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SUMMARY
Many studies of brain function with positron emission tomography (PET) involve the

interpretation of a subtracted PET image, usually the difference between two images under
baseline and stimulation conditions. The purpose of these studies is to see which areas of the
brain are activated by the stimulation condition. In many cognitive studies, the activation is
so slight that the experiment must be repeated on several subjects and the subtracted images
are averaged to improve the signal to noise ratio. The averaged image is then standardized
to have unit variance and then searched for local maxima (Fox et al., 1988). The main
problem facing investigators is which of these local maxima are statistically significant. We
describe a simple method for determining an approximate p-value for the global maximum
based on the theory of Gaussian random fields as developed by Adler and Hasofer (1976) and
Adler (1981). The p-value is proportional to the volume searched divided by the product of
the FWHMs of the image reconstruction process, or number of resolution elements (resels).
Rather than working with local maxima as in Fox et al. (1988), our method focuses on the
Euler characteristic of the set of voxels with a value larger than a given threshold. The Euler
characteristic depends only on the topology of the regions of high activation, irrespective
of their shape. For large threshold values this is approximately the same as the number of
isolated regions of activation above the threshold. We can thus determine not only if any
activation has taken place, but we can also estimate how many isolated regions of activation
are present.
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1 INTRODUCTION

An increasingly important application of positron emission tomography (PET) involves the
measurement of regional cerebral blood flow (CBF) during the performance of various sen-
sorimotor or cognitive tasks. Regional changes in CBF between two tasks reflects the mo-
bilization of functional units specific to the new task. For subtle cognitive tasks, these
changes are small (≤ 10%) and are usually not apparent from a single subtraction study.
The signal-to-noise ratio can be improved with an image-averaging procedure which requires
the geometrical scaling and re-sampling of PET image data from each of a number of sub-
jects, or repeated experiments in a single subject, onto a standardized stereotactic coordinate
framework (Fox et al., 1985, 1988; Talairach & Tournoux, 1988; Fox & Mintun, 1989). Using
this transformation on each of a set of typically 8-12 change images, one can generate a 3-D
composite dataset where each voxel contains a statistic for the change in CBF at that brain
location when measured across the repeated experiments. This may be simply the mean
relative change in CBF or a measure which includes information about the variance across
subjects (repeats) such as a t-statistic. If each voxel were an independent measure such a
dataset would contain 105−106 samples and, even at a threshold set to correspond to p = 0.01
for a significant CBF change, there would be 103 − 104 voxels exceeding the threshold by
chance alone. Hence a Bonferroni-type correction for multiple comparisons would raise the
significance threshold to prohibitive levels. In reality, adjacent voxels are highly correlated by
the initial image reconstruction process. This spatial coherence is related to the full-width
at half-maximum (FWHM) of the reconstruction filter which is typically set at 15-20mm
(this value is set higher than the intrinsic scanner resolution of 5-10mm to overcome the
residual anatomical variability among subjects persisting after stereotactic transformation).
Thus the appropriate sampling element for such datasets is the ‘resolution element’ or ‘resel’
which can be regarded as a block of voxels with dimensions equal to the effective FWHM of
the reconstructed image in each dimension. This elemental volume is a physical entity and
the number of resels in a complete dataset is fixed, unlike the number of voxels which is set
arbitrarily by choice of voxel dimensions. However, since a resel volume can be centred at
any voxel, the search must proceed voxel-by-voxel. Hence, the analysis of such large datasets
for the occurrence of significant CBF changes require statistical methods which recognize the
inherent spatial correlation among adjacent voxels and allow a means of estimating the num-
ber of truly independent samples present within the sampled volume. This paper addresses
the question of identifying significant changes in spatially-correlated data using the concept
of three-dimensional Gaussian random fields. The theory is presented and tested both by
simulation and by analysis of real PET data taken from a study of cerebral activation in
response to a painful heat stimulus and a cognitive study of single word recognition.
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2 THEORY

2.1 The t-statistic image

Suppose that an activation study consisted of n subjects, each scanned under two conditions
denoted by A and B. We are interested in detecting activation due to the task condition B
by subtracting the image under the rest condition A.

Let Ai(x, y, z) and Bi(x, y, z) be the CBF of subject i, i = 1, · · · , n at voxels with
coordinates (x, y, z), under the two conditions A and B. These were standardized to have
the same mean and then subtracted to give normalized differences ∆i(x, y, z) i.e. ∆CBF at
(x, y, z):

∆i(x, y, z) = (Bi(x, y, z)/Bi − Ai(x, y, z)/Ai)× 100

where Bi and Ai are the average CBF over all intra-cerebral voxels in conditions B and A,
respectively. The average subtracted image and its variance were calculated as

M(x, y, z) =
n∑

i=1

∆i(x, y, z)/n(x, y, z)

S2(x, y, z) =
n∑

i=1

{∆i(x, y, z)−M(x, y, z)}2/{n(x, y, z)− 1)}

where n(x, y, z) is the number of subjects with a blood flow value at (x, y, z), 0 ≤ n(x, y, z) ≤
n. The first summation was carried out over all voxels with n(x, y, z) > 0, and the second
over all voxels with n(x, y, z) > 1. In our studies, inspection of S(x, y, z) revealed no obvious
spatial trends, such as higher values in the centre of the brain, nor was it markedly dependent
on the average baseline CBF value or ∆CBF (see Methods section) so it was pooled over all
inter-cranial voxels with n(x, y, z) > 1 to obtain the average variance

S2 =
∑
x,y,z

{n(x, y, z)− 1}S2(x, y, z)/
∑
x,y,z

{n(x, y, z)− 1}.

The t-statistic image, based on the pooled standard deviation, was then calculated as

T (x, y, z) = M(x, y, z)/{S/
√

n(x, y, z)}.

Note that the standard deviation S̄ is pooled over a very large number of voxels so the
effective degrees of freedom of T (x, y, z) is very large. The effective degrees of freedom
will depend on the correlation structure of the voxels. If we can find N voxels sufficiently
separated so that they are independent, then the effective degrees of freedom is at least
(n − 1)N . Typically N ≈ 300 (see later) and n ≈ 10, so the effective degrees of freedom is
certainly large enough to approximate the distribution of T (x, y, z) by a standard Gaussian
rather than a t-distribution.

An alternative approach is to divide by the voxel standard deviation rather than the
pooled standard deviation to obtain a t-statistic image with n(x, y, z)−1 degrees of freedom:

Tn(x, y, z) = M(x, y, z)/{S(x, y, z)/
√

n(x, y, z)}.
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The advantage of dividing by the pooled standard deviation rather than the voxel standard
deviation is that T (x, y, z) is proportional to the mean M(x, y, z), and so regions with high
T (x, y, z) correspond to regions of high mean activation. Secondly, the larger degrees of
freedom of the pooled standard deviation decreases the variablity of T (x, y, z), which results
in increased power at detecting activation (see Methods section). A compromise between
the two t-statistics is to divide by a smoothed standard deviation; in this sense S̄ is the
smoothest possible standard deviation and S(x, y, z) is unsmoothed. This appears to present
more theoretical difficulties than either of the two extremes and so it will not be pursued in
this paper.

2.2 The maximum t-statistic Tmax and its p-value

The statistical significance of regions of activation in the subtracted image volume was
assessed by comparing the t-statistic image T (x, y, z) to a level α (α = 0.05, say) critical or
threshold value tα. If the t-statistic was larger than tα then activation at the point (x, y, z)
was declared statistically significant at level α. The critical value tα was calculated so that
if no activation was present then the maximum t-statistic Tmax, searched over a given brain
region of volume V , would exceed tα with a probability of approximately α. Thus if no
activation is present, this procedure will produce a false-positive with a probability of α.

