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Abstract

We propose a method for the statistical analysis for fMRI data that seeks a compromise between

efficiency, generality, validity, simplicity and execution speed. The main differences between this

analysis and previous ones are: a simple bias reduction and regularization for voxel-wise autoregres-

sive model parameters; the combination of effects and their estimated standard deviations across

different runs/sessions/subjects via a hierarchical random effects analysis using the EM algorithm;

overcoming the problem of a small number of runs/session/subjects using a regularized variance

ratio to increase the degrees of freedom.
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1 Introduction

Many methods are available for the statistical analysis of fMRI data that range from a simple
linear model for the response and a global first-order autoregressive model for the temporal
errors (SPM’99), to a more sophisticated non-linear model for the response with a local
state space model for the temporal errors (Purdon, et al., 2001). We have tried to strike a
compromise that is fast, efficient, general and valid. The main novel features of our method
are: 1) a method for reducing the bias in estimating the parameters of an autoregressive
model for the errors; 2) combining the results from separate runs/sessions/subjects using
a simple random effects model estimated by the EM algorithm; 3) modifications to the
EM algorithm to reduce bias and increase execution speed; 4) spatial regularization of the
random effect to increase the degrees of freedom; 5) careful use of caching to improve the
overall execution speed of the computer code.

The result is a set of four MATLAB functions, collectively known as fmristat, which are
freely available on the web at http://www.math.mcgill.ca/keith/fmristat. The first,
fmridesign, sets up the design matrix for a linear model by convolving the external stimulus
with a pre-specified hemodynamic response function (HRF). The second, fmrilm, fits the
linear model to a single run of fMRI data allowing for spatially varying autocorrelated
errors. It can also estimate the voxel-wise delay of the HRF, but this will be described
elsewhere (Liao et al., 2000). The third, multistat, combines the output from separate
analyses of fmrilm from different runs within a session, different sessions on the same subject,
and across subjects within a population, using a type of random effects analysis. Finally,
tstat threshold sets the threshold for peak and cluster size detection using random field
theory (Worsley et al., 1996; Cao, 1999). The analysis is presented schematically in Figure
1.

Note that spatial normalization to register the images to an atlas standard, such as Taila-
rach coordinates, is only performed on the output from each session (since the subject will
have moved), not on the original data nor the output from each run (since the subject is
presumably still in the same position in the scanner). This reduces the amount of normal-
ization considerably. Motion correction during the run is performed by different software in
our lab.

This paper is organized as follows. Section 2 defines the linear model for fMRI data, then
the statistical analysis of a single run is presented in Section 3. Results from multiple runs,
sessions and subjects are analysed in Section 4. Peak and cluster size detection are discussed
in Section 5. The methods are applied to a data set in Section 6, and some discussion and
concluding comments are given in Sections 7 and 8.

2 Designing the statistical model

2.1 Modeling the signal

The first step in the statistical analysis of fMRI data is to build a model of how the data
responds to an external stimulus. Suppose the (noise-free) fMRI response at a particular
voxel at time t is given by x(t), and the external stimulus is given by s(t). The corresponding
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fMRI response is not instantaneous; there is a blurring and a delay of the peak response by
about 6 seconds. The simplest way of capturing this is to assume that the fMRI response
depends on the external stimulus by convolution with a hemodynamic response function h(t)
as follows:

x(t) =
∫ ∞

0
h(u)s(t− u)du. (1)

Several models for h(t) have been proposed. A simple one is a gamma function (Lange and
Zeger, 1997) or a difference of two gamma functions to model the slight intensity dip after
the response has fallen back to zero (Friston et al., 1998). An example is the HRF available
in SPM’96:

h(t) = (t/d1)
a1 exp(−(t− d1)/b1)− c(t/d2)a2 exp(−(t− d2)/b2)). (2)

where t is time in seconds, dj = ajbj is the time to the peak, and a1 = 6, a2 = 12, b1 = b2 = 0.9
seconds, and c = 0.35 (Glover, 1999). This is then subsampled at the n scan acquisition
times t1, . . . , tn to give the response xi = x(ti) at scan i.

