV. It is still invariant to linear transformations
of predictors, and in addition, inference for this approach is also invariant to the temporal
correlation structure. It can therefore be applied to PET or fMRI data.
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3 A test at a single voxel

The spatial correlation structure of PET and fMRI data is usually well approximated by
the convolution of a Gaussian point spread function with itself (Friston et al. , 1991; Wors-
ley et al. , 1992). The temporal correlation structure of fMRI data can be approximated
by the convolution of the hemodynamic response with itself (Friston et al. , 1995a) or by
more sophisticated methods (Zarahn et al. , 1997). An obvious possibility is to deconvolute
or whiten the spatial and temporal data to remove these correlations, which leads to the
maximum likelihood estimators of the parameters, but this is very sensitive to the correct
specification of the correlation structure of the noise. Instead, Friston et al. (1995a) suggest
using least squares methods to derive the test statistic, then correcting its distribution for
the (known) spatial and temporal correlations (Worsley & Friston, 1995). We shall use the
same principle here.

Before doing this, one slight generalisation is necessary. As is usual in linear models, we
partition the predictors into two subsets: a set of background or nuisance predictors of no
interest, such as a constant term, a covariate for global blood flow, or a linear time trend;
and a set of predictors of interest, such as stimulus intensity or measured performances, or
a subset of these. We usually wish to characterize the effect of the predictors of interest,
allowing for the predictors of no interest.

To test for temporal activation at a given voxel i, let bi be the vector of the least squares
estimators of the effects of the subset of the predictors of interest at voxel i, i = 1, . . . , N .
Let

Fi = b′iVar(bi)
−1bi/h (3.1)

be the mean sum of squares of these effects, inversely weighted by their variances, where h
is the number of predictors in the subset (see Appendix A.3). The null distribution of Fi

is well approximated by an F distribution with h and ν degrees of freedom, where ν is the
effective temporal degrees of freedom (see Appendix A.4).

The advantage of using the least squares estimator of the effects, as opposed to the
maximum likelihood estimator, is that its variance does not involve whitening the n time
points, but only whitening the h components of bi. This is a far more stable procedure and
much less sensitive to miss-specification of the temporal correlation of the observations. The
disadvantage is that it may not be as sensitive as using the maximum likelihood estimator,
although in some cases (see Worsley & Friston, 1995) there is no loss of sensitivity at all, and
only a small loss of sensitivity for a square-wave temporal response generated by a periodic
on-off stimulus.

The voxels can be searched for local maxima of Fi to find the regions most significantly
related to the predictors of interest (Büchel et al. , 1996). The significance of these local
maxima can be assessed using results in Worsley et al. (1996) for the maxima of F fields.

4 A global test

A global test statistic for temporal and spatial activation is the average of Fi across voxels:

S =
N∑

i=1

Fi/N. (4.1)
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(This statistic is the likelihood ratio test statistic if there is no spatial or temporal corre-
lation.) If the spatial point spread function is Gaussian, Worsley et al. (1995) define the
effective spatial degrees of freedom as

d = RESELS(4 loge 2/π)D/2, (4.2)

where D is the number of dimensions and RESELS is the volume of the search region
divided by the product of the effective FWHMs of the experimental point spread function
of the observed random noise in each of the D dimensions (see Worsley et al. , 1992, for
methods of estimating this). Provided ν is large (> 10) then the null distribution of S is
well approximated by a multiple of an F distribution, as follows. Let

ν1 = dh, ν2 = dν − (d− 1)(4h + 2ν)

h + 2
, F =

ν − 2

ν

ν2

ν2 − 2
S. (4.3)

Then the null distribution of F is well approximated by an F -distribution with ν1 and ν2

degrees of freedom. The details of this derivation are given in Appendix A.5, and it is
validated in Appendix A.2.

If there is just one predictor (h = 1), such as a difference between two tasks, or a difference
between early and late responses to the same task (Friston et al. , 1995c), then it can be shown
that Fi is identical to the square of the t-statistic for testing for this effect. Moreover S is then
identical to the mean sum of squares of the t-statistic map, a test statistic already proposed
by Worsley et al. (1995) to test for the global effect of a linear combination of predictors.
In this way the methods proposed here can be seen as straightforward generalizations to the
case of more than one predictor.