The key quantity is the probability that Tmax > t for some fixed threshold t. The p-
values based on the standard Gaussian distribution are obviously far too small since no
correction is made for the large number of voxels searched to obtain the maximum. On
the other hand, a Bonferroni correction is much too conservative since adjacent voxels are
so highly correlated. A corrected p-value was calculated using results from the theory of
Gaussian random fields (Adler, 1981; for a non-technical review of the major results see
Hasofer, 1978). It was assumed that the t-statistic image T (x, y, z) when no activation
was present could be modeled by a smooth homogeneous Gaussian random field with zero
expectation and unit variance. One of the conditions is that the distribution of T (x, y, z)
must be Gaussian at each voxel. The central limit theorem will ensure that the distribution
of the numerator M(x, y, z) is close to Gaussian since it is the average of n images. Because
the standard deviation S̄ is pooled over a very large number of voxels its effective degrees
of freedom is very large. Hence the null distribution of T (x, y, z) is well approximated by
a standard Gaussian distribution. A condition for homogeneity is that the point response
function, in particular the FWHM, should be the same at every voxel.

The main result, originally due to Adler and Hasofer (1976), is that if t is large then the
probability that the maximum of such a random field exceeds t is approximately

P(Tmax > t) ≈ V |Λ| 12 (2π)−2(t2 − 1)e−
1
2
t2 (1)

provided that the search volume V is large relative to the smoothness of the image. The
matrix Λ is the 3 × 3 variance matrix of the partial derivatives of the random field in each
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of the 3 variables x, y and z, and measures the roughness of the image:
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Thus as the search volume increases or the image becomes rougher then the p-value, and
hence the critical values based on it, must increase. Note that (1) is not a probability for
all values of t since it can exceed one or even take negative values. In practice (see Methods
section) it appears to be a satisfactory approximation if the p-value given by (1) is less than
0.1 and the number of resels R is greater than 30 (see (5)).

Some caution should be exercised in using the result (1) since it is sensitive to the
assumption of a Gaussian distribution in the extreme tails of the distribution. Even though
the central limit theorem may ensure an adequate approximate Gaussian distribution over
the bulk of the range, this may not be the case in the tails, unless the individual images are
already close to a Gaussian distribution.

2.3 The relationship of |Λ| to the FWHMs and the number of
resolution elements

.
The main computational task is to estimate Λ. This can be done by taking numerical

derivatives; details are given in the Methods section. However we can derive a simple expres-
sion for Λ if we make the assumption that the image under no activation can be generated
by convolving a white noise Gaussian random field with a kernel or point response function
k(x), where x denotes the vector (x, y, z)T, and superscript T denotes transpose. Then it
can be shown (Adler, 1981, Chapter 2) that the variance matrix of the vector of partial
derivatives is

Λ =

∫
∂k(x)

∂x

∂k(x)

∂xT
dx

/ ∫
k2(x)dx.

Applying this to a Gaussian kernel of the form k(x) ∝ exp{−xTΣ−1x/2} gives Λ = Σ−1/2. If
the principal axes of Σ coincide with the x, y and z directions then the off diagonal elements
of Λ are zero. If FWHMx, FWHMy and FWHMz are the full widths at half maximum in
the x, y and z directions then

Λ =




1/FWHM2
x 0 0

0 1/FWHM2
y 0

0 0 1/FWHM2
z


 (4 loge 2) (2)

and so
|Λ| 12 = (FWHMxFWHMyFWHMz)

−1 (4 loge 2)
3
2 . (3)

In practice it was found (see Methods section) that the accuracy of the relationships (2)
and (3) could be greatly improved by taking into account the increased smoothness of the
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image in the z-direction caused by linear interpolation and re-sampling of the 15 planes of
the PET camera to produce the 80 planes of the image. The result is as follows. Suppose
that the separation of the PET planes is d. The image is then re-sampled at smaller voxels
of size dc ≤ d by linear interpolation. If the point response function of the original image is
Gaussian, then the effective FWHM of the re-sampled image increases to

FWHMzc = d(4 loge 2)
1
2{1− (1− ρ)/3)} 1

2{2(1− ρ)− (dc/d)(3− 4ρ + ρ4)/3}− 1
2 , (4)

where ρ = exp{−(2 loge 2)d2/FWHM2
z} is the correlation between planes separated by a

distance d (see Figure 1 and the Appendix for a proof). In our example FWHMz = 6mm,
the plane separation is d = 6.5mm, and the size of the re-sampled voxels is dc = 1.5mm,
which gives an effective FWHM in the z-direction of FWHMzc = 7.6mm. No such correction
was necessary to the FWHMs in the x- and y-directions since the FWHMs were large relative
to the voxel sizes.

Let R = V/(FWHMx× FWHMy× FWHMzc), the search volume divided by the product
of the full widths at half maximum, be a measure of the number of resolution elements, or
resels, in the search volume. Combining (1) and (3) the approximate p-value can be simply
stated as

P(Tmax > t) ≈ R(4 loge 2)
3
2 (2π)−2(t2 − 1)e−

1
2
t2 . (5)

Based on (5), a table of approximate critical values tα of Tmax, chosen so that P(Tmax >
tα) = α is given in Table 1(a). For example, if the number of resels is 500 then the level
α = 0.05 critical value of the maximum t-statistic is approximately 4.47.

2.4 The number of isolated regions of activation

Our main result (1) on the p-value of Tmax was first derived rigorously by Adler and Hasofer
(1976) using the concept of the Euler characteristic χt of the excursion set of T (x, y, z) above
a threshold t. The excursion set is simply the set of voxels for which T (x, y, z) > t, that
is the region of activation greater than t. The precise definition of the Euler characteristic
involves the curvature of the boundary of the excursion set at tangent planes; see Adler
(1981), page 89. Essentially it counts the number of isolated parts of the excursion set,
irrespective of their shape, minus the number of ‘holes’. For example the Euler characteristic
of a solid ball is 1, of a doughnut is 0. If no holes are present then it counts the number of
isolated regions of activation in an image above the threshold t. An illustration of the Euler
characteristic of the excursion set of a two dimensional image is shown in Figure 2(a,b).
As the threshold level t increases Adler shows that the holes tend to disappear and that
we are left with isolated regions each of which contains just one local maximum (Figure
2(c)). Thus for large t the presence of holes is a rare occurrence and the Euler characteristic
approaches the number of local maxima. For even larger t near the global maximum Tmax

the Euler characteristic takes the value 0 if Tmax < t and 1 if Tmax > t (Figure 2(d)). Since
P(Tmax > t) ≈ P(χt ≥ 1) ≈ E(χt) as P(χt > 1) → 0 for t → ∞ (Hasofer, 1978), then the
expected Euler characteristic approximates the p-value of Tmax.

The importance of the Euler characteristic, as opposed to the number of local maxima,
is that it is more amenable to statistical analysis. There is no known simple result for the
expected number of local maxima greater than t. On the other hand, Adler (1981), page
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111, shows that for any threshold t the expected Euler characteristic of the excursion set of
a zero expectation, unit variance stationary Gaussian random field is exactly

E(χt) = V |Λ| 12 (2π)−2(t2 − 1)e−
1
2
t2 = R(4 loge 2)

3
2 (2π)−2(t2 − 1)e−

1
2
t2 (6)

which leads directly to the approximate p-value of Tmax (1). Moreover, Adler (1981), page
162, shows that for large |t|, χt has a Poisson distribution and so its standard deviation is
approximately

√
E(χt). Table 1(b) is an extension of Table 1(a) which gives some values

of t chosen so that the expected Euler characteristic (6) takes values 1, 2 and 5, for several
values of the number of resels, R. For example, if the number of resels is 500 then we expect
approximately 2 false positive isolated regions of activation above the t = 3.38 threshold.

Our proposed estimator of the number of isolated regions of activation is the Euler
characteristic of the t-statistic image thresholded at a level α critical value, tα, for a suitably
small value of α, say 0.05. This should pick out the isolated peaks of activation in the signal,
while protecting us against finding any false positive regions in the unactivated (noise-only)
parts of the image. It is similar to the sequentially rejective multiple test procedure proposed
by Holm (1979). A more complete picture can be obtained from a plot of the observed χt

and E(χt) against t - see the Results section.

2.5 Evaluation of the Euler characteristic

For a random field evaluated over a lattice of voxels, Adler (1981), page 121, shows how the
Euler characteristic can be approximated using only the local properties of the excursion set
over adjacent voxels. Unfortunately, if the excursion set touches the boundary of the search
volume, the definition depends on the direction in which the voxels are scanned, so we have
modified the definition to average over all the 8 directions in which adjacent voxels can be
scanned. This does not affect its expectation (6).

