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The challenge

It is new types of data, such as the agricultural field trials of a hundred years ago, that
stimulate new research in statistics. Functional Magnetic Resonance Imaging (fMRI), and
brain mapping in general, presents statisticians with new challenges that might make them
the agricultural field trial of the next decade. The statistical problems are the usual ones:
we are presented with observations taken in time while different ‘treatments’ are applied,
possibly repeated on the same or different subjects (’blocks’), and we are asked to make
inferences about an underlying model for the treatments.

What makes it challenging is that the observations are 3D images, rather than univariate
‘yields’. The data is highly multivariate: there are typically 100,000 to 400,000 components
(voxels) to each observation, so finely sampled that the data is best regarded as coming from
a continuous 3D function. Conventional multivariate statistics cannot be applied because
the number of components far exceeds the number of observations, though some have tried
by restricting the images to a small number of pre-selected isolated regions (‘plots’), such as
Broca’s or Wernicke’s areas.

The strengths

This paper is the first to my knowledge that attempts a fully Bayesian analysis of fMRI data.
Chris Genovese has done a superb job of applying modern hierarchical Bayes models to the
analysis of fMRI data. The priors are chosen not for convenience but to reflect true prior
knowledge about the likely values of parameters. The advantage is that much more subtle
inference can be drawn from the data, rather than simple localization via thresholding.

In defence of thresholding, the threshold value of ±4 is probably too low. Assuming a
Gaussian distribution at ≈ 15, 000 voxels, the chance of finding false activation is not more
than 15000Φ(−4) = 0.475. To cut this down to 0.05, a threshold of −Φ−1(0.05/15000) = 4.5
might be better. This may remove some of the apparent false activation in Figure 4c.
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Admittedly it is a little strange to answer a localization problem with a hypothesis test, but
the test is designed so that detecting false activation in the unactivated part of the image
is controlled (conservatively) to a pre-specified probability of say α = 0.05. Testing for
the number of connected voxels above a threshold accomplishes much the same thing (Cao,
1999).

Nevertheless, I agree that it is not easy to detect monotonicity using frequentist methods.
It would of course be easy to detect a trend by simply regressing on a covariate taking nominal
values 0, 1, 2, 3 for the four conditions, but this is not the same thing. One might be able
to carry out tests for monotonic alternatives as a special type of cone alternative. Lin and
Lindsay (1997) and Takemura and Kuriki (1997) have found the exact distribution of such
test statistics, so it should be possible to repeat this at all voxels.

The weaknesses

Three weaknesses are addressed. The first is the issue of the computer time required to
analyze a single run, requiring about one day. It should be noted that fMRI experiments,
which only last a few minutes, are often repeated in several runs in the same session, several
sessions on the same subject, and several subjects drawn from a population. The total
computer time then becomes formidable.

The second is the noise model. At the moment, the method assumes independent tem-
poral observations. In our data, we have detected temporal correlations ranging from 0.2
to 0.4 over a time period of 3 seconds, twice as long as here (Figure 1). Neglecting this
autocorrelation causes biases in the estimated standard deviation of parameter estimates,
usually resulting in smaller reported standard errors and a higher tendency to find activation
where none exists.

Structural independence of parameters is mentioned as a third weakness. Neils Væver
Hartvig of Aarhus has developed a stochastic geometry model for fMRI data that attempts
to model activation as a sum of Gaussian densities of unknown location and scale. These are
fitted using Bayesian methods with a marked point process as prior for the centres (Hartvig,
1999). A different approach has been developed by Vic Solo, Emery Brown, Patrick Purdon
and Robert Weisskoff at the Massachusetts General Hospital (Solo et al., 1999). Their
analysis is strictly frequentist, involving a parametrized hemodynamic response function
convolved with the stimulus, drift removal by regression, and an AR(1) plus white noise
model for the errors. The interesting feature is the way in which the parameters are estimated
by pooling the likelihood over adjacent voxels. The extent of the pooling is governed by a
spatial kernel whose width is estimated by minimizing an estimator of the expected Kullback-
Liebler information. The result is a form of regularization which spatially smooths the
noise parameters but not the signal parameters. Once again, both these method are very
computationally intensive, making them prohibitive for routine use.