The combined effect of k different stimuli types on data in scan i, denoted by k different
responses xi1, . . . , xik is often assumed to be additive but with different multiplicative coeffi-
cients β1, . . . , βk that vary from voxel to voxel. The combined fMRI response is modeled as
the linear model (Friston et al., 1995)

xi1β1 + · · ·+ xikβk.

Some voxels in fMRI time series data show considerable drift over time. Drift can be
either linear, or a more general slow variation. If drift is not removed then it can either be
confounded with the fMRI response, particularly if the stimuli vary slowly over time, or it
can add to the estimate of the random noise. The first causes bias in estimates of the effect of
the stimuli, the second causes bias in the estimate of the error of the estimated effect. Drift
can be removed either by high-pass filtering or by introducing low frequency drift terms,
such as cosines, polynomials, or splines, into the linear model. The cosine transform basis
functions used in SPM’99 have zero slope at the ends of the sequence, which is not realistic,
so we use a polynomial drift. All of these can be written as extra ‘responses’ xi,k+1, . . . , xi,m

at time i, and added to the linear model. For example, a polynomial drift of order q can be
removed by adding to the linear model xi,k+1+j = tji , j = 0, 1, . . . , q, m = k + 1 + q. Finally
a random error εi is added to obtain the observed fMRI data, Yi, at time index i:

Yi = xi1β1 + · · ·+ xikβk︸ ︷︷ ︸
fMRI response

+xi,k+1βk+1 + · · ·+ ximβm︸ ︷︷ ︸
drift

+εi

= x′iβ + εi, (3)

where xi = (xi1, . . . , xim)′ and β = (βi1, . . . , βim)′.

2.2 Modeling the noise

The errors are not independent in time; typically the correlation between scans 3 seconds
apart can be as high as 0.4, particularly in cortical regions (Figure 2(c)). Using least squares
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model fitting to estimate each β, and neglecting to take the correlation structure into account,
or using the wrong correlation model, can cause biases in the estimated error of the estimates
of β, but it does not bias the estimate of β itself, which will always be unbiased though
perhaps less efficient (i.e. more variable). The simplest model of the temporal correlation
structure is the first order autoregressive model (Bullmore et al., 1996), in which the scans
are equally spaced in time and we suppose that the error from the previous scan is combined
with fresh noise to produce the error for the current scan:

εi = ρεi−1 + ξi1,

where |ρ| < 1 and ξi1 is a sequence of independent and identically distributed normal random
variables with mean 0 and standard deviation σ1 i.e. ξi1 ∼ N(0, σ21) (known as ‘white noise’).
The resulting autocorrelation at lag l is

Cor(εi, εi−l) = ρ|l|.

This can be extended to autoregressive models of order p, denoted by AR(p), specified by

εi = α1εi−1 + α2εi−2 + · · ·+ αpεi−p + ξi1,

in which the autocorrelation structure is more complex, including oscillatory terms as well
as exponential decay. To take into account white noise from the scanner, Purdon et al.

(2001) has extended the AR(1) model to add a second independent white noise term. This
is a special type of state space model which are extremely powerful at capturing complex
dynamic relationships, including drift.

2.3 Fmridesign

The MATLAB function fmridesign takes as input the stimuli s(t) (defined by onset time,
duration and height) and the parameters of the HRF (2), calculates the responses x(t), then
samples them at the slice acquisition times to produce a different set of regressor variables
xi for each slice. Our analysis uses regressors tailored to each slice whereas SPM simply
augments the regressors to include extra covariates that model slight shifts in time induced
by sequential slice acquisition. In other words, fmridesign specifies a single but slice specific
regressor, whereas SPM augments the design matrix to include an extra regressor that retains
the same design matrix for all voxels. This is then used as input to fmrilm to be described
next.