Our definition is as follows. Let us represent all voxels by points at their centres. Consider
a 2× 2× 2 ‘cube’ of 8 adjacent voxels centred at (x, y, z), (x + δx, y, z), (x, y + δy, z), (x +
δx, y + δy, z), · · · , (x + δx, y + δy, z + δz), all of which are inside the search volume (Figure
2(f)). Let P be the number of vertices of the cube inside the excursion set, that is with
T (x, y, z) > t (0 ≤ P ≤ 8). Let E be the number of edges joining adjacent vertices both of
which are in the excursion set (0 ≤ E ≤ 12). Let F be the number of faces all of whose vertices
are in the excursion set (0 ≤ F ≤ 6). Let C be the number of cubes all of whose vertices are
in the excursion set, that is C = 1 if all vertices are in the excursion set and zero otherwise.
The contribution of this cube to the Euler characteristic is e = P/8− E/4 + F/2− C. The
Euler characteristic χt is then the sum of e over all such cubes in the search volume. On a
historical note, this definition is related to the famous formula discovered by Euler in 1752:
if P , E and F are the number of vertices, edges and faces of any polyhedron on a sphere
then P − E + F = 2, which turns out to be the Euler characteristic of a hollow sphere.

It can be shown that provided the excursion set contains no holes and does not touch
the boundary of the search volume then χt defined in this way counts the number of isolated
regions. Note that for the purpose of this definition two voxels are connected if they are
joined by an edge of the lattice of voxels, such as (x, y, z) and (x + δx, y, z), but voxels
separated by a diagonal such as (x, y, z) and (x + δx, y + δy, z) are not connected. However
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if an isolated region of the excursion set with no holes touches the boundary (Figure 2(e),
t < 2.7) then its contribution to χt decreases below one. Its value depends on the shape of
the boundary where the excursion set touches. If the boundary is flat then χt is one half; if
it is convex then χt lies between zero and one half; if it is concave then χt lies between one
half and one. Thus regions in the outer cortex, which lie near the boundary of the search
volume, may have lower than expected χt if the threshold is low.

Even when no activation is present the probability that the excursion set touches the
boundary of the search volume is quite high. A rough idea can be worked out using the
theory of two-dimensional Gaussian fields (see next section). If the correlation structure is
isotropic (all FWHM’s equal) and a spherical search volume contains R = 500 resels, the
expected number of isolated regions greater than t = 3.62 is 1 (from Table 1), whereas
the probability that any of these regions touches the boundary is approximately 0.28. This
decreases to 0.011 at the 5% critical value t = 4.47. To overcome this, we suggest using a
generous search volume to make sure that potential regions of activation do not touch the
boundary.

Finally, it should be noted that for threshold values near zero the Euler characteristic
usually takes negative values because the holes outnumber the isolated regions. In fact from
(6) it can be seen that the expected Euler characteristic is always negative if |t| < 1. The
interpretation of the Euler characteristic at these thresholds seems difficult, but it is useful
for verifying the agreement between the observed and expected Euler characteristic from (6).

2.6 Maxima in a slice

Adler and Hasofer (1976) and Adler (1981), page 111, give a more general result for the
p-value of the maximum of a Gaussian random field in any number of dimensions. Their
two-dimensional result can be used to find the p-value of the slice maximum, T S

max say:

P(T S
max > t) ≈ RS(4 loge 2)(2π)−

3
2 te−

1
2
t2 ,

where RS is the number of resels in the search area, defined as the search area divided by
the product of the two FWHM’s in the slice. Friston et al. (1991) used heuristic arguments
to derive a slightly different result (formula (2)) for the p-value of a slice maximum, which
in our notation is

PF (T S
max > t) ≈ RS(8 loge 2)/{32πet2p(t)},

where p(t) is the probability that a standard normal variate exceeds t. Using the approxi-

mation p(t) ≈ (2π)−
1
2 exp(−1

2
t2)/t for large t (Adler, 1981, page 135) we obtain

PF (T S
max > t) ≈ (π/4)RS(4 loge 2)(2π)−

3
2 te−

1
2
t2 ≈ (π/4)P(T S

max > t).

Although the p-value of Friston et al. (1991) formula (2) is technically incorrect, since it
differs from the result of Adler and Hasofer by a factor of approximately π/4 = 0.79, it seems
to be satisfactorily accurate in practice, as confirmed by the simulation results reported in
Friston et al. (1991).
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2.7 The t-statistic image Tn(x, y, z) based on the voxel standard
deviation

The above theory may be used to find approximate expressions for the p-value of the max-
imum Tn max of a non-Gaussian random field such as Tn(x, y, z) by transforming it to a
Gaussian random variable at each point. Let G(x, y, z) = p−1(pn(Tn(x, y, z))) where pn(t) is
the probability that a t-random variable with n − 1 degrees of freedom exceeds t and p(g)
is the probability that a standard Gaussian random variable exceeds g. Unfortunately such
a field G(x, y, z) may be Gaussian at each point (x, y, z) but not necessarily multivariate
Gaussian at each set of points, so that strictly speaking it is not a Gaussian random field,
and the theoretical results of the previous sections do not apply. Nevertheless we can still
justify p-values like (1) and (5) by appealing to the results of Vanmarcke (1983) for non-
Gaussian random fields, provided that we correct for changes in the roughness Λ of the field.
The appropriate correction factor λn is derived in the Appendix. The resulting approximate
p-value of the maximum Gmax = p−1(pn(Tn max)) searched over a volume V containing R
resels is

P(Gmax > g) ≈ λ
3
2
nV |Λ| 12 (2π)−2(g2 − 1)e−

1
2
g2 ≈ λ

3
2
nR(4 loge 2)

3
2 (2π)−2(g2 − 1)e−

1
2
g2

. (7)

This result only holds for n ≥ 4 subjects. Some values of λn for n = 4, 5, . . . , 20 are 1.757,
1.434, 1.304, 1.233, 1.189, 1.159, 1.137, 1.121, 1.108, 1.097, 1.089, 1.082, 1.075, 1.070, 1.066,
1.061 and 1.058. Note that λn decreases to one as n increases, so that the image G(x, y, z)
is slightly rougher that T (x, y, z). There are no theoretical results for the expected Euler
characteristic of excursion sets of Tn(x, y, z) or G(x, y, z).

Result (7) should be used with much more caution than (1) or (5) because it is based
on far more assumptions about the distribution of the images. These assumptions are that
each subject’s subtracted image ∆i(x, y, z) is a stationary Gaussian random field with the
same standard deviation σ. In particular, result (7) is highly sensitive to the assumption of
a Gaussian distribution for each subject’s subtracted image. Results (1) and (5) are more
robust since the central limit theorem implies that T (x, y, z) will be approximately Gaussian
even if the subject’s subtracted images are not, and the results (1) and (5) will remain
valid (though perhaps less sensitive) even if the subject’s standard deviations differ between
subjects. Exact theoretical results that supercede (7) have been found for the voxel-based
t-statistic (see addendum).

3 METHODS

3.1 Data Acquisition

PET scans were obtained using the Scanditronix PC-2048 system which produces 15 image
slices 6.5 mm apart with a transverse image resolution of 4.6-6.4 mm and an axial resolution
of 5.4-7.1 mm (5). Using the bolus H15

2 O methodology without blood sampling (6,7,8), the
relative distribution of cerebral blood flow (CBF) was measured in baseline and activation
conditions. For the pain study (Talbot et al., 1991) 8 subjects underwent a procedure
wherein a thermistor was applied to the forearm at both warm (42oC) and high (48oC) states,
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each condition being studied twice in each subject. For the present work, we analyzed the
difference images of the two warm conditions as a dataset which should have an expectation
of zero throughout. We also analyzed the difference between the average of the two hot
conditions and the average of the two warm conditions to search for activation due to the
painful heat stimulus. One subject was scanned only once in the hot condition so this subject
was dropped leaving 7 subjects for this dataset. For the word-recognition study (Bub et al.,
in preparation), PET image data were collected from 10 normal volunteers. Visual stimuli
were presented for 1 sec with an interstimulus interval of 1 sec on a monochrome monitor,
suspended in front of the subject and covered by a light-tight curtain. The baseline condition
was a black plus-sign on a white background and for the activation condition, single words
were presented on the monitor for 1 second with an inter-stimulus interval of 1 sec. Each
subject in both studies also had an MRI scan containing 64 2mm-thick T1-weighted multi-
slice spin-echo images (TR = 550 msec ; TE = 30 msec) for later use in the 3-D analysis.