Statistical Parametric Mapping (SPM)

Software for performing a simple statistical analysis of fMRI data has been available for
several years in the SPM (Statistical Parametric Mapping) package. Developed by Karl
Friston at the Functional Imaging Laboratory, University College, London, it is used in
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the majority of labs worldwide, becoming the ‘SAS’ of the brain mapping community. It
takes raw fMRI data, performs motion correction, then non-linear warping to re-align the
data to a common template. The stimuli are convolved with a pre-specified hemodynamic
response function to form a design matrix for a linear model. Drift is removed by low
frequency filtering, and the analysis is made robust to the temporal correlation structure
by high frequency filtering. Fitting is by least squares, with a standard deviation corrected
for temporal correlation, modelled as an AR(1) process with a single global parameter.
Activation is detected by thresholding t statistic images, or the spatial extent of adjacent
voxels above a threshold, using random field theory to set the thresholds.

Most of the SPM package is written in Matlab, making it easy to write while maintain-
ing good execution speed. There is a GUI, on-line help, e-mail assistance, well-attended
annual workshops, excellent course notes, and a good book that describes the entire analysis
(Frackowiak et al., 1997). SPM is distributed free of charge. It is perhaps these aspects, just
as much as publication in academic journals, that have ensured the success of SPM. It has
captured the market for the non-statistician researcher who wants to get the experiments
analyzed and the results published. It is this market that statisticians must penetrate.

A compromise

We have attempted to do so by writing our own software for the routine analysis of fMRI data.
It has been in use by our researchers for the last year. It tries to combine the best aspects
of all the above methods by seeking a compromise between validity, generality, simplicity
and execution speed. The software consists of three main Matlab programs, available on the
web (http://www.bic.mni.mcgill.ca/users/keith) that take only a few minutes of computer
time to analyze each run. The method is based on that of SPM, but with local regularized
AR(1) parameters, and a form of regularized random effects analysis for combining runs
in the same session, sessions on the same subject, and subjects drawn from a population.
Pre-processing, such as motion correction, is performed by other software.

FMRIDESIGN creates suitable design matrices for linear models for the temporal data.
The time courses of the stimuli are convolved with a hemodynamic response function, taken
to be the difference of two gamma functions, one to capture the main response, the second
to capture the dip:

h(t) = (t/p1)
a1 exp((t− p1)/b1)− c(t/p2)

a2 exp((t− p2)/a2)).

where t is time in seconds, pj = ajbj is the time to the peak, and by default a1 = 6, a2 = 12,
b1 = b2 = 0.9 seconds, c = 0.35 (Glover, 1999). A certain amount of flexibility can be
incorporated by expanding h(t) as a Taylor series in an unknown scale s:

e−sh(te−s) ≈ h(t) + s(−h− t∂h(t)/∂t).

We can then convolve the stimuli with −h − t∂h(t)/∂t and add these to the model, which
allows for different scales for different types of stimuli. Finally, the regressors for the linear
model are formed by subsampling the convolved stimuli at the slice acquisition times.

FMRISTAT performs a statistical analysis of a single run of an fMRI data set. Drift is
removed by adding polynomial regressors in the scan times, up to degree 3 by default, to
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the design matrix. It is important to note that these drift terms are not convolved with
the hemodynamic response function. The correlation structure is modeled as an AR(1)
process; this is much easier to fit than an AR(1) plus white noise model. While there was
evidence for an AR(2) model, parameter estimates and their standard errors were almost
the same as for the AR(1). At each voxel, the autocorrelation parameter was estimated
from the least squares residuals using the Yule-Walker equations, after a bias correction for
correlation between the residuals induced by the linear model (see Appendix). Without
this correction, the autocorrelation parameter was negatively biased by about -0.05. The
autocorrelation parameter was then regularized by spatial smoothing with a 6mm (default)
standard deviation Gaussian filter (Figure 1), then used to ‘whiten’ the data and the design
matrix. The linear model was then re-estimated by least squares in a second run through
the whitened data, to produce estimates of effects and their standard errors. This second
run requires finding the pseudoinverse of a different whitened design matrix at each voxel.
To reduce computations, this was evaluated only for the autocorrelation parameter rounded
to the nearest second decimal, then cached.