3 Linear models analysis of a single run

3.1 Estimating the signal parameters

Worsley and Friston (1995) proposed estimating β in (3) by least squares, then correcting
the inference for correlated errors. A general unbiased estimator of β can be found by first
multiplying the vector of observations Y = (Y1, . . . , Yn)

′ and its model (3) by an n×n matrix
A then estimating the parameters by least squares. The fully efficient (most accurate, i.e.

4



minimum variance) estimator of β is obtained by choosing A = V− 1
2 , where Vσ2 is the

n × n variance matrix of Y, so that the variance of the resulting errors is proportional to
the identity matrix, equivalent to ‘whitening’ the errors. SPM’99 chooses A to suppress
both high and low frequencies. The removal of low frequencies implements an approximate
whitening of the data and removal of high frequencies renders the resulting inference more
robust to misspecification of the correlation structure (Friston et al., 2000). SPM’99 adopts
an AR(1) model for the original data, whose parameter ρ is assumed to be constant across
the brain, rather than varying spatially as proposed in our method. Although there is
considerable evidence that ρ is not constant (see Figure 2 and Purdon et al., 2001), the
robustness conferred by temporal smoothing appears to alleviate this problem.

Here we propose the fully efficient, pre-whitening strategy with a spatially varyingA = V− 1
2 .

Doing this in practice can be very time consuming if it is repeated at every voxel. Fortu-
nately there are computationally efficient ways of finding V− 1

2 if the errors are generated by
an AR(p) process (see Appendix A.3) or a state space model (using the Kalman filter). For
the AR(1) model, for example, pre-whitening the data and regressors is accomplished by

Ỹ1 = Y1, Ỹi = (Yi − ρYi−1)/
√
1− ρ2,

x̃1 = x1, x̃i = (xi − ρxi−1)/
√
1− ρ2, (4)

i = 2, . . . , n, so that the model becomes

Ỹi = x̃
′
iβ + ξi, (5)

where ξi ∼ N(0, σ2) independently and σ2 = σ21/(1− ρ2). Denoting the pseudoinverse by +,
the least squares estimator of β in (5) is

β̂ = X̃+Ỹ, (6)

where X̃ = (x̃1, . . . , x̃n)
′ is the transformed design matrix, and Ỹ = (Ỹ1, . . . , Ỹn)

′ is the
transformed observation vector.

3.2 Estimating the noise parameters

The vector of residuals r = (r1, . . . , rn)
′ is

r = Ỹ − X̃β̂ = RY, R = I− X̃X̃+
.

If V is known, then σ2 is estimated unbiasedly by

σ̂2 = r′r/ν, (7)

where ν = n − rank(X̃) is the degrees of freedom, equal to n −m if the model is not over
parameterized.

We now turn to estimating the parameters in the correlation structure V. We first
estimate β by least squares for the original untransformed data (3), that is with A equal to
the identity matrix. While not fully efficient, this estimator is unbiased, so that the residuals
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have zero expectation and a correlation structure approximately equal to that of the errors
ε. The parameter of the AR(1) model can then be estimated by the sample autocorrelation
of the residuals

ρ̂ =
n∑

i=2

riri−1/
n∑

i=1

r2i .

Replacing ρ in (4) by the reduced bias, regularized ρ̂ (see Section 3.3 below) produces ap-
proximately whitened data that are used to produce the final estimators of β and σ from (6)
and (7). This could be iterated by re-estimating r, ρ, then β, but in practice this does not
seem to give much improvement.

3.3 Bias reduction and regularization of the autocorrelations

A slight bias creeps into the estimator ρ̂ due to the correlation of the residuals induced
by removing an estimated linear effect from the observations. This is because the variance
matrix of the residuals is RVRσ2, which is not the same as the variance matrix of the errors
Vσ2. Typically ρ̂ is about 0.05 lower than expected.