3.2 Data Analysis

To overcome residual anatomical variability in subsequently transformed stereotactic images,
a 20mm FWHM Hanning reconstruction filter was used. This has the effect of increasing
signal to noise in the averaged image at the expense of resolution. In the experimental
data sets studied here no axial filtering was used. Using a volumetric image registration
procedure described previously (Evans et al., 1989,1991), the MRI volume from each subject
was aligned with the corresponding PET volume. An orthogonal coordinate frame was
then established based on the anterior commissure - posterior commissural (AC-PC) line as
identified in the MRI image volume (Evans et al., 1992). These anatomical frame coordinates
were used to apply a trilinear re-sampling of each matched pair of MRI and PET datasets
into a standardized stereotactic coordinate system (Fox et al., 1985; Talairach & Tournoux,
1988) with no axial filtering. PET images were then normalized by dividing each voxel by
the mean value for all intra-cerebral voxels. The intra-cerebral voxels were defined as all
voxels with a value greater than 150% of the mean value of the entire volume. The mean
state-dependent change (∆CBF) image volume was obtained by averaging the subtracted
images across subjects. The ∆CBF volume was converted to a t-statistic volume by dividing
each voxel by the mean standard deviation in normalized ∆CBF for all intra-cerebral voxels.
Individual MRI images were subjected to the same averaging procedure, such that composite
stereotactic image volumes, 128 × 128 × 80 voxels in extent and sampled at approximately
1.4mm × 1.7mm × 1.5mm along the X, Y and Z axes respectively, were obtained for both
t-statistic and MRI.

3.3 Validation of the pooled standard deviation

We shall first examine the assumption of a stationary standard deviation, which allows us
to pool the standard deviation over the search volume. A formal test of equal standard
deviations is complicated by the correlation of adjacent voxels; the standard Bartlett test
is not valid, for example. Instead we shall assess the equality of the standard deviation by
plotting it against possible explanatory variables. For the pain study, a search volume of
3 × 105 voxels or V = 1090 cm3 was chosen that covered the top portion of the brain. For
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the ‘warm-warm’ dataset the standard deviation image S(x, y, z), with n− 1 = 7 degrees of
freedom was plotted against average baseline CBF normalized to 100 (Figure 3(a)). It can be
seen that the standard deviation was approximately constant. The standard deviation was
also plotted against the average subtracted activation M(x, y, z) (Figure 3(b)). There is some
evidence of increased standard deviation in areas of high activation, perhaps attributable to
misalignment of areas of activation or differing strengths of subject activation. However, over
the bulk of the search volume where little activation has occurred, the standard deviation
is roughly constant. Finally, the standard deviation was plotted against the distance from
the slice centre, defined as the vertical line through the mid-point of the AC-PC line (Figure
3(c)). Again there is evidence of a slight decrease in standard deviation beyond 8cms, but
otherwise it appears to be roughly constant over the bulk of the search volume. Accordingly,
the standard deviation was pooled over the search volume to give S̄ = 6.0%.

For the ‘hot-warm’ dataset, the standard deviation image S(x, y, z), with n − 1 = 6
degrees of freedom, was plotted against average baseline CBF, average subtracted activa-
tion M(x, y, z) and distance from the brain centre. Similar conclusions were obtained as
above, and the standard deviation pooled over the same search volume was S̄ = 4.4%.
This reduction in standard deviation can be explained by the standard repeated measures
model of equal correlations between observations taken on the same subject. Since the hot-
warm dataset is an average of two differences, this model predicts a standard deviation of
6.0/

√
2 = 4.2%, which is very close to S̄ = 4.4% for the hot-warm dataset.

For the word-recognition study, a search volume of 3.9 × 105 voxels or V = 1390 cm3

was chosen that covered nearly all the grey matter but left out most of the white matter
and ventricles. The standard deviation image S(x, y, z), with n− 1 = 9 degrees of freedom,
was also plotted against average baseline CBF, average subtracted activation M(x, y, z) and
distance from the brain centre. Again it appeared to be roughly constant over the bulk of
the search volume and the pooled standard deviation was S̄ = 5.4%.

3.4 Validation of the relationship between |Λ| 12 and FWHMs

The image of partial derivatives was evaluated on the residual images Zi(x, y, z) obtained
by subtracting the ∆CBF image for subject i from the average ∆CBF image M(x, y, z) and
standardizing by the pooled standard deviation:

Zi(x, y, z) = {∆i(x, y, z)−M(x, y, z)}/S̄.

These images were assumed to have the same variance structure as T (x, y, z) but with the
signal component removed. Derivatives in each direction were estimated by

Zxi(x, y, z) = {Zi(x + δx, y, z)− Zi(x, y, z)}/δx

Zyi(x, y, z) = {Zi(x, y + δy, z)− Zi(x, y, z)}/δy

Zzi(x, y, z) = {Zi(x, y, z + δz)− Zi(x, y, z)}/δz

where δx = 1.4 mm, δy = 1.7 mm and δz = 1.5 mm are the voxel sizes in directions x, y and z
respectively. To avoid discontinuities caused by changes in n(x, y, z), these calculations and
all succeeding ones were only done for voxels with n(x, y, z) = n, that is where all subjects
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contribute a value. Let N be the number of such voxels. Then the variances and covariances
of these images, pooled over all voxels, were estimated by

Vxx =
∑

i,x,y,z

Zxi(x, y, z)2/N(n− 1),

Vyy =
∑

i,x,y,z

Zyi(x, y, z)2/N(n− 1),

Vzz =
∑

i,x,y,z

Zzi(x, y, z)2/N(n− 1),

Vxy =
∑

i,x,y,z

{
Zxi(x, y, z) + Zxi(x, y + δy, z)

}{
Zyi(x, y, z) + Zyi(x + δx, y, z)

}/
4N(n− 1)

Vxz =
∑

i,x,y,z

{
Zxi(x, y, z) + Zxi(x, y, z + δz)

}{
Zzi(x, y, z) + Zzi(x + δx, y, z)

}/
4N(n− 1)

Vyz =
∑

i,x,y,z

{
Zyi(x, y, z) + Zyi(x, y, z + δz)

}{
Zzi(x, y, z) + Zzi(x, y + δy, z)

}/
4N(n− 1).

Note that the variances are estimated at the centres of the edges joining adjacent voxels,
the covariances are estimated at the centres of the faces joining adjacent voxels. This is
necessary to avoid biased covariance estimates. The matrix Λ is then estimated by

Λ =




Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz


 .

Values of Λ and |Λ| 12 for the three datasets are shown in Table 2. They are all in good
agreement, and as expected, the off-diagonal covariance terms are close to zero, showing
that there has been no slippage or consistent miss-match in adjacent voxels.

The nominal resolutions of the image were FWHMx = 20mm, FWHMy = 20mm and
FWHMz = 6mm. Substituting these values into (2), assuming a Gaussian point response
function, gives reasonable agreement with the empirical values of Λ except that Vzz is too
large (Table 2). To further validate the relationship (2) we can find the effective FWHMs
that would produce the same diagonal elements as the observed Λ, namely FWHM∗

x =

(4 loge 2/Vxx)
1
2 , FWHM∗

y = (4 loge 2/Vyy)
1
2 and FWHM∗

z = (4 loge 2/Vzz)
1
2 . FWHM∗

x and
FWHM∗

y are in good agreement with the nominal values of 20mm but FWHM∗
z is approx-

imately 7.5mm, larger than the nominal value of 6mm (Table 2). However the corrected
FWHMzc = 7.6mm from (4) is in excellent agreement with FWHM∗

z and provides a much

closer estimate of |Λ| 12 than the uncorrected FWHMs (Table 2). More accurate results should
be obtained using FWHMzc in place of FWHMz in the calculation of the number of resels,
R.
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3.5 Validation of the p-value for Tmax

3.5.1 Specificity

The n = 8 subjects in the warm-warm dataset of the pain study were divided into all
possible groups of 4 subjects each. In one group of 4 subjects the subtracted ∆CBF images
∆i(x, y, z) were replaced by their negative, −∆i(x, y, z). The t-statistic image T ∗(x, y, z)
was then calculated in the usual way, using the pooled standard deviation S̄ = 6.0%. If
any activation is present in the subtracted images and if it is the same for all subjects then
T ∗(x, y, z) should have zero expectation. Thus T ∗(x, y, z) can be used as a pure-noise image
for validating the p-value of Tmax. The set of all 8!/(4!4!)=70 such images were created and
Tmax and its p-values using (1) were calculated over the same search volume of V = 1090 cm3.
The proportion of false positives at each of the α = 0.10, 0.05 and 0.01 levels are shown in
Table 3. The proportions are all close to the nominal levels which suggests that the critical
values given by our methods are satisfactory. The number of resolution elements in the
search volume was R = 360 resels, and almost exactly the same values and conclusions were
obtained using (5).

