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1 Introduction

The main aim of this paper is to describe a simple test that can be applied to data obtained
from activation studies. In particular we emphasise the potential importance of this test in
assessing distributed or non-focal task-dependent brain changes.

In past years, a number of statistical methods have been proposed for the analysis of brain
activation studies (see McColl et al., 1994, for a review). Their purpose is to characterize, in
a statistical way, the difference between two (or more) brain states, as measured by Positron
Emission Tomography (PET) or functional Magnetic Resonance Imaging (fMRI). A number
of methods have focused on assessing the chance probability of detecting focal differences
using either the intensity of local maxima in statistical parametric maps (Friston et al., 1991;
Worsley et al., 1992), or the spatial extent of foci above an arbitrary threshold (Poline et
al., 1993; Roland et al., 1993; Friston et al., 1994b).

These approaches are based on distributional approximations that hold for high thresh-
olds and assume (implicitly) that the underlying physiological effect is focal. It is possible
however that, in some circumstances, non-focal or anatomically distributed differences may
occur, with or without focal changes. This possibility is suggested by the topography of
eigenimages based on activation study time-series. These eigenimages or spatial modes re-
veal widespread brain systems with coherent physiological activity. This activity reflects
systematic changes that often depend on the experimental conditions used (e.g. see Fris-
ton et al., 1993ab). A second observation, that is suggestive of non-focal changes, is that
many cognitive activation studies result in large distributed activations (and de-activations),
particularly in multimodal and paralimbic cortex, for example the dorsolateral prefrontal
activations, and extensive bitemporal de-activation due to verbal fluency (Frith et al., 1991).
The topography of functional activations as measured with fMRI does not resolve the focal
vs. non-focal issue. Eigenimage analysis of fMRI time series (Friston et al., 1994a) suggests
a widespread focal and non-focal functional organization and yet when thesholded fMRI
activations appear very localized.

The concept of non-focal differences is important in describing the pathophysiology of
certain clinical conditions. An example is hypofrontality in schizophrenia (Ingvar, 1983).
Hypofrontality is a diffuse non-focal reduction in prefrontal cortical physiology that is char-
acteristic of ‘psychomotor poverty’ syndromes (e.g. Liddle et al., 1992).

In summary the possibility of non-focal response to cognitive or sensorimotor challenge
points to the importance of (i) acknowledging that the assumption of focal change is implicit
in many current approaches to data analysis and (ii) assessing the ability of new tests to
reveal or discount the presence of non-focal changes.

In 1989, Fox et al. proposed an omnibus test (the γ2 statistic) using the kurtosis of the
distribution of the local maxima in difference volumes. The proposal was based on the idea
that activations should increase the number of local maxima outliers and therefore the fourth
moment (kurtosis) of their distribution. In contrast, our propsed mean sum of squares test
is based on the second moment of all the voxel values of the statistical parametric map,
not just the local maxima. Friston et al. (1990) proposed an omnibus test based on the
activation proportion of thresholded statistical parametric maps, and in Section 3 of this
paper we report a correction to the specificity of this test, derived in Worsley and Vandal
(1994). These tests can be described as ‘omnibus tests’ in the sense that they allow rejection
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of a weak null hypothesis that no activation has occurred in the brain volume, without
indicating where the activation is localised (a stronger null hypothesis is that an activation
has not occurred in a specific brain region).

Most of the tests discussed above are based on thresholds or maxima and implicitly
assume the presence of focal activations. In this paper we highlight the potential usefulness
of an omnibus test based on the mean sum of squares of an SPM. It is simple, sensitive and
is particularly suited for the detection of non-focal activations. The second section of the
paper presents the test and the underlying theory. In Section 4 we assess its specificity and
sensitivity using Monte Carlo simulations (that include distributed foci) and apply the test
to an experimental data set (a verbal fluency activation study of normal subjects) in Section
5.

2 The mean sum of squares statistic

The result of many statistical analyses of PET or fMRI data is a statistical parametric map
(SPM) Z(x) at voxel locations x in a region of interest R (Friston et al., 1991; Worsley et
al., 1992; Friston et al., 1994a). The map is a measure of activation standardised to have a
Gaussian distribution with zero mean and unit variance at all locations when no activstion
is present. Our test for activation is based on the mean sum of squares S of Z(x) in the
search region R, defined as

S =
∑

Z(x)2/N, (2.1)

where summation is over all voxels with coordinates x in R, and N is the number of voxels
in R. Obviously the usual χ2 distribution cannot be used to set the specificty of S because
the voxels are highly correlated due to the so-called ‘partial volume’ effect. Instead, we
show how to adjust the degrees of freedom of the χ2 distribution to take this into account;
specifically, we show that the degrees of freedom depends on the RESELS in the search
region, which equals the volume of the search region divided by the product of the full width
at half maxima of the point response function of the PET camera (Worsley et al., 1992).