Note that SPM’99 estimates a global value of ρ based on pooling the sample autocor-
relations of the raw data after global normalisation, so this problem is avoided. This is at
the expense of introducing another potential source of bias due to the fact that signal and
drift terms, not removed by global normalisation, have not been removed. However only a
small fraction of the voxels should show signal or drift, so when the autocorrelation is pooled
across voxels this source of bias will be reduced. Bias due to using a global instead of a local
estimate of ρ still remains, but this bias is reduced by the band-pass filtering strategy as
noted in Section 3.1.

One method of obtaining less biased voxel-wise variance parameters is to use restricted
or residual maximum likelihood (REML) estimates (Harville, 1974), but this involves costly
iterations. Instead we propose a simple, fast, non-iterative method based on equating sample
autocovariances to their approximate expectations. Details are given in Appendix A.1.
Inserting the resulting autocorrelations into the Yule-Walker equations gives estimates of the
AR(p) parameters, which were shown by simulation to have much reduced bias. However
before doing this, we propose regularizing the autocorrelations as described next.

In practice the estimated autocorrelation parameters vary considerably about their true
values. Even when no correlation is present, it is well known that the standard deviation of
the sample autocorrelation ρ̂ is about 1/

√
n, or about 0.1 for typical runs of n = 100 scans.

This is quite large compared to the true correlations that range from 0 to 0.4. Some method
of regularization that reduces this variability seems desirable. Purdon et al. (2001) achieve
this by spatial smoothing of the likelihood before estimating the autocorrelation parameters.
Instead we propose the simpler method of spatial smoothing of the (reduced bias) sample
autocorrelations. This reduces the variability considerably, at the cost of a slight increase in
bias. The extension of these ideas to AR(p) models is treated in Appendix A.
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3.4 Inference for effects

An effect of interest, such as a difference between stimuli, can be specified by cβ, where c is
a row-vector of m contrasts. It is estimated by

E = cβ̂, (8)

with estimated standard deviation

S = ||cX̃+||σ̂. (9)

To detect the effect, we test the null hypothesis that the effect is zero. The test statistic is
the T statistic

T = E/S

which has an approximate t distribution with ν degrees of freedom (exact if V is known)
when there is no effect (cβ = 0). To detect more than one effect at the same time, that is,
if c is a matrix with rank k, the T statistic is replaced by an F statistic defined by

F = E ′(cX̃
+
(cX̃

+
)′)−1E/(kσ̂2)

which has an approximate F distribution with k and ν degrees of freedom (exact if V is
known) when there are no effects.

3.5 Fmrilm

The methods described in this section have been implemented in the MATLAB function
fmrilm (fMRI linear model) for AR(p) models. This takes as input the design matrices
from fmridesign and adds polynomial trends. Note that the polynomial trends are not
smoothed by the hemodynamic response function, so that the constant term codes for a rest
or baseline condition that is supposed to exist before scanning started. Coding for a baseline
‘stimulus’ is not necessary unless the baseline is a separate stimulus, such as a cross on a
computer screen, that was first presented the moment that scanning commenced. If this is
the case, the constant term (in the drift) codes for the small amount of background effect
that is carried over by the HRF from before scanning started, and should be ignored.

In a first pass through the data, the reduced bias ρ̂ is calculated from the least-squares
residuals of the untransformed model. This is regularized by spatial smoothing with a 15mm
(default) FWHM Gaussian kernel. In a second pass through the data, the fMRI data and
design matrix are whitened using ρ̂ and the final estimates of β and σ are calculated, then
effects E, their standard errors S, and T and F test statistics. Note that calculation of S by
(9) avoids further matrix inversion. Note also that these steps give the right answers even if
the design matrix has less than full rank (i.e. the model is over-parameterized).