5 Characterizing the response

As described in Section 2, the aim of CVA is to find what (global) linear combination of
the predictors best describes the response across the voxels. One way of interpreting this is
to find which linear combination of the effects of the predictors has the greatest variability.
This suggests a Principal Components Analysis of the normalized effects, defined as

Zi = Var(bi)
−1/2bi. (5.1)

Note that Fi = Z′iZi/h. If we ignore the unequal voxel variances then Zi is the same as
the ith column of Var(B)−1/2B from (2.2). The mean sums of squares and cross-products
matrix is then

S =
N∑

i=1

ZiZ
′
i/N. (5.2)

The eigenvalues of S are λ1 ≥ λ2 ≥ · · · ≥ λh, and the corresponding eigenvectors (principal
components) define the linear combinations of the normalized effects that capture the great-
est variability; the variability captured by the jth principal component is λj. From these we
can find the corresponding temporal and spatial effects (see Appendix A.3).

For pure noise data, the components of Zi are all uncorrelated standard Gaussian random
variables, provided the effective temporal degrees of freedom is large. If a temporal signal is
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present at position i and can be represented as a linear combination of the predictors, then
the mean of Zi will be non-zero. If the same temporal signal is spatially distributed across
voxels then it is consistently estimated by the first principal component. If there are q such
signals then they are estimated by the spatial and temporal responses associated with the
first q components.

We may ask the question: Do these first q principal components capture all the signal,
or is there still some signal left in the remaining h − q principal components? There are
several ways of testing such a hypothesis. The standard method suggested in the literature
is to use the ratio of the arithmetic to the geometric mean of λq+1, . . . , λh, also known as the
sphericity test (see Anderson, 1984, page 475). If the last h − q population eigenvalues are
equal, indicating no outstanding principal components after the first q, this ratio should be
close to one. However this test is designed for data with unknown voxel variance σ2

i , and it
is designed to detect unequal eigenvalues. In our case the variance of the data is normalized
to a standard deviation of one at each voxel by dividing by an estimator σ̂2

i , so the null
population eigenvalues are one. Moreover we are more interested in detecting eigenvalues
greater than one, rather than unequal eigenvalues. For these reasons we suggest a slightly
different test.

One possibility is to use the average of the last h− q principal components, a test similar
to the Lawley-Hotelling trace (Anderson, 1984, page 323):

Sq =
h∑

j=q+1

λj/(h− q). (5.3)

(Again it can be shown that, provided there is no spatial or temporal correlation, this is the
likelihood ratio test statistic for a simultaneous test of the last h− q population eigenvalues
equal to a constant greater than one.) There is a simple approximate form for its null
distribution: provided ν is large (> 10) and the signal in the first q principal components is
large, then Sq has the same distribution as S but with h replaced by h− q (the proof of this
follows the arguments on page 476 of Anderson (1984)). Let

ν1q = d(h− q), ν2q = dν − (d− 1)(4(h− q) + 2ν)

h− q + 2
, Fq =

ν − 2

ν

ν2q

ν2q − 2
Sq. (5.4)

Then the null distribution of Fq is well approximated by an F -distribution with ν1q and ν2q

degrees of freedom. The case of q = 0 (some signal in all the principal components) is of
course identical to the global test based on S = S0 =

∑
j λj/h = trace(S)/h.

A second possibility, similar in spirit to Roy’s maximum root (Anderson, 1984, page 328),
is based on just the largest of the last h−q eigenvalues, λq+1. This is the likelihood ratio test
statistic for a single non-unity population eigenvalue in the last h−q population eigenvalues.
It may be more sensitive to a single principal component than Sq, but it has the drawback
that there is no simple formula for its null distribution, and tables are available only for
h− q ≤ 6. For these reasons we prefer Sq.

6 Summary of procedure

The following summary of the procedure has been implemented in SPM:



Worsley: Characterizing the Response of PET and fMRI Data 8

Step 1: Voxel tests. Calculate the voxel F -statistic Fi for testing for an effect of the pre-
dictors on blood flow at voxel i.

Step 2: Global test. Test for a global effect using S, the average of the voxel F -statistics
Fi. If this is not significant, then stop and conclude that the predictors have no effect
on the response. If it is significant, then move to Step 3.

Step 3: Characterizing the response. The response can be characterized by a principal
components analysis of the normalized effects of the predictors, as follows:

1. Test for more than 1 component using S1; if this is significant:

2. Test for more than 2 components using S2; if this is significant:

.

.

q. Test for more than q components using Sq; if this is not significant, then stop.

We can then use the first q principal components as an adequate description of the
temporal and spatial responses in the data.

As an optional procedure in the Step 1, not necessary for subsequent steps, Fi can be
searched over voxels for local maxima that can then be tested for their significance (Büchel
et al. , 1996) using the unified p-value for F -fields from Worsley et al. (1996). Note that
localized focal signals may be detected by local maxima but not by S, whereas distributed
non-focal signals may be detected by S but not by local maxima; no test is best at detecting
all types of signal.