2.1 Distribution

We suppose that under the null hypothesis of no activation the SPM can be represented as
a Gaussian random field Z(x) sampled on a uniform lattice of voxels. We assume that Z(x)
is stationary with mean zero and unit variance at any point, and correlation function ρ(x).
Then the mean of S is then

E(S) =
∑

E{Z(x)2}/N
= 1, (2.2)

and the variance of S is

Var(S) =
∑ ∑

Cov{Z(x1)
2, Z(x2)

2}/N2

=
∑ ∑

2Cov{Z(x1), Z(x2)}2/N2

=
∑ ∑

2ρ(x1 − x2)
2/N2, (2.3)
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where summations are over x, x1 and x2 in R. Letting h = x1 − x2, we get, from (2.3),

Var(S) ≤ ∑ ∑
2ρ(h)2/N2

= 2
∑

ρ(h)2/N. (2.4)

where summations are over x in R and all h. Worsley and Vandal (1994) show that the
inequality (2.4) is a very accurate approximation provided the search region is large.

If voxels were independent, then from (2.3) we see that Var(S) = 2/N , and the distribu-
tion of NS is χ2 with N degrees of freedom. This suggests that in the correlated case, we
can find a value ν for the ‘effective’ degrees of freedom of S so that νS is approximately χ2

with ν degrees of freedom (Satterthwaite, 1946). The appropriate value of ν, obtained by
solving Var(S) = 2/ν, and approximating the summation in (2.4) by an integral, is

ν = V
/ ∫

ρ(h)2dh (2.5)

where V is the volume of R. A similar method has been used by Friston et al. (1995) and
Worsley et al. (1995) for fMRI time-series.

Friston et al. (1991) and Worsley et al. (1992) show that the correlation function can be
well approximated by a Gaussian function with full width at half maxima (FWHM) equal
to those of the point spread function multiplied by

√
2. Substituting this in (2.5) gives

ν = RESELS(4 loge 2/π)D/2, (2.6)

where D is the number of dimensions.

2.2 Fourier analysis approach

Fourier analysis can be used to help find the exact distribution of S in a rectangular search
region. For simplicity we shall assume that D = 1, although the results are straightforward
to generalise to higher dimensions. The search region is then an interval of length V sampled
at N points. An important constraint is that the correlation function is periodic, that is

ρ(x) = ρ(V − x). (2.7)

This assumption implies that voxels on one boundary of the search region are highly corre-
lated with those on the opposite boundary. Admittedly this is an unrealistic assumption for
PET or fMRI data but it will allow us to find the exact distribution of S in this artificial
case.

Let k(x) be the kernel associated with ρ(x) where, in neuroimaging, this kernel is the point
spread function. The spectral density function g(ω) of the process at frequency ω = 2πj/N ,
j = 0, . . . , (N − 1) is given by

g(ω) = FT{ρ(x)} = FT{k(x)}FT{k(x)}∗, (2.8)

where FT denotes Fourier transform and ∗ the complex conjugate.
In the frequency domain the spectral density g(ω) represents the amount of variance (or

energy) at frequency ω. A property of the process in Fourier space is that the components
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z(ω) of the discrete Fourier transform of the SPM Z(x) are independent Gaussian random
variables with variance g(ω), j = 0, . . . , (N/2− 1). For j = N/2, . . . , (N − 1), z(ω) = z(2π−
ω)∗. Because the total variance or energy of the process is the same in both representations
(real and Fourier space), the mean sum of squares of the process in real space is also the
mean sum of squares of the process in Fourier space (see e.g. Cox and Miller, 1980, Chapter
7). Therefore we can write

S =
∑

z(ω)z(ω)∗/N, (2.9)

where the summation is over the N/2 distinct values of z(ω)z(ω)∗, j = 0, . . . , (N/2−1). Now
z(ω)z(ω)∗/g(ω) has a χ2 distribution with 2 degrees of freedom, and so the characteristic
function (Fourier transform of the probability density function) of z(ω)z(ω)∗/N is