3.5.2 Sensitivity

A phantom activation signal µ(x, y, z) was created by centring a Gaussian function at a
location x0 = (x0, y0, z0)

T in the anterior cingulate close to where activation was in fact
detected in the hot-warm dataset (Talbot et al., 1991). The peak height was chosen to
represent a percentage increase of µ0 in CBF for the 7 subjects and the shape was chosen
to be the convolution of the point response function with itself. For the case of a Gaussian
point response function this is

µ(x, y, z) = µ0exp{−1

2
(x− x0)

TΛ(x− x0)}/{S̄/
√

n}.

where n = 7 and S̄ = 4.4%. This was added to each simulated image T ∗(x, y, z) from
the warm-warm dataset and the maximum Tmax was found over the search volume. Two
different peak signal strengths of µ0 = 5% and µ0 = 10% were tried, where 100% is the mean
intra-cerebral CBF. Another phantom was created with three peaks centred in the anterior
cingulate, SI and SII regions, close to where activation was detected in the hot-warm dataset
(Talbot et al.,1991). Finally, a third phantom was created by convolving a 20 × 40 × 20
voxel (57cm3) region of uniform height with the Gaussian point spread function to create a
broader region of activation as opposed to a sharp peak. The maximum height of this region
was chosen to be the same as the peak heights above. The region was located in the right
hemisphere in roughly the same place where activation was detected in the hot-warm dataset.
The proportion of true positives or power of the test are shown in Table 3. It appears that
the test has moderate power at detecting a 5% signal but a 10% signal is almost always
detected. The test is more powerful at detecting activation when three peaks are present
rather than one, and more powerful at detecting a broad region than a sharp peak.
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3.5.3 Sensitivity of the voxel-based t-statistic image Tn(x, y, z)

The t-statistic image Tn(x, y, z) was calculated for the same 70 sets of simulated images that
were used to validate the p-value of Tmax. Empirical critical values of the maximum Tn max

were found by smoothing the distribution of the 70 simulated values. At levels α = 0.01,
0.05 and 0.10 the approximate critical values were 20.2, 14.5 and 12.1 respectively. The same
phantom activation signals as used previously were added to the simulated images, and the
proportion of true positives, or sensitivity, was estimated. For all signals, Tn max was less
sensitive than Tmax; Tn max had about the same sensitivity to a 7%− 8% signal as Tmax had
to a 5% signal, which implies that about twice as many subjects would be needed to detect
the same signal with Tn max as with Tmax.

3.6 Validation of the expected Euler characteristic

3.6.1 Specificity

The Euler characteristic χt over the search volume was evaluated for excursion sets of 7
orthogonal statistically independent t-statistic images chosen from the 70 simulated images
obtained from the warm-warm dataset above, for −5 < t < 5 at intervals of 0.1. The average
of these is plotted against t in Figure 4, together with the expected Euler characteristic E(χt)

from (6) calculated using the empirical roughness measure |Λ| 12 = 1.64 and V = 1090 cm3.
The agreement is very good. Approximate 95% confidence bands of ±2 standard deviations,
obtained by smoothing the sample standard deviation, have been added. It was noted that
the smoothed sample standard deviation was close to the approximate theoretical standard
deviation,

√
E(χt), for |t| > 3.

3.6.2 Sensitivity

The Euler characteristic χt was also evaluated for each of the same 7 simulated t-statistic
images used above, but with an added 10% peak activation in the anterior cingulate, as
previously described. The average of these Euler characteristics, together with its expectation
when no signal is present (6), is plotted against t in Figure 5(a). Also shown is the Euler
characteristic of the signal µ(x, y, z) with no noise added; note that it takes the value 1
when t is less than the peak signal value µ0/{S̄/

√
n} = 6.01. At the α = 0.05 critical level

t = t0.05 = 4.39 the average was 0.9± 0.1, giving an estimate of approximately one isolated
region of activation, which agrees with the single peak of activation in the phantom. Figure
5(a) also plots the average number of local maxima greater than t. As expected, it is larger
than the Euler characteristic but very close for large t. The number of local maxima greater
than t = 4.39 was also 0.9± 0.1.

In addition, χt was evaluated for the 7 simulated t-statistic images with three added 10%
peaks in the anterior cingulate, SI and SII regions (Figure 5(b)). At t = 4.39 the average χt

was 3.0± 0.0, in agreement with the three peaks of activation in the phantom. The number
of local maxima greater than t = 4.39 was also 3.0± 0.0.

Finally, χt was evaluated for the 7 simulated t-statistic images with the 10% broad region
added in the upper right hemisphere (Figure 5(c)). At t = 4.39 the average χt was 0.9± 0.1,
in agreement with the one broad region of activation in the phantom. However, the number
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of local maxima greater than t = 4.39 was 4.7 ± 0.5, much greater then the singe local
maximum in the added signal. The conclusion is that a broad region will appear as many
local maxima; as the threshold level decreases these local maxima will at first increase the
Euler characteristic above 1 (t = 8 down to 6.5), then as t decreases further (t = 6.5 down to
5) they will coalesce to form one connected region of activation and an Euler characteristic of
one. In our experience holes in the excursion set are rare for these values of t and decreases
in the Euler characteristic as t decreases are caused by the coalescing of isolated regions
rather than the formation of holes. Thus the Euler characteristic more accurately estimates
the number of regions of activation, whether they are sharp peaks or broad regions.

Note that the plot of the average Euler characteristic is relatively flat for 4 < t < 5 so
that our estimation procedure is robust against slight changes in the threshold value of t.
However, if we set the threshold for the t-statistic at the uncorrected critical value taken
from the t-distribution we get far more apparent regions of activation than are really present.
Even if we set the threshold at t = 3 the number of estimated regions of activation is 4.2
when one 10% peak is present and 6.2 when three peaks are present.

3.7 Validation of the p-value for the voxel-based t-statistic image
Tn(x, y, z)

3.7.1 Specificity

The t-statistic image Tn(x, y, z) was calculated for the same 70 sets of simulated images
that were used to validate the p-value of Tmax. The proportion of false positives using the
theoretical p-value (7) at nominal false positive rates of α = 0.01, 0.05 and 0.01 were 0.029,
0.143, and 0.286 respectively. Thus (7) appears to be too liberal and so we suggest using
a smaller nominal false positive rate of, say α = 0.01 instead of α = 0.05. A possible
explanation for the discrepancy between simulations and theory has already been discussed;
the theoretical result (7) is highly sensitive to the assumption of a Gaussian distribution for
each subject’s subtracted image (see Addendum).