7 Assumptions

The above theory is based on several parametric assumptions, which are listed below. Note
that if any of these assumptions are in doubt, then PET data (but not fMRI data) can
always be analyzed by PLS, which is non-parametric. The assumptions are:

1. The linear model is correctly specified. Strong coherent signals that are not linear
combinations of the predictors may go undetected. If there is some doubt about the
model, extra predictors could be added to ensure that the signal is correctly modeled.

2. The temporal correlation is correctly specified. Friston et al. (1995a) suggest esti-
mating this by convolving the hemodynamic response function with itself. Note that
the lag need not be specified, only the shape. More sophisticated methods are given
by Zarahn et al. (1997), who model the power spectrum of fMRI data directly. As
discussed in Section 3, the type of analysis has been chosen to make it robust against
miss-specification of the temporal correlation structure.
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3. The noise component of the images can be modeled as a stationary Gaussian random
field. Departures from this assumption are not too serious because the Central Limit
Theorem guarantees that estimated effects are approximately Gaussian even if the
individual scans are not Gaussian (see Worsley et al. , 1992, for a discussion of these
issues).

4. The point spread function is Gaussian (only needed for the calculation of the effective
spatial degrees of freedom, d, from (4.2)). This is not too problematic, since PET and
fMRI data is often smoothed with a Gaussian filter prior to analysis to increase the
signal-to-noise ratio.

5. Large number of scans relative to predictors, so that the effective temporal degrees
of freedom ν is large (ν > 10). This is needed to ensure that F has the appropriate
F -distribution, so that the false positive rate for the global test is correctly specified.
This is usually not a problem since ν > 30 is common for most PET and fMRI data
sets. This is validated in Appendix A.2, along with a comparison of its sensitivity
relative to the SVD-CVA method, but assuming that there is no spatial or temporal
correlation.

6. If present, the signal must be large enough to ensure that the sequential tests based
on Fq used to characterize the response are valid, so that the method does not pick up
more signal components than are actually present. This will be validated in Section 8
for temporally and spatially correlated data, but assuming that ν = ∞.

Note that sequential testing of latent roots is a standard statistical procedure, but it must
be used with caution. Suppose a p-value of α is used for all sequential tests. If no signal
is present, it always protects against false positives with probability α, since the procedure
stops before the first stage with a probability of 1−α irrespective of what might happen after
that. If signal is present in a finite number of components, and it is strong enough, then the
same argument applies and no extra false components are detected (with probability 1−α).
If the signal is weak, it may not be detected at earlier stages but this still protects against
finding more components than are truly present.

8 Validation

First of all, we checked that if no signal was present, then no signal components were detected
(with the pre-specified false positive rate). Second, we checked that if one signal component
was added then it was reliably detected, and no further components were detected (with the
pre-specified false positive rate). Since the requirement that ν > 10 is validated at a single
voxel in Section A.2, then we carried out the validation of the sequential tests with ν = ∞,
which is equivalent to the case of known σ2

i . This reduced the amount of simulation by a
factor of about 50 by doing all the simulations in Fourier space (see Appendix A.6).

As far as possible, we tried to duplicate the experiment of Friston et al. (1995b). We
generated 100 null data sets by smoothing 3D Gaussian white noise with a 10mm FWHM
Gaussian spatial filter and a 6.65 second FWHM Gaussian hemodynamic response function.
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The data was sampled in a 30×35×10 grid of 3×3×6mm voxels (N = 10500, RESELS=567)
and n = 120 time intervals of 3 seconds duration, divided into 4 repeats of 3 different tasks,
each of 10 scans duration. A model with h = 12 predictors of interest, identical to those
used by Friston et al. (1995b), was used for X. These were intended to capture a differential
response (4 sine terms) between the 3 different tasks (3 indicator variables), giving a total
of 12 predictors (the first 32 rows are shown as the matrix X in Figure A.6). Note that the
predictors cover 12 scans to allow for a 2 scan overlap with the next task. A set of 7 nuisance
variables corresponding to a constant term and 6 low-frequency Fourier components, was used
for the predictors of no interest. A temporal signal with a 20% RMS signal to noise ratio was
created by duplicating the biphasic temporal response observed in Friston et al. (1995b).
The amplitude was varied spatially throughout the brain by multiplying the temporal signal
by a white noise image smoothed with the same spatial filter as above. This was added to
each null data set to produce a simulated signal data set with one principal component.