φ(t; ω) = [1− 2itg(ω)/N ]−1. (2.10)

The characteristic function of S is then the product of φ(t; ω) over j = 0, . . . , (N/2−1). The
density function of S at s can then be recovered by the standard inversion formula:

p(s) = (1/2π)
∫ ∏

φ(t; ω) exp(−its)dt. (2.11)

A method of obtaining the upper tail probabilities of S directly from g(ω) without in-
verting the Fourier transform (2.11) is given by Imhoff (1961), although we found it was
easier to use (2.11). We can also re-derive the same results (2.2) and (2.4) from the Fourier
representation (2.9):

E(S) =
∑

E{z(ω)z(ω)∗}/N =
∑

2g(ω)/N = 1, (2.12)

Var(S) =
∑

Var{z(ω)z(ω)∗}/N2 =
∑

4g(ω)2/N2 = 2
∑

ρ(h)2/N. (2.13)

2.3 Under what circumstances does the χ2 approximation fail?

In the case of a periodic correlation in a rectangular region, we can use the exact expression
for p(s) (2.11) and the χ2 approximation (2.2)-(2.5) to examine how ‘good’ the approximation
is under different conditions. Figure 1 shows the correspondence between the actual density
p(s) from (2.11) and the χ2 approximation (2.2)-(2.6) for two autocorrelation functions, a
Gaussian function and a sinc function, for a D = 1 dimensional process. Our analyses suggest
that the χ2 approximation behaves very well for any autocorrelation function irrespective of
the dimension of the space, for large degrees of freedom. However the χ2 approximation fails
when the effective degrees of freedom of the process is small, although if the search region
is shrunk to a single point, so that S has a χ2 distribution with one degree of freedom,
then the approximation given by (2.2) and (2.4) is exact. Figure 2 shows the actual (2.11)
and approximated (2.2)-(2.6) distribution of S for small ν for a 1D and 2D process. Figure
2 suggests that the agreement is poor for small degrees of freedom, although the periodic
assumption under which these results were obtained is not realistic for practical applications.

For some point spread functions, again assuming a periodic correlation structure, the
χ2 approximation is exact. If the kernel is a product of sinc functions k(x) = sin(x)/x
then it can be shown that the power spectrum g(ω) is π for |ω| ≤ 1 and zero otherwise,
that is for 0 ≤ j ≤ N/(2π). The distribution of S is now the same as the sum of N/(2π)
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identically distributed χ2 random variables with two degrees of freedom, which gives an exact
χ2 distribution with ν = N/π degrees of freedom. The correlation function ρ(x) is identical
to the kernel k(x), the integral of ρ(x)2 is π, so that the degrees of freedom given by (2.5) is
the same result ν = N/π. Unfortunately the relationship between ν and the RESELS is not
quite the same as (2.6); the exact relation for the sinc kernel, found by solving k(x) = 1/2
numerically to find the FWHM, is ν = RESELS(1.207)D.

3 The activation proportion statistic

Friston et al. (1990) proposed a global test based on the activation proportion, measured by
the proportion P of voxels in a search region R where the SPM exceeds a fixed threshold t.
A focal version of this test has recently been proposed by Friston et al. (1994b) based on
the size of the largest connected region where the SPM exceeds a fixed threshold. The null
distribution of P given in Friston et al. (1990) assumes voxels are independent and leads to
far more false positives. The correct limiting distribution, derived in Worsley and Vandal
(1994) is as follows. The mean of P is

E(P ) =
∫ ∞

t
(2π)−1/2exp(−z2/2)dz. (3.1)

If the process is isotropic (the correlation function ρ(r) depends only on the distance r from
the origin) then the variance is well approximated, for large R, by

Var(P ) =
1

V

∫ ∞

0

πD/2−1rD

DΓ(D/2)(1− ρ2)1/2
exp

(
− t2

1 + ρ

) (
−dρ

dr

)
dr. (3.2)

For a Gaussian correlation function this becomes

Var(P ) =
1

RESELS

∫ ∞

0

(4 loge 2)−D/2πD/2−1rD+1

DΓ (D/2) (1− exp(−r2))1/2
exp

(
− t2

1 + exp(−r2/2)
− r2

2

)
dr.