3.7.2 Sensitivity

Since the theoretical p-value (7) was inaccurate, empirical critical values of Tn max were found
by smoothing the distribution of the 70 simulated values. The same phantom activation
signals as used previously were added to the simulated images, and the proportion of true
positives, or sensitivity, was estimated. The results were discouraging. For all signals, Tn max

was less sensitive than Tmax; Tn max had about the same sensitivity to a 7-8% signal as Tmax

had to a 5% signal, which implies that about twice as many subjects would be needed to
detect the same signal with Tn max as with Tmax.
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4 RESULTS

4.1 Application to the warm-warm dataset of the pain study

The standard deviation pooled over the search volume of V = 1090 cm3 was S̄ = 6.0% and
the maximum t-statistic inside the search volume was Tmax = 4.16. The nominal resolutions
of the image were FWHMx = 20mm, FWHMy = 20mm and FWHMz = 6mm. The corrected
resolution in the z direction was FWHMzc = 7.6mm (4) which gives R = 360 resels. From
Table 1(a) we can see that the value of Tmax was not significant at the α = 0.1 level; the
p-value is 0.120 calculated according to (5) and 0.129 calculated according to (1) using the

empirical value |Λ| 12 = 1.64 cm−3. The minimum t-statistic was -3.47 which was also not
significant, indicating no evidence of de-activation. Figure 6(a) gives the observed Euler
characteristic χt and its expected value E(χt) from (6) under no activation plotted against
t for −5 < t < 5 at intervals of 0.01. The agreement seems reasonable over most values of t,
confirming that no activation has taken place.

4.2 Application to the hot-warm dataset of the pain study

The standard deviation pooled over the search volume of V = 1090 cm3 was S̄ = 4.4% and
the maximum t-statistic inside the search volume was Tmax = 4.99. From Table 1(a) we
can see that the value of Tmax was significant at the α = 0.01 level; the p-value is 0.00393
calculated according to (5) and 0.00392 calculated according to (1) using the empirical value

|Λ| 12 = 1.52 cm−3.
Figure 6(b) gives the observed Euler characteristic χt and its expected value E(χt) from

(6) under no activation plotted against t for −5 < t < 5 at intervals of 0.01. An enlargement
of the upper tail also shows the number of local maxima above t for comparison with the
Euler characteristic (Figure 6(d)). The agreement is close for t > 3, which suggests that the
regions of activation are sharp peaks as in Figure 5(b).

To determine the regions of activation, the level α = 0.05 critical value t0.05 was found
by solving (5), which for R = 360, gives t0.05 = 4.40. Using (1) and |Λ| 12 = 1.52 cm−3 gives
t0.05 = 4.39. The Euler characteristic at either threshold level is one, indicating one isolated
region of activation. At the α = 0.1 level, t0.1 = 4.21, the Euler characteristic increases to
three, indicating three isolated regions of activation. These are in the anterior cingulate and
SI regions (Talbot et al., 1991).

The Euler characteristic starts to take on non-integer values for t < 4 as the excursion
set starts to intersect the boundary of the search volume. However, it is still much larger
than its expected value for t > 3.5, indicating substantial evidence of activation. The Euler
characteristic for −2 < t < 2 is hard to interpret, but the fact that Figure 6(b) shows such a
large discrepancy between χt and E(χt) in this range indicates that some low-level activation
may also be present. At the other extreme, The minimum t-statistic was -4.32 which was
not quite significant at the α = 0.05 level, indicating no strong evidence of de-activation.
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4.3 Application to the word-recognition study

The standard deviation pooled over the search volume of V = 1390 cm3 (R = 457 resels)
was S̄ = 5.4%, and the maximum t-statistic inside the search volume was Tmax = 5.58.
From Table 1(a) we can see that the value of Tmax was significant at the α = 0.01 level. Its
approximate p-value is 0.00028 calculated according to (5) and 0.00030 calculated according

to (1) using the empirical value |Λ| 12 = 1.61 cm−3. Figure 6(c) gives the observed Euler
characteristic χt and its expected value E(χt) from (6) under no activation plotted against t
for −6 < t < 6 at intervals of 0.01. An enlargement of the upper tail also shows the number
of local maxima above t for comparison with the Euler characteristic (Figure 6(e)). The
agreement is close for t > 5, but for t < 5 the number of local maxima is much larger.

To determine the regions of activation, the level α = 0.05 critical value t0.05 was found
by solving (5), which for R = 457, gives t0.05 = 4.45. Using (1) and |Λ| 12 = 1.61 cm−3 we
get t0.05 = 4.47. The Euler characteristic at either threshold level is three with no holes in
the excursion set, indicating three isolated regions of activation. These were identified in
the occipital region, the left inferior temporal region and the left frontal region. Note that
the number of local maxima greater than t = 4.47 is six, indicating six centres of activation.
Four of these local maxima coalesce in the occipital region to form only one isolated region
of activation, which explains why the Euler characteristic at t = 4.47 is only three. This
behaviour is reminiscent of the broad phantom signal in Figure 5(c). For values of t closer
to zero the Euler characteristic looks very similar to that of the hot-warm dataset of the
pain study (compare Figures 5(b) and 5(d)). At the other extreme, the minimum value of
T (x, y, z) was −4.98 at a point near the right anterior temporal lobe. Its p-value was 0.005
and its Euler characteristic at t = −t0.05 = −4.47 was one, indicating one possible region of
de-activation.

5 CONCLUSIONS

This paper has described a method which provides for the direct determination in three
dimensions of the significance of focal physiological response in a PET activation study.
From a practical point of view, there are two principal results. The first, and most directly
useful result, is Table 1(a) which gives some critical values for the global maximum Tmax

of the t-statistic image based only on the number of resolution elements or resels R in the
search volume (5). This number is defined simply as the search volume divided by the
product of the three FWHMs of the image reconstruction process. More accurate results
are obtainable if the FWHM in the z-direction is corrected for interpolation and re-sampling
(4). These critical values increase as the search volume increases, so that the search volume
should be chosen a priori to be as small as possible. If activation is suspected in the left
hemisphere, for example, the search volume should be restricted to the left hemisphere. The
search volume could also be confined to grey matter regions identified by MRI. An alternative
but more time-consuming method of obtaining p-values of Tmax is to evaluate the measure
of roughness |Λ| 12 from the data directly using empirical numerical derivatives, as outlined
in the Methods section, and use (1). In practice this seems to give very similar results to
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the p-values obtained by using the number of resels R and (5), which requires very little
computation.

We have suggested using a t-statistic image based on a pooled standard deviation rather
than a voxel based standard deviation, provided that the standard deviation image appears
to be flat. Our simulations show that the sensitivity of the voxel based standard devia-
tion t-statistic appears to be less than the pooled standard deviation based t-statistic. The
arguments that have been advanced in this paper have assumed a constant underlying stan-
dard deviation. Figure 3 indicates no significant change in standard deviation against three
different variables. Therefore pooling the standard deviation gives greater sensitivity to ac-
tivation. In the event that there is some evidence of non-constant standard deviation then
it might be appropriate to use a local standard deviation in the t-statistic image, but this
would have to be demonstrated on the data to justify the loss in sensitivity.

Recent work by Friston et al. (1991) for the two dimensional situation is very close in
spirit to our three dimensional approach. Working independently, these authors have derived
an expression for the p-value of the maximum t-statistic searched over a two-dimensional slice
of the data. The form of their p-value is similar to our (1) and (5), and it depends on a
measure of the smoothness of the image in an analogous way. It is interesting to note that
the critical values that they obtain for the maximum over a slice are in the range of 3 to
4, whereas the critical values we have obtained for the maximum over a volume are higher,
in the range of 4 to 5. The implication for this difference is that setting the threshold at a
typical value of say 4.5 for α = 0.05 would provide an expectation of one false positive per
20 volumes; setting it at say 3.5 might provide an expectation of one false positive per 20
slices, but one per volume in a 20 slice volume.

The final choice of threshold will depend upon how conservative one wishes to be when
interpreting physiological activation datasets. It may be acceptable if one observes 10 peaks
above t = 3.5 to know that one peak is on average false. To choose a threshold of t = 4.5
would virtually guarantee that any peak quoted was real at the expense of rejecting data
which was consistent with physiological evidence from other studies. For either choice, Table
1(b) and Figure 7 show the statistical price to be paid.

The second principal result is that the number of isolated regions of activation appears
to be well estimated by the Euler characteristic of the region above the critical value of
Tmax, whereas the number of local maxima appears to be an overestimate, particularly when
the region is broad. Although change distribution analysis (Fox, 1988) has proven to be
extremely useful in the statistical analysis of subtractive PET activation studies, it does have
some limitations in both theory and practice. The g2 omnibus statistic provides a sensitive
and specific test for determining if a significant change in state exists, but it does not identify
which peaks are significant. Post-hoc z-scores do not explicitly deal with the issue of multiple
comparisons. Instead, we have suggested determining the number of regions of activation by
thresholding the t-statistic image at the level α critical value for Tmax, which for α = 0.05
corresponds to a z-score of approximately 3.0 on typical datasets in our laboratory (Figure
7).