MULTISTAT combines the output from FMRISTAT across runs within sessions, sessions
within subjects, then finally subjects within a population in a hierarchical random effects
analysis. Runs within a session are combined with another linear model for the run effects
(as data), weighted inversely by the square of their standard errors from FMRISTAT. The
degrees of freedom of the standard errors are quite large (> 100), but the number of runs
in a session is quite small (< 10), so a straightforward random effects analysis would leave
too few residual degrees of freedom. Instead, a regularized random effects analysis was
performed by first estimating the ratio of the random effects variance σ2

random to the fixed
effects variance σ2

fixed, then regularizing this ratio by spatial smoothing with a Gaussian kernel
with a standard deviation of wratio = 6.4mm (default) (Figure 2). The residual variance was
then estimated by

σ2
residual = σ2

fixedsmooth(σ2
random/σ2

fixed)

to achieve higher degrees of freedom at the expensive of introducing a small bias. The
effective degrees of freedom of the smoothed variance ratio was estimated by assuming that
the spatial correlation function of the fMRI data was a Gaussian function with standard
deviation wdata (2.5mm by default):

νratio = νrandom(2(wratio/wdata)
2 + 1)3/2,

where νrandom is the degrees of freedom of the second linear model for the runs. The final
effective degrees of freedom of the residuals, νresidual, is estimated by

1/νresidual = 1/νratio + 1/νfixed,

where νfixed is the residual degrees of freedom of the fixed effects analysis, equal to the sum
of the degrees of freedom of the preceding separate FMRISTAT analyses. Thus the wratio

parameter acts as a convenient way of providing an analysis mid-way between a random
effects and a fixed effects analysis; setting wratio = 0 (no smoothing) produces a random
effects analysis; setting wratio = ∞, which smooths the variance ratio to one everywhere,
produces a fixed effects analysis. In practice, we choose wratio to produce a final νresidual
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which is at least 100, so that errors in its estimation do not greatly affect the distribution of
test statistics. Sessions within subjects are combined with another MULTISTAT analysis,
and subjects are combined within a population in a final MULTISTAT analysis.

TSTAT THRESHOLD provides a threshold for the resulting t statistic image chosen so
that the probability of finding activation in unactivated regions is controlled conservatively
to a prespecified level, say α = 0.05 (Figure 3). The method uses the minimum given
by a Bonferroni correction and random field theory, which approximates the probability of
exceeding the threshold by the expected Euler characteristic of the set of voxels above the
threshold (Adler, 1981, 1999; Worsley, 1995; Worsley et al., 1996).

Statistics and brain mapping

My hope is that more statisticians might get involved with brain mapping data. New types
of data are being created all the time. Besides fMRI, there is the older PET methodology
which can target brain chemistry rather than simply activation. Non-linear models are
needed to fit compartment models that describe the transfer and uptake of tracer-labelled
neurotransmitters. John Aston at Imperial College has started a careful statistical analysis
of this type of data (Aston et al., 1999). Magnetic Transfer Ratios can detect changes in
multiple sclerosis (MS) lesions before the lesions actually appear (Pike et al., 1999). The
appearance of MS lesions themselves represent fascinating challenges for applying survival
analysis to image data, where there is a hazard function at every point in the 3D image.
Finally, there is interest in functional connectivity, defined as high correlation between distant
brain voxels (Cao and Worsley, 1999a).