(3.3)
The distribution of P is then approximately normal with mean (3.1) and variance (3.3).

Friston et al. (1990) suggest three choices of t = 1.64, 2.33 and 2.58, corresponding to an
expected proportion of E(P ) = 0.05, 0.01 and 0.005. In D = 3 dimensions the correspond-
ing variances are Var(P ) = 0.0591/RESELS, 0.00698/RESELS and 0.00278/RESELS. It is
interesting to express Var(P ) in terms of the ‘effective’ number of independent voxels that
would produce the same variance of P , defined as E(P ){1 − E(P )}/Var(P ). For the above
thresholds these are 0.80 × RESELS, 1.42 × RESELS and 1.79 × RESELS, respectively.
The result in Friston et al. (1990) is based on assuming that the effective number of inde-
pendent voxels equals the actual number of voxels N in the search region, which leads to an
underestimate of the variance Var(P ).

4 Validation

4.1 Two dimensions

We simulated 5000 SPMs in D = 2 dimensions using uncorrelated Gaussian fields of 64 ×
64 voxels, convolved with a Gaussian kernel with standard deviation of 3 pixels, k(x) =
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exp(−||x||2/18). The FWHM is 3
√

8 loge 2 = 7.06 pixels and the number of resels in the

field is (64/7.06)2 = 82.1. The specificity of the test was assessed by comparing the observed
and expected distribution of S. Figure 3 shows the empirical distribution of S based on the
simulated noise-only SPMs and the χ2 approximation with ν = 82.1(4 loge 2/π) = 72.4 from
(2.6). The agreement is evident. Note that the χ2 approximation gets better as the effective
degrees of freedom increases.

Sensitivity was assessed by adding focal and non-focal signals of different spatial extent.
The signals were step functions (convolved with k(x)), with a deliberately small positive
signal of 0.15 in half the signal area and a the same size decrease of -0.15 in the other half.
Three sorts of signal were used, ranging from focal to spatially distributed (representing 7.8,
14.6, 25.4 and 58.6% of the region tested). Figure 4 shows the signals used in the simulation
and an example of a simulated SPM with no signal. The sensitivity of the sums of squares
was compared to the sensitivity of the γ2 statistic (Fox et al., 1989), a test based on the
kurtosis of the distribution of SPM local maxima. Sensitivity was measured as the percent
of correctly detected signals at a fixed false positive rate (p = 0.05). Table 1 presents the
results for the comparison of sensitivity between the test based on S and the γ2 statistic for
the different signal sizes. It shows that for all signals the S test is more or equally powerful
than a test based on the distribution of local maxima. The S test was up to 9 times more
sensitive in the case of very non-focal signals, and retains a comparable sensitivity for focal
signals, therefore proving itself to be (to some extent) versatile. Of course, in the case of
very focal signals, the S test is much less sensitive than tests based explicitly on maxima
(Friston et al., 1991; Worsley et al., 1992), as we shall see in the next section.

Table 1. 2D specificity and sensitivity

Signal Detection (%)
Area (%) SNR (%) MSOS γ2

None 0 0 3.6 1.0
Signal 1 7.8 28 7.9 7.3
Signal 2 14.6 45 31.7 12.3
Signal 3 25.4 65 67.7 11.0
Signal 4 58.6 106 99.2 13.0

SNR = signal to noise ratio,
MSOS = mean sum of squares test, γ2 = γ2 test.

4.2 Three dimensions

We simulated 200 Gaussian SPMs in D = 3 dimensions with zero mean and unit variance,
sampled on a 128 × 128 × 64 lattice of 1.5mm voxels. The search region R was a hemi-
sphere of radius 75mm and volume V = 884cm3, which roughly approximated the brain
region. The Gaussian random fields were created by convolving Gaussian white noise with
a Gaussian smoothing kernel of resolution 18mm, 18mm and 7.5mm FWHM, chosen to rep-
resent smoothing in the x and y directions but no axial (z) smoothing, giving RESELS =
884/(1.8× 1.8× 0.75) = 364. Convolution was achieved via the Fast Fourier Transform.
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Three tests were compared on the 3D data: the mean sum of squares test S, the acti-
vation proportion test P , and the maximum SPM test M . Critical thresholds for each test
were calculated at the 5% nominal false positive rate. The degrees of freedom for the χ2

distribution of S was ν = 301 from (2.6). The mean and variance of P were calculated from
(3.1) and (3.3) using three values of the threshold t. The p-value of M was calculated from
Worsley et al. (1992). The observed specificites are shown in Table 2, and it can be seen
that they are in good agreement with the nominal levels.