Computations were reduced as follows. Note that in this second pass, a separate pseudo-
inverse must be calculated at each voxel, because the whitened design matrix depends on
the autocorrelation parameter ρ̂. To cut down computations, ρ̂ was rounded to the nearest
0.01 from -1 to 1, and a separate pseudo-inverse was calculated and cached for each rounded
ρ̂ in the slice. This reduced the number of pseudo-inverse calculations by a factor of about

7



100. Unfortunately this trick does not work for AR(2) models or higher because two or more
parameters are involved. However the whitening step was efficiently coded by a very small
number of MATLAB commands (see Appendix A.3).

The execution time of fmrilm is about 6 minutes for 118 scans × 13 slices × 128 × 128
pixels per slice on a 450 MHz Pentium, but 22 minutes for fitting an AR(2) model, increasing
by 4 minutes per extra order of the AR(p) model, to over 50 minutes for an AR(8) model.

4 Combining multiple runs, sessions or subjects

4.1 The random effects model

The next step is to combine the effects and their standard errors from different runs in the
same session, then different sessions on the same subject, then different subjects from a
population. This makes our inference applicable to a population, rather than just a single
case. Let us start by combining n∗ runs; the combination of sessions and subjects is similar.
Let Ej denote the effect on run j from (8), and let Sj denote its standard deviation from
(9), j = 1, . . . , n∗.

Besides simply averaging the effects, we may also wish to compare one set of runs with
another under different experimental conditions, or we may wish to remove a trend in the
effects taken over time. This can be simply captured by another vector of regressor variables
denoted by zj measured on run j. We then assume that Ej is a random variable whose
expectation is a linear model z′jγ in the regressor variables.

In order to extend our inference to randomly sampled runs, rather than further scans
within the same run, we assume that the effect has two components of variability. The first
is the variance S2

j from further scans within the same run, regarded as fixed. The second is
a random effects variance σ2random from the variability of the expected Ej (found by infinitely
long runs) from run to run. The random effects model (strictly speaking a mixed effects
model) is then

Ej = z
′
jγ + ηj, (10)

where ηj is normally distributed with zero mean and variance S2
j +σ2random independently for

j = 1, . . . , n∗. Note that setting σ2random = 0 produces a fixed effects analysis.

4.2 Estimating the parameters

If σ2random were known, then the best estimator of γ is obtained by weighted least squares
with weights inversely proportional to S2

j + σ2random. The fixed effects estimates would use
weights inversely proportional to S2

j , which was the basis of our first version of multistat
(Worsley et al., 2000). If σ2random is unknown then we can estimate γ and σ2random by restricted
maximum likelihood (REML) (Harville, 1974), which gives less biased variance estimates
than maximum likelihood (ML). However the fact that the error variances add means that
there is no analytic expression for the REML or ML estimators, so we must resort to iterative
algorithms. Stability is more important than speed of convergence since it is not easy to
monitor the algorithm at each voxel, so we have chosen the EM algorithm, which always
produces positive estimates of variance components. The details are given in Appendix B.
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When the random effect is small, the EM algorithm is known to be slow to converge and
it produces severely biased estimates. This is because the EM algorithm always returns a
positive estimate of σ2random even when the true value is zero. To overcome this, we subtract
S2
min = minjS

2
j from each S2

j , which gives an equivalent model for Ej with variance

(S2
j − S2

min) + (σ2random + S2
min).

We now use the EM algorithm to estimate the unknown parameter σ∗2
random = (σ2random+S

2
min).

The starting values are the least squares estimates assuming that Sj = 0. Convergence is
faster because σ∗2

random is further from zero than σ2random; ten iterations appear to be enough.
Finally we subtract S2

min from σ∗2random to get an estimator of σ2random that appears to be almost
unbiased for simulated data.