This procedure protects us against finding some regions of activation when in fact none
are present. In this respect our approach is no different from using an omnibus test such
as g2 followed by thresholding the t-statistic image at the uncorrected critical value of the
t-distribution, or indeed any critical value; both methods still protect against finding some
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activation when none is present. However if say two large peaks are present, large enough
to push an omnibus test statistic such as g2 over its critical value, then activation will be
detected. Following this by thresholding the t-statistic at an uncorrected value will yield not
only the two large peaks, but also a large number of spurious peaks from the unactivated
part of the image. In other words, such a procedure does not protect us against declaring
that there are say 20 regions of activation when in fact there are only two. In the same
situation, our approach of thresholding at the critical values of Tmax should still protect us
against finding too many regions of activation, even when large peaks are present, because
we are still protected in the unactivated part of the image. Although this is outside the scope
of current theoretical results, it is supported by our simulations, which show that the Euler
characteristic, thresholded at the critical values of Tmax, does appear to correctly predict the
number of isolated regions of activation, whether they are broad regions or sharp peaks.
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APPENDIX

Proof of (4)

The result is derived by finding the mean variance of the derivative of the interpolated
process, dividing by its mean variance, and equating this to the corrected FWHM using (2).
Consider a voxel of the re-sampled image at distances ad and (1 − a)d, 0 ≤ a ≤ 1, from
two voxels in two adjacent planes of the PET camera with values X1 and X2 respectively.
Then by linear interpolation the value of the re-sampled voxel is T = (1 − a)X1 + aX2.
Without loss of generality we can assume the X1 and X2 have zero mean, unit variance, and
correlation coefficient ρ. The variance of T is Var(T |a) = 1 − 2a(1 − a)(1 − ρ). Averaged
over all values of a, 0 ≤ a ≤ 1, the mean variance is Var(T ) = 1− (1− ρ)/3.

To determine the numerical derivative D of the re-sampled image two situations can
arise: the pair of adjacent re-sampled voxels either lie between the same pair of adjacent
planes of the PET camera (event E1), or are separated by a plane of the PET camera (event
E2). In the former situation D equals the derivative of the voxels in the PET planes, and
so Var(D|E1) = Var{(X1 − X2)/d} = 2(1 − ρ)/d2. In the latter situation, suppose that
X1, X2 and X3 are the values of voxels in three adjacent PET planes, and that the middle
plane is at distances bdc and (1 − b)dc, 0 ≤ b ≤ 1, from the two adjacent voxels of the
re-sampled image. Then it can be shown that D = {bX1 + (1 − 2b)X2 + (b − 1)X3}/d.
Since the correlations between X1 and X2, X2 and X3, and X1 and X3 are ρ, ρ and ρ4

respectively then Var(D|E2, b) = {2(1− ρ) − 2b(1 − b)(3− 4ρ + ρ4)}/d2. Averaged over all
values of b, 0 ≤ b ≤ 1, the mean variance is Var(D|E2) = {2(1 − ρ) − (3 − 4ρ + ρ4)/3}/d2.
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Since the proportions of resampled voxels from the first situation is (1−dc)/d and dc/d from
the second, the overall mean variance of the derivative, found by the weighted average of
Var(D|E1) and Var(D|E2) is Var(D) = {2(1 − ρ) − (dc/d)(3 − 4ρ + ρ4)/3}/d2. Equating
the mean measure of roughness Var(D)/Var(T ) to (4loge2)/(FWHMzc)

2 from (2) gives the
corrected FWHM of the re-sampled image, FWHMzc.

Proof of (7)

Let x = (x, y, z)′. Assume that ∆i = ∆i(x) is a Gaussian random field with expectation
zero and standard deviation σ, and that V ar(∂∆i/∂x) = Λσ2. Now since ∆1, ..., ∆n and
their partial derivatives are all independent Gaussian random random variables with zero
expectations (Adler, 1981, page 31) then by conditioning on ∆1, ..., ∆n we have

Var

(
∂G

∂x

)
= Var

(
∂G

∂Tn

n∑
i=1

∂Tn

∂∆i

∂∆i

∂x

)

= E

{(
∂G

∂Tn

)2 n∑
i=1

(
∂Tn

∂∆i

)2

V ar

(
∂∆i

∂x

)}

= E

{(
∂G

∂Tn

)2 n∑
i=1

(
∂Tn

∂∆i

)2}
Λσ2.

From the definition of Tn we have

∂Tn

∂∆i

=
∂

∂∆i

M

S/
√

n
=

1√
nS

−
√

nM(∆i −M)

(n− 1)S3
,

and so
n∑

i=1

(
∂Tn

∂∆i

)2

=
1

S2
+

nM2

(n− 1)S4
.

Hence the correction factor to the variance matrix of the partial derivatives of G is

λn = E

{(
p′n(Tn)

p′(G)

)2(
1

S2
+

nM2

(n− 1)S4

)}
σ2,

where p′n(t) is the probability density function of a t-random variable with n− 1 degrees of
freedom and p′(z) is the probability density of a standard normal random variable. This can
be simplified further using the fact that U = (nM2 + (n − 1)S2)/σ2 has a χ2-distribution
with n degrees of freedom, independent of Tn, and that E(1/U2) = 1/(n− 2), to give

λn = E

{(
p′n(Tn)

p′(G)

)2
(T 2

n + n− 1)2

(n− 1)(n− 2)

}
.

Integrating over the density of Tn gives

λn =

∫ ∞

−∞

(t2 + n− 1)2

(n− 1)(n− 2)

p′n(t)3

p′(g)2
dt,

where g = p−1(pn(t)). The integral is finite only if n ≥ 4.
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ADDENDUM

This article describes exact results for a Gaussian random field and an approximation to the
non-Gaussian case for the voxel-based t statistic image Tn(x, y, z). Since the submission of
this article, Worsley (1992) has extended the results of Adler (1981) to find an approximate
p-value for Tn max and an exact expression for the expected Euler characteristic for the t field
Tn(x, y, z), as well as the χ2 field S2(x, y, z). These results supercede (7) and will be the
subject of a forthcoming article.
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TABLE 1. Values of the threshold t for controlling (a) the p-value of Tmax, α = P(Tmax > t)
from (5), and (b) the expected number of false positive isolated regions of activation, E(χt)
from (6), for values of R, the number of resels or resolution elements in the search volume.

(a) p-value of Tmax (b) regions of activation
R α = 0.01 α = 0.05 α = 0.10 E(χt) = 1 E(χt) = 2 E(χt) = 5
100 4.47 4.05 3.84 3.02 2.68 1.91
200 4.64 4.24 4.05 3.30 3.02 2.55
300 4.74 4.34 4.16 3.45 3.19 2.78
400 4.81 4.42 4.24 3.55 3.30 2.92
500 4.86 4.47 4.30 3.62 3.38 3.02

1000 5.01 4.64 4.47 3.84 3.62 3.30
2000 5.16 4.81 4.64 4.05 3.84 3.55

TABLE 2. Validation of the relationships (2) and (3) between the varaince matrix Λ of the
derivatives of the image and the FWHMs of the image. Values of Λ from three datasets are
given, together with their effective FWHMs determined by inverting the relationship (2).
Also given are values of Λ determined from (2) using the nominal FWHMs of the image,
both uncorrected and corrected for interpolation and re-sampling in the z-direction. Note

that the agreement between values of |Λ| 12 from the three datasets is in good agreement with
that determined by (3) provided that the corrected FWHMzc is used.