Table 2. 3D specificity and sensitivity

Signal Detection (%)
Volume (%) SNR (%) MSOS AP(1.64) AP(2.33) AP(2.58) Max

None 0 0 4.25 4.25 5.25 5.75 4.50
One focal 0.8 23 16 20 31 38 56

Three focal 2.3 38 55 60 85 90 89
One flat 4.6 64 89 98 100 100 97
Diffuse 100 50 87 49 59 59 27

SNR = signal to noise ratio, MSOS = mean sum of squares test,
AP(t) =activation proportion test with threshold t, Max = maximum SPM test.

Phantom signals were created and added to each simulated image and the tests were
repeated. The signals were:

• a focal signal, created by convolving the point spread function with itself to produce
a Gaussian shaped signal with FWHM equal to

√
2 times that of the point spread

function. This was shown by Worsley and Vandal (1994) to be the signal shape best
detected by S and M . The location was chosen to lie in the anterior cingulate close
to where activation was in fact detected in a study of pain perception by Talbot et al.
(1991). The peak height was chosen to be 4. In comparison with the 2-D simulations,
the focal signal occupied only a small part (0.8%) of the search region.

• a signal with three peaks, identical in shape and height to the first but centred in the
anterior cingulate, the primary and secondary somatosensory regions of the brain, close
to where activation was detected in Talbot et al. (1991). This signal covered 2.3% of
the search region.

• a ‘flat’ signal, created by convolving a 3× 4.5× 3cm region of uniform height with the
Gaussian point spread function to create a broader region of activation which covered
4.6% of the search region. The maximum height of this region was chosen to be the
same as the peak heights above, and the region was located in the right hemisphere in
roughly the same place where activation was detected by Talbot et al. (1991).

• a random ‘diffuse’ signal, created as the realisation of a Gaussian random field with
the same correlation structure as the noise. For this signal, there is a straightforward
way of assessing the sensitivity of all tests without using simulations. The sensitivity,
averaged over all such random realisations, is equivalent to just the p-value for the
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same statistic but with the image standard deviation multiplied by (1 + SNR2)1/2,
where SNR is the signal to noise ratio, as measured by the root mean square (RMS)
amplitude of the signal relative to that of the noise. In our case we chose SNR = 0.5.

The sensitivity of the tests was then estimated by the proportions of simulated values
exceeding the nominal critical values, and the results are given in Table 2, along with the
SNR of all signals.

We note that, as expected, the maximum SPM test M is by far the most sensitive at
finding a single peak, closely followed by the activation proportion test P at high threshold;
all tests are better at finding three peaks or a flat peak. For the diffuse signal the S test is
the most sensitive, followed by the activation proportion test P for highest threshold; the
maximum test M has low sensitivity. The conclusion is that focal signals are best detected
by the maximum test, diffuse signals are best detected by the mean sum of squares test
S, with the activation proportion test P performing reasonably well for all types of signal,
particularly at the highest threshold.

5 Application

Data were obtained from three subjects scanned 12 times (every 8 minutes) whilst performing
one of two verbal tasks. Scans were obtained with a CTI PET camera (model 953B CTI
Knoxville, TN USA). 15O was administered intravenously as radiolabelled water infused over
two minutes. Total counts per voxel during the buildup phase of radioactivity served as an
estimate of regional cerebral blood flow (rCBF) (Fox et al., 1989). Subjects performed two
tasks in alternation. One task involved repeating a letter presented aurally at one per two
seconds (word shadowing). The other was a paced verbal fluency task, where the subjects
responded with a word that began with the letter presented (intrinsic word generation).
To facilitate intersubjet pooling, the data were stereotactically normalized (Friston et al.,
submitted) and analysed as a randomized block design ANCOVA at every voxel (with global
activity as covariate). The data were analysed using a contrast designed to test for time-
dependent effects. This contrast compared a linear effect during the first with a similar effect
during last six scans. The result of this test generated an SPM of the Student t statistic.
This SPM was transformed to the unit Gaussian distribution.