Both null and simulated signal data sets were analyzed as above. Figure A.6 shows
a histogram of S, calculated as outlined in Appendix A.3. Superimposed on this is the
theoretical scaled F -distribution (4.3) for S. The effective spatial degrees of freedom is
d = 470 and the effective temporal degrees of freedom is ν = 35.6. However the simulations
were carried out for known σ2

i , so that ν = ∞ and ν2 = ∞ were used to calculate the null
distribution of S. The fit to the null data appears to be reasonable. The P = 0.05 threshold
of the null distribution of S is 1.036, and the proportion of simulated S values exceeding this
is 0.04± 0.07 for the null data and all of them for the simulated signal data.

Figure A.6ab shows the average eigenvalues together with the true eigenvalues (1 for
the null data, and 2.9 for the first eigenvalue of the simulated signal data). Figure A.6ab
shows the p-values of Sq found using the scaled F -distribution (5.4). For the null data, we
conclude that there there are no significant components in 96% of the cases, and one (false)
component in 4% of the cases. For the simulated signal data, we conclude that there is just
one significant signal component in 98% of the cases, and a second (false) component in
2% of the cases. Figure A.6ab shows the predicted temporal response of the first principal
component for 6 randomly chosen data sets. For the simulated signal data the predicted
temporal response slightly overestimates the true response that was added to the data. Note
that the sign of the predicted temporal response is arbitrary, so in each case the sign was
chosen to best match the true signal. For the null data the predicted response is a random
combination of the basis functions used to describe the differential responses.

These simulations were close to the expected, which tells us that the methods do appear
to work as claimed even when a single moderate strength signal component is present. Such
a signal is reliably detected, and the false positive rate of finding more signal components is
controlled at the specified level.

9 Application

The above methods were applied to the same data set analyzed by Friston et al. (1995b,c).
In this fMRI activation experiment, there were three conditions: a rest condition (“rest”), a
motor sequencing condition where the subject moved his or her right and left hand in a fixed
alternating order in response to a visual cue (“fixed”), and a motor sequencing condition in
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which the subject moved either the right or the left hand as instructed visually in a random
sequence (“random”). In the random condition the subject could not anticipate or prepare
the exact movement before seeing the cue.

The global test statistic is S = 1.81, which is highly significant (P < 0.0001). Inspection
of the latent roots (Figure A.6c) shows that just one component is significant (Figure A.6c),
as in the simulated signal data. Note that the spread of the remaining 11 latent roots
in Figure A.6c is greater than that for the simulated data. This suggests that there is
some weak signal still present in the higher components that has gone undetected. The
spatial response (Figure A.6a) shows several foci in the right anterior cortex. The predicted
temporal response, shown in Figures A.6c and A.6b, suggests a delayed response for the
random condition but only weak responses for the other two conditions.

This is quite different from that reported by (Friston et al. , 1995b, Figure 5) but very
similar to that reported in (Friston et al. , 1995c, Figures 4 and 5) (reproduced here in
Figure A.6d). In the latter paper, the authors used a simple univariate analysis with pre-
dictors tailored to detect the differential response suggested by the multivariate analysis. A
significant differential response was detected in the anterior cingulate gyrus (A.6d). (Note
that the reported SPM{Z} values are incorrect; see the note added in proof to Worsley &
Friston (1995).) The resemblance between this temporal response and that from our analysis
is quite striking, particularly for the random condition. Moreover the spatial responses of
our method match quite closely those of the univariate analysis; both are compatible with
activation in the anterior cingulate. In contrast, the spatial response reported in Friston
et al. (1995b) shows a diffuse response with no clear foci.

Formally, these localized interpretations are difficult to test; our procedure only indicates
that some signal is present in the temporal and spatial responses, without specifying where.
However, these spatial patterns should be relevant to the set of subjects’ cerebral regions
involved in the experimental paradigm in the sense that they best represent the variability
of the covariance between the acquired data and the predictors.

10 Conclusion

We have proposed a parametric method that decomposes the correlation between the data
and a set of predictors in spatio-temporal patterns (spatial and temporal responses). These
components best represent the correlation structure in a parsimonious way. This method
extends Partial Least Squares by accounting for the temporal structure of the data and allows
inference on the successive components. It also extends omnibus tests for one predictor to a
set of predictors under the assumptions described above.

An important issue is functional versus effective connectivity. Although canonical vari-
ate analysis and related methods do not directly inform on the effective connectivity (the
influence of one region on another), their output can be used to generate hypotheses on
the effect or modulation of the activity of one part of the brain depending on the response
observed in other locations. Of particular interest might be the comparison of first and
second or subsequent components bearing in mind that these are constructed such that they
are uncorrelated to each other. In this respect, unpredicted spatio-temporal patterns with
meaningful neurophysiological (or possibly artefactual) interpretations can be observed in
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second, third or further components. The Multivariate Linear Model (MLM) technique per-
mits the formal testing of the signal left in these components while removing the variation
explained by the previous patterns.