There is also great interest in brain structure rather than brain function. It is thought
that different brain regions might shrink in response to disease (e.g. Alzheimers or MS) or
grow in response to age (growth curves might be useful here) or in response to a stimulus
(pianists have larger motor cortex for finger control). The simplest type of structural data is
binary masks, where a value of 1 is assigned to the structure of interest (e.g. cortex) and 0
elsewhere. Jonathan Taylor has analyzed this type of data using logistic regression at every
voxel with a quasi-binomial likelihood (Taylor et al., 1998; Paus et al., 1999). The outer
surface of brain structures can now be extracted using sophisticated methods that shrink-
wrap a triangular mesh around the cortex. Surface normal displacements can be used for
statistical analysis, but now the data sits on a 2D curved manifold, rather than a uniform
grid in 3D space, which presents fascinating challenges for random field theory (Worsley
et al., 1996). Vector deformations required to warp the data to an ‘atlas’ brain encode
shape information. Jin Cao (Bell Labs) and myself have treated this as trivariate Gaussian
data, and used random fields of Hotelling’s T 2 statistics to look for shape differences (Cao
and Worsley, 1999b). Paul Thompson at UCLA has used this type of data to look for brain
growth in children and adolescents (Thompson et al., 1999). Finally, diffusion tensor imaging
now produces 3× 3 symmetric matrices at each voxel that indicate the direction and degree
of alignment of white matter tracts (Pierpaoli et al., 1996).

Why are so few statisticians working in this area? A few years ago, there were less than
10. I have two reasons. The first is that the amount of data is forbidding. A single fMRI
run generates about 100MB of data; this is repeated on the same subject, and over several
subjects to generate several gigabytes of data. Statisticians are more used to comfortable

5



data sets of 100 numbers or less. This type of data is awkward to transmit, it often comes in
strange formats, and requires special tools to manipulate. Analysis has to be done in C or
Matlab; conventional statistics packages usually cannot cope. Visualizing the results often
requires special 3D imaging tools.

The second is that statisticians must actually work side by side, in the same lab, as
the neuroscientists. As Bill Eddy has said, brain mapping is a ‘team sport’, involving psy-
chologists who design the experiments, technicians and physicists who operate the scanner,
computer specialists who handle the data, and statisticians who should (I hope!) carry out
the analysis. To make any progress, you have to be on site. This type of work cannot be
done at a distance from the comfort of an office in a Department of Statistics. I would like
to make a plea for statisticians to get involved, to get their hands ‘dirty’ with the data, as
Fisher did in the fields of Rothamstead. Chris Genovese has clearly done this, and reaped
the rewards.

Appendix

For an AR(p) model, the bias can be reduced by equating sample autocovariances to their
expectations, as follows. Let e = RY be the vector of least squares residuals, where Y is
the data vector at a single voxel, R = I−X(X′X)−1X′ and X is the design matrix. Let Dr

be a matrix of zeros with ones on the rth upper off-diagonal, so that the expectation of the
lag r autocovariance, 0 ≤ r ≤ p, is

E(e′Dre) = tr(RDrRV) ≈ v0tr(RDr) +

p∑
j=1

vjtr(RDrR(Dj + D′
j)),

where V = Var(Y) is approximated by vj on the jth off-diagonal, 0 ≤ j ≤ p, and zero
elsewhere. Equating e′Dre to its approximate expectation for 0 ≤ r ≤ p and solving for
vj, 0 ≤ j ≤ p, gives estimates of the autocovariances. Inserting these into the Yule-Walker
equations gives estimates of the AR(p) parameters which were shown by simulation to have
much reduced bias.
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Figure 1: The autocorrelation at a lag of 3 seconds in one horizontal slice, after bias correction
and spatial smoothing. The data come from an fMRI experiment to detect pain perception.
120 scans (128×128 2.35mm pixels per slice, 13 slices 7mm apart) were taken every 3 seconds
while a painful heat stimulus (3 scans) was alternated with a control warm stimulus (3 scans)
each seperated by a baseline (3 scans), repeated 10 times. Note that autocorrelations are
0.2-0.4 in cortical areas.
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Figure 2: The ratio of random effects standard deviation to fixed effects standard deviation
in one horizontal slice after spatial smoothing, for 4 runs of the experiment described in
Figure 1. Note that most of the brain shows no evidence of a random effect (ratio ≈ 1), but
the random effect due to subjects within a population can be much higher (ratio ≈ 3, not
shown).
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Figure 3: The t statistic from the data described in Figure 2 for detecting a difference between
the hot and control (warm) stimulus. The effective degrees of freedom is νresidual = 112, and
the image is thresholded at 4.86, chosen to control the probability of detecting activation in
non-activated ares to 0.05.
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