Dataset Direction Λ(cm−2) |Λ| 12 (cm−3) FWHM(mm)
Pain study, x 0.754 -0.014 -0.008 19.2
warm-warm. y -0.014 0.711 -0.088 1.64 19.8

z -0.008 -0.088 5.033 7.4

Pain study, x 0.753 -0.011 -0.007 19.2
hot-warm. y -0.011 0.636 0.005 1.52 20.9

z -0.007 0.005 4.840 7.6

Word-recognition x 0.766 0.007 0.003 19.1
study. y 0.007 0.785 0.280 1.61 18.8

z 0.003 0.280 4.400 8.0

From (2), using x 0.693 0 0 20
uncorrected y 0 0.693 0 1.92 20

FWHMz z 0 0 7.702 6

From (2), using x 0.693 0 0 20
corrected y 0 0.693 0 1.51 20
FWHMzc z 0 0 4.762 7.6
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TABLE 3. Specificity and sensitivity of Tmax. Proportion of simulated data sets significant
at level α, based on the theoretical p-values (1) and (5). The number of resels in the search

volume of V = 1090cm3 was R = 360 and the number of simulations was 70.

Signal added α = 0.01 α = 0.05 α = 0.10
None 0.014 0.057 0.100

One 5% peak 0.271 0.343 0.414
Three 5% peaks 0.186 0.414 0.557
One 10% peak 0.829 0.857 0.900

Three 10% peaks 1.000 1.000 1.000
Broad 5% region 0.543 0.800 0.886
Broad 10% region 1.000 1.000 1.000
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Figure 1: The corrected FWHM in the z-direction, FWHMzc, due to linear interpolation
and re-sampling between planes of the PET camera. The graph plots FWHMzc/d against
FWHMz/d, where FWHMz is the nominal FWHM of the PET camera in the z direction and
d is the separation between planes of the PET camera, for fixed values of dc/d , where dc is
the voxel size of the re-sampled image. The values of dc/d are 1.0, 0.5, 0.25 and 0.0 (solid
lines, from top to bottom, respectively). For comparison a diagonal line has been added
(dashed line). Note that FWHMzc > FWHMz, so that the interpolated image is smoother
than the original image, particularly if FWHMz/d is small and dc/d is close to one.
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(a) o = local max;  x = global max

x

o

o

o

(b) t = 3.2, Euler characteristic = 2

x

o

o

o

(c) t = 4.0, Euler characteristic = 4

x

o

o

o

(d) t = 5.6, Euler characteristic = 1

x

•

•

••••••
••
••

••
•••••••••

•••••••

•••••••••••

••••••

•••••••••••••••
••••••

••••••••••••••••••••••

•••

•••••••••••

•••••••••••••••••

••••••••••••••

••••••••••••••••••

••••••••

(e) Plot of Euler characteristic

threshold, t

E
ul

er
 c

ha
ra

ct
er

is
tic

0 1 2 3 4 5 6

-4
-3

-2
-1

0
1

2
3

4

(b)(c) (d)

colour bar

excursion set
touches boundary

•

•

• •

• •

•

•

(f) Calculation of Euler characteristic
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e=P/8-E/4+F/2-C=-1/8

Figure 2. The Euler characteristic for an artificial image in two dimensions

Figure 2: The Euler characteristic of an artificial image in two dimensions. (a) The image,
with colour bar in (e). Local maxima are indicated by o and the global maximum is indicated
by x. (b) Excursion set (white areas) above a threshold t = 3.2. Since the excursion set does
not touch the boundary the Euler characteristic counts the number of isolated regions minus
the number of ‘holes’, giving χt = 2. (b) As the threshold is increased to t = 4.0 the holes
disappear and the Euler characteristic counts the number of local maxima, giving χt = 4.
(c) At even higher levels t = 5.6, the Euler characteristic takes the value one if the global
maximum exceeds t and zero otherwise, giving χt = 1. (e) A plot of Euler characteristic
against t. Note that for t < 2.7 the excursion set touches the boundary and the Euler
characteristic can take non-integer values. (f) A 2 × 2 × 2 ‘cube’ of 8 adjacent voxels in
the search volume of a three-dimensional image, to illustrate the calculation of the Euler
characteristic. Voxels below the threshold t are shaded and those above are white. The
contribution of this cube to the Euler characteristic is e = −1/8.
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Figure 3(b) Standard deviation against average subtracted CBF
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Figure 3(c) Standard deviation against distance from slice centre
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Figure 3: Validation of the standard deviation. Scatter plots of the standard deviation
S(x, y, z) of the warm-warm dataset from the pain study data for all voxels in the search
volume. S(x, y, z) is plotted against (a) average baseline CBF, (b) average ∆CBF M(x, y, z)
and (c) distance from the slice centre (cms). Darker areas indicate greater voxel density.
Medians (middle line) and upper and lower quartiles (upper and lower lines) have been
added. S(x, y, z) appears to be roughly constant, allowing us to pool the standard deviation
over the search volume.
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Figure 4. Validation of the Euler characteristic
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Figure 4: Validation of the expected Euler characteristic (6) using simulated data from
the warm-warm dataset of the pain study. The average Euler characteristic χt (jagged
line) and the expected Euler characteristic E(χt) from (6) (smooth line) plotted against
the threshold level t at intervals of 0.1, for 7 orthogonal statistically independent simulated
images T ∗(x, y, z) formed by changing the sign of 4 of the 8 subjects’ subtracted images.
An approximate 95% confidence band of width ±2 smoothed standard deviations has been
added (dotted lines).
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Figure 5(a). Sensitivity of the Euler characteristic to one peak
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Figure 5(b). Sensitivity of the Euler characteristic to three peaks
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Figure 5(c). Sensitivity of the Euler characteristic to a broad region
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Figure 5: Specificity of the Euler characteristic, assessed by adding phantom signals to the
simulated data from the warm-warm dataset used in Figure 4. The average Euler character-
istic χt (jagged line), the expected Euler characteristic E(χt) from (6) (smooth line) plotted
against the threshold level t, t > 2.5 at intervals of 0.1, for the 7 orthogonal simulated im-
ages T ∗(x, y, z) formed by changing the sign of 4 of the 8 subjects’ subtracted images. Also
shown is the average number of local maxima greater then t (dotted line) and the Euler
characteristic of the signal alone (dash-dot line). In (a) a phantom signal of peak ∆CBF
= 10% in the anterior cingulate was added to each simulated image; in (b) a phantom signal
of three peaks of ∆CBF = 10% in the anterior cingulate, SI and SII regions were added
to each simulated image, and in (c) a broad region of uniform activation of ∆CBF = 10%
in the upper right hemisphere was added. The level α = 0.05 critical value t0.05 = 4.39 is
marked on the horizontal axis.
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Figure 6(a). Application to the warm-warm dataset
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Figure 6(b). Application to the hot-warm dataset
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Figure 6(c). Application to the word-recognition dataset
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Figure 6(d). Application to the hot-warm dataset
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Figure 6(e). Application to the word-recognition dataset
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Figure 6: Application of the Euler characteristic to the three datasets. The observed Euler
characteristic χt for the t-statistic image T (x, y, z) (jagged line) plotted against the threshold
level t at intervals of 0.01 for (a) the warm-warm dataset, (b) the hot-warm dataset, and (c)
the word recognition study. The smooth line is the expected Euler characteristic E(χt) from
(6). (d) and (e) Enlargements of the upper tails (c > 2.5) of Figures 5(b) and (c) respec-
tively. Also shown is the cumulative number of local maxima above t (stepped dotted line).
Approximate 95% confidence bands of ±2

√
E(χt) have been added about E(χt) (smooth

dotted lines). The level α = 0.1, 0.05 and 0.01 critical values are marked on the horizontal
axes.
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Figure 7. Expected number of false positive isolated regions
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Figure 7: The expected number of false positive isolated regions of activation, as measured
by the Euler characteristic (6), plotted against the threshold value of the t-statisitic, t. Four
values of the number of resolution elements, or resels, are plotted: R=100,200,500 and 1000
(from bottom to top, respectively). A second horizontal axis has been added at the top of
the plot which corresponds to typical z-scores for local maxima from change distribution
analysis (Fox et al.,1988) on datasets in our laboratory. Thus thresholding an image at a
z-score value of 2.0 will yield on average approximately 5.2 false positive regions of activation
in a volume of 500 resels; thresholding at a t-statistic value of 3.5, the approximate critical
value for local maxima in a slice (Friston et al.,1991), will yield on average approximately 1.4
false positives per volume. Note that thresholding at a t-statistic value of 4.47 from Table 2
will yield on average approximately 0.05 false positives per volume.
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