We expect the proposed multivariate analyses to have more and more importance in
the future for the following reason: in many occasions, brain responses will be modeled by a
series of functions (regressors or predictors) for which no specific contrasts can be formed, and
for which the parameter of interest is the overall variance explained by this set of functions.
While the F -statistic map provides position specific information on the “significance” and the
shape of the observed signal, the MLM method extracts a set of unique and global functions
which inform on the commonalities of the brain temporal and spatial hemodynamic responses
to a stimulus. Obviously, observed patterns will be dependent on the space spanned by the
set of functions and it is likely that variations found in the results for different spaces could
inform on the complexity or the nature of the brain functions. This remain to be investigated
and relates to model selection techniques for which MLM could be used to give an overall
assessment of the significance of a set of regressors.

A Appendix

A.1 Validity of SVD-CVA for PET data

The preliminary SVD step of Friston et al. (1995b, 1996) induces correlations between the
scans (in particular the sum of squares of scan measurements are fixed at 1) so that the
assumptions for validity of the usual multivariate statistical methods do not hold. Never-
theless, we shall show that results still remain valid, provided the scans are independent, so
that the method can be used for PET data, as for example in Fletcher et al. (1996).

The argument is as follows. It is not hard to show that canonical correlations for any
pair X,Y∗ are invariant under any rotation of the scans, that is, pre-multiplication by an
orthonormal matrix R. Moreover the canonical correlations (and hence Wilk’s Λ) depend
on Y∗ only through the standardized observations, W = Y∗(Y∗′Y∗)−1/2. In fact the null
distribution of W is characterized by the fact that W′W = I, the identity matrix, and that
the distribution of W is invariant under rotations. These distributional assumptions are
met by the temporal SVD components Y∗ = YV′ of Y, provided the scans are independent
and normally distributed, for the following reason. The temporal SVD components of RY
are RY∗, giving standardized observations RW. The multivariate normal distribution of
RY is the same as that of Y, hence the distribution of RW is the same as that of W.
The distribution of W is thus rotationally invariant and (RW)′RW = I, guaranteeing that
the canonical correlations of X,Y∗ have the same distribution as if the rows of Y∗ were
independent normal. Note that this argument breaks down when the scans are correlated as
in fMRI data, because then the multivariate normal distribution of RY is not the same as
that of Y.
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A.2 Sensitivity of SVD-CVA for PET data

The idea of reducing voxels by a singular value decomposition, as proposed by Friston et al.
(1995b, 1996), appears at first to be very sensitive, but in this section we shall provide some
evidence that our proposed method based on F -statistics is more sensitive at detecting both
a distributed signal and a focal signal.

To simplify the discussion, suppose there is a single temporal predictor, and a single
underlying temporal response to it that is expressed by different strengths in different brain
regions. The first temporal SVD component should pick out these responses from the back-
ground noise, without any input from the predictor.

Friston et al. (1995b, 1996) then propose to test for the temporal response by regressing
the first temporal SVD component Y∗ on the temporal predictor and using a standard
multivariate test statistic, Wilk’s Λ. In this case, Wilk’s Λ becomes a simple t-test for
correlation between the SVD component and the predictor (we shall refer to this as the
SVD t-test). Even though the distribution of the SVD component is not Gaussian, it can be
shown that the t-statistic does have the usual null t-distribution as if the observations were
Gaussian, provided there is no temporal correlation (see Appendix A.1). This remarkable
result allows us to set the specificity of the test accurately, and at the same time to enhance
the signal beforehand, without seemingly sacrificing anything.

However our simulations provide some evidence that a straightforward F -test is more
sensitive. The F -test is based on the sum of squares of the separate t-statistics, one for
each voxel, obtained by regressing the temporal predictor on the raw temporal voxel data,
without first extracting the temporal SVD component. We simulated Gaussian white noise
at 100 independent voxels (roughly equal to the number of RESELS in 20mm smoothed
data) and 10 independent time points (roughly equal to the number of temporal RESELS),
and added two types of signal: a distributed signal generated from 100 Gaussian random
variables, and a focal signal covering 5% of the voxels. In both cases the signal to noise ratio
was 0%, 10% and 20%. Figure A.6 shows the sensitivity from 1000 simulations as a function
of false positive rate.

The specificity of both tests is well controlled: at 0% signal the SVD t-statistic has
a t-distribution with 9 degrees of freedom; the F -statistic has an approximate scaled F -
distribution with 100 and 174 degrees of freedom (see (4.3)). However in every case the
F -statistic is more sensitive by 10-50%, especially for the focal signal where we might have
thought the SVD t-statistic would do better.