The test based on the mean sum of squares was very significant. Figure 5 presents
the observed and expected distribution of the voxel values in the SPM volume, the design
matrix and the contrast used in the example. The mean sum of squares statistic was S =
79378/62025 = 1.28, corresponding to p < 0.02 with ν = 142 degrees of freedom (171
RESELS). No localized activation was assessed as significant using the maximum M (Friston
et al., 1991; Worsley et al., 1992) or the spatial extent (Friston et al., 1994b). The γ2 statistic
was not significant. In this example, the spatially distributed time-dependent effects involved
extensive regions in the posterior cingulate and fusiform gyrus (Figure 6).

A null analysis was performed by randomizing the order of the scans and the elements of
the contrast used to compute the SPM. The p-value of the observed S = 1.04 did not reach
significance (p = 0.34).
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6 Discussion

We have presented a simple and easily implemented test based on the distribution of the
mean sum of squares of a smooth stationary process. The test is applicable in any number
of dimensions and is sensitive to diffuse non-focal cerebral signals. The mean sum of squares
can be significant in the abscence of local activations. This raises the issue of whether it is
appropriate to model the brain’s physiological response in terms of highly focal activations.
Although this model has proved itself extremely successful, it is a constrained model that
may not reflect the distributed and varied spatial scales of neurophysiological changes.

Because of its explicit dependence on maxima and kurtosis, the γ2 test is not very sensitive
to a volume containing spatially distributed signals. Moreover its specificity has only been
estimated empirically and there is no theoretical basis for the validity of the test. Tests
based on the activation proportion (the proportion of voxels exceeding a given threshold)
behave more like the mean sum of squares test, since the number of supra-threshold pixels
also increase with the prevalence of distributed signals. These tests however depend on the
threshold chosen; a high threshold seems to be best. Amongst all these tests, our results
show that the mean sum of squares test is the most sensitive at detecting diffuse non-focal
activation.

As stated in the introduction, the test reviewed in this paper is omnibus in the sense that
it has no localizing power. However, it can be applied to parts of the brain as opposed to
the entire brain volume, provided the choice of this subset is not based on the voxel values
themselves. For example a sub-volume could be chosen on some anatomical basis (e.g. a
specific gyrus). In such applications the volume and effective degrees of freedom may be
quite small and the χ2 approximation may not be accurate.

Note generally that if a focal activation can be detected, the “omnibus-ness” of any test
becomes redundant. This is because if we can reject the strong hypothesis that no activation
occurred at some point, then one is implicitly rejecting the null hypothesis that an activation
has not occurred anywhere.

The degree of smoothing, or equivalently the scale at which the data are observed, has
already been acknowledged as a key parameter in the analysis of functional neuroimaging
data (Poline et al., 1994ab). This continues to be the case with the mean sum of squares
test. Varying the width (from 1.5 to 5 pixels) of the Gaussian kernel (used in creating the
simulated processes containing the second smallest 2D signal) showed that the sensitivity of
the test is reduced when the filter is too small. In general, Worsley and Vandal (1994) have
shown that the mean sum of squares test, like the maximum test, is most sensitive when the
kernel associated with the SPM has the same spatial extent as the underlying physiological
signals. Thus a wide filter should be used to detect a wide signal, and a narrow filter for a
narrow signal.

7 Conclusion

We have described a simple test based on the mean sum of squares of the SPM. The test
can be applied to any volume that approximates (under the null hypothesis) a stationary
smooth Gaussian process. This test has proven powerful in the case of distributed, non-focal
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activations and could be used as a prelude to variance partitioning procedures that do not
allow for statistical inferences, such as singular value decompostition and eigenimage analysis
(Friston et al., 1993ab).
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Figure 1: The distribution of S with large degrees of freedom in D = 1 dimensions. A
comparison of the χ2 approximation and the exact distribution of the mean sum of squares
statisic S for two different periodic point spread functions (upper left: Gaussian; lower left:
sinc). The right panels show good agreement between the distribution of S using the χ2