4.3 Regularizing the random effects variance

A serious problem with the above analysis is that the number of runs, sessions or subjects
is usually small and so the estimate of σ2random is highly variable, which results in a low
effective degrees of freedom ν∗ for the estimated variance V̂ar(γ̂). For example, if all standard
deviations Sj were equal, so that the variance of each effect Ej is an unknown but equal
constant, then it can be shown that the degrees of freedom is ν∗ = n∗−p∗, where p∗ = rank(Z)
and Z = (z1 . . . zn∗)

′. In our application, the n∗ = 4 runs were averaged to give ν∗ = 3 degrees
of freedom. This is particularly serious when detecting local maxima by thresholding an
image of T statistics, because the corrected threshold can become extremely high, making
it very difficult to detect a signal that is really present (Worsley et al., 1996).

Notice that the image of σ̂2random (Figure 6(a)) is very noisy (due to the low degrees of
freedom) but that it does contain substantial anatomical structure. This same anatomical
structure is also evident in the image of the fixed effects standard deviation, σ2fixed (Figure
6(b)), obtained as

σ2fixed =
∑

j

νjS
2
j /νfixed,

where νj is the degrees of freedom of Sj and νfixed =
∑

j νj is the degrees of freedom of the
fixed effects analysis. Notice that the image of the fixed effects standard deviation has much
less noise since it has high degrees of freedom coming from the large number of scans for
each run. We can therefore use the fixed effects standard deviation as a template for a better
estimate of the random effects standard deviation. To see this, consider the ratio of the two:

τ 2 =
σ2fixed + σ̂2random

σ2fixed

which has much less anatomical structure (Figure 6(d)). We could therefore reduce the noise
in τ 2 by spatial smoothing (Figure 6(e)), then multiply back by the fixed effects standard
deviation to get an improved estimator of the random effects standard deviation that has
higher effective degrees of freedom (Figure 6(c)):

σ̃2random = smooth(τ 2)× σ2fixed − σ2fixed = smooth

(
σ̂2random
σ2fixed

)
× σ2fixed. (11)
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This can then be used in place of σ̂2random to get a better estimator of γ and its standard
deviation.

Note that no smoothing gives a purely random effects analysis, whereas smoothing with
an infinitely wide filter, so that the variance ratio is 1 everywhere, produces a purely fixed
effects analysis. The desired amount of smoothing can be determined by the desired degrees
of freedom, which we look at next.

4.4 Estimating the degrees of freedom

By smoothing the variance ratio image τ 2 we decrease its variability at the expense of a
possible slight increase in bias. The actual decrease in variability is measured by its effective
degrees of freedom. To get a rough estimate of this, suppose that the FWHM of the filter is
wratio and that the spatial correlation function of each Ej is a Gaussian function with FWHM
weffect. In Appendix C we show that the effective degrees of freedom of the regularized
variance ratio is approximated by

νratio = ν∗
(
2
(
wratio

weffect

)2
+ 1

)3/2

.

The final effective degrees of freedom of the standard deviation S̃∗, denoted by ν̃∗, is esti-
mated by

1

ν̃∗
=

1

νratio
+

1

νfixed
. (12)

Thus the wratio parameter acts as a convenient way of providing an analysis mid-way between
a random effects and a fixed effects analysis. Table 1 shows the degrees of freedom for some
typical values of the amount of smoothing. Setting wratio = 0 (no smoothing) produces
a random effects analysis; setting wratio = ∞, which smoothes the variance ratio to one
everywhere, produces a fixed effects analysis. In practice, we choose wratio to produce a final
ν̃∗ which is at least 100, so that errors in its estimation do not greatly affect the distribution
of test statistics.

Finally, effects defined by contrasts b in γ can be estimated by E∗ = bγ̂ with standard

deviation S∗ =
√
bV̂ar(γ̂)b′. The T statistic T ∗ = E∗/S∗, with a nominal ν̃∗ degrees of

freedom, can then be used to detect such an effect.