It should be mentioned that the SVD-CVA method has the advantage that it does not
depend on the assumed spatial correlation structure, whereas the effective degrees of freedom
of the F -statistic (4.2) does depend on an assumed Gaussian-shaped point response function.
Since fMRI data is often smoothed prior to analysis with a Gaussian-shaped filter, this
assumption seems reasonable.

To conclude: the SVD-CVA approach is only valid for independent scans, but it makes
no assumption about the spatial correlation structure. Even when conditions are favorable
for the SVD-CVA approach (no temporal correlation), a simple F -test appears to do better.
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A.3 Matrix details

Fi can be written in matrix notation as follows; these results can be found in Worsley &
Friston (1995), but they are repeated here for clarity. Let Yi be the column vector of scan
measurements at voxel i, i = 1, . . . , N . The linear model at voxel i is

Yi = Xβi + Gγi + εi, (A.1)

where X is the design matrix of the subset of predictors of interest, whose rows are the scans
and whose columns are the predictors of interest, possibly filtered by the hemodynamic
response function; G is a similar design matrix for the predictors of no interest such as a
constant term and a linear temporal drift. The error vector εi has a Gaussian distribution
with mean zero and variance-covariance matrix Σσ2

i , where σ2
i is an unknown scalar and

the scans×scans matrix Σ can be modeled as the convolution of the hemodynamic response
function with itself (Friston et al. , 1995a) or by more sophisticated models (Zarahn et al. ,
1997). The complete design matrix D = [XG] is assumed to have full rank. Then the least
squares estimator of the effects βi of the predictors of interest, allowing for the effects γi of
the predictors of no interest, is

bi = (X′
GXG)

−1
X′

GYGi,

where

XG = X−G(G′G)
−1

G′X,

YGi = Yi −G(G′G)
−1

G′Yi.

Let R = I−D(D′D)−1D′, where I is the scans×scans identity matrix. Then the residuals
are ri = RYi and an unbiased estimator of σ2

i is

σ̂2
i = r′iri/trace(RΣ).

Hence an unbiased estimator of the variance of bi is

Var(bi) = (X′
GXG)

−1
X′

GΣXG(X′
GXG)

−1
σ̂2

i .

If we define the mean regression sum of squares of the normalized predictors of interest as

Hi = Y′
GiXG(X′

GΣXG)−1XG
′YGi/h,

then
Fi = b′iVar(bi)

−1bi = Hi/σ̂
2
i .

The normalized effects can be calculated as follows. Let

M = X′
GΣXG.

Then M−1/2 can be chosen to be the transpose of the inverse of the Cholesky factor of M,
so that M−1/2M(M−1/2)′ is the identity matrix. This then defines

Zi = M−1/2X′
GYGi/σ̂i.



Worsley: Characterizing the Response of PET and fMRI Data 15

The mean sums of squares and cross-products matrix is then

S =
N∑

i=1

ZiZ
′
i/N.

The eigenvalues of S are λ1 ≥ λ2 ≥ · · · ≥ λh which form the diagonal elements of Λ, and the
corresponding eigenvectors (principal components) are u1 . . .uh, which are analogous to the
rows of U in Figure A.6. Note that the signs of these principal components are arbitrary.
The spatial response corresponding to the jth principal component at voxel i, analogous to
V in Figure A.6, is

vij = Z′iuj/
√

λj.

The corresponding observed temporal response removing the effect of G, analogous to YV′

of Figure A.6, is

yj =
N∑

i=1

vijYGi/(σ̂iN).

Finally, the corresponding predicted temporal response removing the effect of G, analogous
to XU′ in Figure A.6, is the predicted values from a regression of yj on XG:

ŷj = XG(X′
GXG)−1X′

Gyj =
√

λjXG(X′
GXG)−1M1/2uj.

The scaling of the observed and predicted temporal responses are arbitrary, but they
were chosen in the following way. Suppose βi/σi = β̃ṽi, where

∑
i ṽ

2
i /N = 1, that is the effect

of interest divided by the standard deviation of the observations is proportional to a single
common effect β̃, with the voxel RMS of the constant of proportionality equal to 1. Suppose
also that the error εi in the linear model (A.1) is zero. Then it can be shown that there is
only one response (q = 1), the spatial response is vi1 = ṽi, and the observed and predicted
temporal responses are y1 = ŷ1 = XGβ̃. Thus 1 on the scale of the observed and predicted
temporal responses corresponds to σi on the scale of the observations.

A.4 Temporal degrees of freedom

The exact degrees of freedom of the mean regression sum of squares Hi is h, and the effective
(temporal) degrees of freedom of σ̂2

i is

ν = trace(RΣ)2/trace(RΣRΣ).