approximation (dashed line), the exact distribution (solid line) and simulations (crosses).
The processes have N = 256 points and their effective degrees of freedom are ν = 34.0 and
ν = 50.2 for the Gaussian and sinc functions, respectively.
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Figure 2: The distribution of S with small degrees of freedom for D = 1 dimensions (upper
right) and D = 2 dimensions (lower right). The χ2 approximation (dashed line) is less
accurate than the the exact distribution (solid line) and simulations (crosses). The left
panels show the corresponding Gaussian point spread functions. The size of the processes
were N = 32 in D = 1 dimensions, and N = 162 = 256 in D = 2 dimensions, to give ν = 4.2
and ν = 10.2 degrees of freedom, respectively.
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Figure 3: The distribution of S with large degrees of freedom in D = 2 dimensions. A
comparison of the χ2 approximation and the simulated distribution (5000 realisations) of S
for a Gaussian point spread function (FWHM = 7.06 pixels). The χ2 approximation (dashed
line) is in good agreement with simulations (crosses). The process has N = 642 = 4096 points
and the effective degrees of freedom is ν = 72.4.
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Figure 4: As in Figure 3, but with a simulated signal (upper left) added to the noise (upper
right) to give signal plus noise (lower left). The lower right panel shows the χ2 approximation
to the distribution of S for noise only from Figure 3 (smooth line), and the distribution of
S from 1000 realisations of signal plus noise (broken line). The evident increase in S shows
the sensitivity of the test to the addition of this signal.
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Design Matrix
5 10 15
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contrast

Threshold = 2.58  Volume = 62025 

Smoothness = [3.7 3.9 2.0] voxels 

Degree of freedom (experimental design) = 32

Sum of Square : 79378 P omibus 0.0137 

Effective degree of freedom (of the data): 142

 Number of resels:  171 

SPM analysis − date: 11−Apr−95  user: jean

Figure 5: Experimental dataset tested with S. The distibution of the experimental SPM
Z values (broken line) and the Gaussian distribution (smooth line) are shown in the left
panel. The design matrix and the contrast used in this application are shown on the right
panel. With an effective degrees of freedom of ν = 142 (171 RESELS), the mean sum of
squares statistic is S = 1.28 leading to a significant omnibus test (p < 0.02). No other test
(activation proportion, γ2, peak height or spatial extent) gave significant results (see Figure
6).
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SPM{Z}

Design Matrix
5 10 15

10

20

30

40

contrast

region size {k} P(n      > k)max Z P(Z      > u)max (Uncorrected) {x,y,z mm}

1 749 0.601 3.55 0.462 2     −46   12    (0.000)
2.84 2.865 −40   −20   40    (0.002)
2.82 2.986 −30   −10   44    (0.002)

2 388 0.911 2.76 3.368 38    −50   −8    (0.003)
2.66 4.097 32    −64   28    (0.004)
2.65 4.166 38    −68   0     (0.004)

3 9 1.000 2.46 5.879 −22   −90   −4    (0.007)
4 99 0.999 2.44 6.063 −32   −58   −4    (0.007)

2.40 6.441 −40   −68   0     (0.008)
2.11 9.616 −32   −76   4     (0.017)

5 3 1.000 2.33 7.186 −56   −56   20    (0.010)
6 13 1.000 2.19 8.783 40    −20   44    (0.014)
7 18 1.000 2.16 9.028 −46   −56   24    (0.015)
8 1 1.000 2.04 10.438 26    −42   −16   (0.021)
9 1 1.000 2.01 10.689 40    −68   −8    (0.022)
10 4 1.000 1.99 11.009 −16   −58   28    (0.024)
11 3 1.000 1.97 11.129 −26   −44   −24   (0.024)
12 1 1.000 1.94 11.493 −6    −14   44    (0.026)
13 3 1.000 1.89 11.970 4     −58   28    (0.029)
14 3 1.000 1.88 12.088 −34   −90   4     (0.030)

Threshold = 1.64; Volume [S] = 62025 voxels; df = 32
FWHM = [17.2 18.2 18.4] mm (i.e. 171 RESELS)

SPM analysis − date: 11−Apr−95  user: jean

Figure 6: Statistical parametric map of Z reflecting the significance of a compound of effects.
The SPM is displayed in a standard format as a maximum intensity projection viewed from
the back, the right hand side and the top of the brain. The anatomical space corresponds
to the atlas of Talairach and Tournoux (1988). The SPM has been thresholded at 1.64 and
the color scale is arbitrary. Upper right panel: Top - the contrast used for this SPM. The
contrast is displayed above the appropriate effects (columns of the design matrix). Lower
panel: Table of regional effects (activations or regional differences) characterized by the
volume of each region (k), its significance based on patial extent P (nmax > k), the highest Z
value (Z), its significance based on P (Zmax > u) and the location of this primary maximum.
We have also included up to three secondary maxima for each region and their associated
significance based on the corrected and uncorrected p-value.
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