However Hi is not independent of σ̂2
i , even assuming that νσ̂2

i /σ
2
i has a χ2 distribution with

ν degrees of freedom, so that the distribution of Fi is not quite Fh,ν . It can be shown that
the correlation between Hi and σ̂2

i is

ρ =
trace(XG(X′

GΣXG)−1X′
GΣRΣ)√

h trace(RΣRΣ)
. (A.2)

It is also possible to show that this correlation is small but always positive. The effect of pos-
itive correlation between the numerator and denominator of the F ratio is to slightly increase
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the effective numerator and denominator degrees of freedom (by factors of 1/(1 − ρ
√

h/ν)

and 1/(1 − ρ
√

ν/h) respectively, see (A.5)), resulting in slightly larger critical thresholds.
Thus using h and ν as degrees of freedom will result in a slightly conservative test. For
the example used in this article, ρ = 0.018 and the effective numerator and denominator
degrees of freedom are increased by factors of 1.005 and 1.015, respectively; clearly these are
negligible.

The above factors were obtained by the following argument. Suppose V and W are two
positive random variables with unit expectation, and our goal is to choose the degrees of
freedom of an F distribution to match the first two moments of V/W ; in our case V = Hi and
W = σ̂2

i . Using a Taylor series expansion about V = 1 and W = 1, and taking expectations,
it can be shown that

E(V/W ) ≈ 1 + Var(W )− Cov(V, W ),

Var(V/W ) ≈ Var(V )− 2Cov(V,W ) + Var(W ), (A.3)

plus terms in third order moments of (V,W ) and higher. If F has an F distribution with v
and w degrees of freedom then

E(F ) ≈ 1 + 2/w,

Var(F ) ≈ 2/v + 2/w, (A.4)

plus quadratic terms in (1/v, 1/w) and higher. Equating the right hand sides of (A.3) and
(A.4) implies that

v = 2/(Var(V )− Cov(V,W )) = v∗/(1− ρ
√

v∗/w∗),

w = 2/(Var(W )− Cov(V,W )) = w∗/(1− ρ
√

w∗/v∗), (A.5)

where v∗ = 2/Var(V ) = h, w∗ = 2/Var(W ) = ν and ρ = Cor(V,W ), given by (A.2).

A.5 Spatial degrees of freedom

We now turn to the spatial correlation structure of Fi. It is straightforward to show that any
linear combination of stationary Gaussian random fields with identical spatial correlation
function ρ(x) has the same spatial correlation function ρ(x). From this it can be shown that
the spatial correlation function of any quadratic form in these Gaussian random fields, such
as Hi or σ̂2

i , is equal to ρ(x)2. We now consider the ratio of two quadratic forms. In general,
if Cor(V1, V2) = Cor(W1,W2) = ρ12, and Cor(V1,W1) = Cor(V2,W2) = 0 then Taylor series
methods give Cor(V1/W1, V2/W2) ≈ ρ12. This implies that the spatial correlation function
of Fi is approximately equal to ρ(x)2.

Worsley et al. (1995) show that the effect of averaging the square of a Gaussian random
field is to divide the variance by the effective spatial degrees of freedom d (4.2). ¿From this
it follows that the effect of averaging Fi over voxels is to decrease the variance of the F
distribution by the same factor d, which implies that the mean and variance of S are

ν

ν − 2
and

2ν2(h + ν − 2)

dh(ν − 2)2(ν − 4)
,
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respectively. Following the argument in Worsley et al. (1995), it seems appropriate to
approximate the distribution of a multiple of S by an F -distribution with degrees of freedom
ν1 and ν2 chosen to match the mean and variance of S. To do this, we must equate the
coefficients of variation, which leads to

h + ν − 2

dh(ν − 4)
=

ν1 + ν2 − 2

ν1(ν2 − 4)
. (A.6)

This does not uniquely specify ν1 and ν2; one possibility is to match higher moments. Instead,
we have found from simulations that a satisfactory choice is to fix ν1 = dh, which satisfies
(A.6) for infinite ν and ν2, then solve (A.6) for ν2, which leads to (4.3). Note that this gives
the correct distribution for S when there is just one voxel and d = 1.

A.6 Simulations in Fourier space

Considerable savings in computations were achieved by carrying out all simulations in Fourier
space. The principle behind this is that all the methods advocated in this paper, the re-
gression and the principal components, are invariant under orthonormal transformations in
space or time. A Fourier transform of the data does not therefore affect the calculations,
but it reduces the smoothing step to multiplication by the spectrum of the filter. Moreover
many of the spectrum values are negligibly small, so that only 2292 of the N = 10500 voxels
were actually needed for the spatial data. The only exception to this is the operation of
division by σ̂2

i , so in all our simulations we replaced it by its known variance σ2
i , so that

ν = ∞. A further reduction is possible in the temporal domain since the only random
variables needed for the simulations are Zi, whose h = 12 components have independent
Gaussian distributions, and not the entire temporal sequence of n = 120 observations.

The columns of a matrix of 2292× 12 independent standard Gaussian random variables
was multiplied by the products of the spatial spectrum to create the Fourier space equivalent
of the spatially smoothed null data, Zi. To create the simulated signal data, a single instance
of the spatially smoothed data, transformed to Fourier space as above, was used to represent
the spatial distribution of a single population principal component. This was multiplied by
a signal-to-noise ratio of 0.2 and added to the first component of Zi. Note that this spatial
distribution is created once only, and added to each null data set, so that the population
principal component is identical in all simulations.
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Figure 1a. Generic Canonical Variates Analysis
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Figure 1b. Generic Canonical Variates Analysis (continued)

Figure 1: Generic Canonical Variates Analysis (CVA) for a simulated fMRI data set. The
data consists of set of h = 12 predictor variables X and cerebral blood flow measurements Y
at N = 64 voxels, each sampled at n = 32 time points. U and V contain q = 2 (orthonormal)
latent variables for predictors and voxels, respectively, which act as weights. The weighted
predictors XU′ and weighted voxels YV′ are the predicted and observed temporal responses,
respectively. The aim is to capture the complex covariance structure X′Y of the original
data by a simpler covariance structure Λ of latent roots. This is done by approximating
X′Y by U′ΛV.
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Figure 2: Histograms of the global test statistic S for (a) null, and (b) simulated signal
data. Superimposed is the theoretical null F distribution and its P = 0.05 threshold. The
simulated signal data is highly significant.
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Figure 3: The average eigenvalues λj plotted against j for (a) null, (b) simulated signal,
and (c) real data, together with one standard deviation error bars. Superimposed are the
expected eigenvalues (lines): 1 for the non-null data, and 2.9 for the first component of the
simulated data. The real data appears to show one strong component.
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Figure 4: The p-values of the test statistics Sq for (a) null, (b) simulated signal, and (c) real
data. The horizontal dashed line is the P = 0.05 significance threshold. For the null data
there are no significant components in 96% of the cases; for the simulated data, there is just
one significant principal component in 98% of the cases; for the real data, there is just one
significant principal component.
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Fig 4(a): Null data
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Fig 4(b): Simulated signal
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Fig 4(c): Real data
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Figure 5: The predicted temporal response of the first principal component ŷ1. The experi-
ment consisted of 3 different tasks, each repeated 4 times, giving 12 epochs in all. Data from
each epoch has been superimposed. Although the epochs were repeated after 10 scans, the
predictor variables covered 12 scans to allow for a 2 scan overlap with the following epoch.
Accordingly, 12 scans are shown on the temporal axis. The principal components were se-
lected from (a) null, and (b) simulated signal data sets (3 second scans). Superimposed is
the true temporal response that was added to the data (heavy lines): zero (no signal) for the
null data, and a differential response for the three different tasks of the simulated data, taken
from that reported by Friston et al. (1995b). The dotted lines represent the rest epochs,
the broken lines represent the fixed epochs, and the solid lines the random epochs. The real
data (c) shows a strong delayed response for the random condition, which matches quite
closely the temporal response reported by (Friston et al. , 1995c, Figure 5) in the anterior
cingulate, reproduced here as (d). The full predicted and observed temporal responses are
shown in Figure A.6(b).
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Fig 5(a): Null data
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Fig 5(b): Simulated signal
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Fig 5(c): Real data
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Figure 5(d): Anterior cingulate response
from Friston et al. (1995c, Figure 5)
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Figure 6: (a) Spatial response and (b) predicted (solid) and observed (dashed) temporal
response for the first component of the real data. 1 on the scale of the observed and predicted
temporal responses corresponds to one standard deviation of the observations. The predicted
temporal response from each epoch is shown in Figure A.6(c). The spatial response is
consistent with a differential response detected in the anterior cingulate in Friston et al.
(1995c).
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Fig 6a. Spatial response

Fig 6b. Temporal responses
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Figure 7: Sensitivity of the F -test and SVD t-test to (a) a distributed signal and (b) a focal
signal, at 0%, 10% and 20% signal to noise ratio. Also shown is the theoretical sensitivity
at 0% signal, equal to the false positive rate (straight line). In all cases the F -test is more
sensitive than the SVD t-test.