4.5 Multistat

The analysis of this section is done by multistat. It takes as input the output effect Ej

and standard deviation Sj images from fmrilm, together with their degrees of freedom νj.
If the standard deviation images are not provided them multistat assumes they are 0 with
νfixed = ∞. The FWHM of the input effects weffect is supplied, usually estimated by the
FWHM of the raw data. Finally the FWHM for smoothing the variance ratio wratio should
be chosen to give at least 100 degrees of freedom (the default is 15mm).

The variance ratio τ is smoothed in 3D, then the final γ̂ and its estimated variance is
obtained by weighted least squares using weights 1/(S2

j + σ̃2random) (see Appendix B). On
rare occasions near scanner artifacts outside the brain, the weights can be negative; see
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Appendix D for the reason and a fix. Output is the effective degrees of freedom ν̃∗, the effect
E∗ and its standard deviation S∗, which can be used as input to further runs of multistat
as illustrated in Figure 1. Run time is very quick, less than one minute for averaging 4 runs
on a 450 MHz Pentium.

5 Detecting activated regions

The final step in the analysis is to detect the regions activated by the stimulus, or contrast in
the stimuli. This part is almost identical to that employed by SPM. Tstat threshold finds
the threshold for the maximum of a T statistic image for a given P -value, 0.05 by default.
Input is the volume of the search region, the volume of one voxel, the FWHM of the data,
and the degrees of freedom.

This calculation is fairly robust to the shape of the region so it assumes the search region
is spherical, which gives a threshold that is a lower bound for regions with the same volume
(Worsley et al., 1996). Sometimes if the FWHM is small relative to the voxel volume, a Bon-
ferroni reduction gives a lower threshold than the random field theory, so tstat threshold

takes the smallest of the two. The threshold is also robust against non-stationarity of the
data (Worsley et al., 1999), so the fact that a different design matrix is used for each slice,
and different autocorrelations are used to pre-whiten the data, does not greatly affect the
threshold.

Finally a critical cluster size for the T statistics greater than an input threshold is cal-
culated using new results from random field theory (Cao, 1999). The critical cluster size is
sensitive to non-stationarity, so it must be used with caution. A better method, based on
cluster resels (Worsley et al, 1999), has not yet been implemented.

6 An empirical illustration

The methods described in this paper were applied to an fMRI experiment on pain perception
(Chen et al., 2000). After 9 seconds of rest, a subject was given a painful heat stimulus (49oC)
to the left forearm for 9 seconds, followed by 9 seconds of rest, then a warm stimulus (35oC)
for 9 seconds, repeated 10 times for 6 minutes in total. During this time the subject was
scanned every TR=3 seconds (120 scans) using a Siemens 1.5 T machine and 13 slices of 128
× 128 pixel BOLD images were obtained. The first 2 scans were discarded, leaving n = 118
scans as data.

Fmridesign was used to set up 13 different design matrices for the 13 slices, offset by
the 0.12 second interleaved slice acquisition times. Two box functions were created for the
hot and warm stimuli as described above, then convolved with the HRF (2) and sampled at
the slice acquisition times.

Fmrilm was then used to analyze a single run with cubic drift removal (q = 3) and 15mm
FWHM smoothing of the reduced bias autocorrelation parameter from the fitted AR(1)
model. Execution time was 6 minutes on a 450 MHz Pentium. We are interested in a pain
effect, so a contrast of c = (1 − 1 0 0 0 0) was used to compare the hot stimulus (1) with
the warm stimulus (-1), ignoring the 4 coefficients of the cubic drift (0 values).
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The two stages of smoothing and bias reduction for the autocorrelation are shown on
one slice in Figure 2. Without smoothing and bias reduction, the image is quite noisy
(±0.1) but with clear evidence of higher correlations in cortical areas than in white matter
or outside the brain (Figure 2(a)). After smoothing (Figure 2(b)) the noise is much reduced
and there is now clear evidence of a negative bias of ≈-0.05 outside the brain where the
autocorrelation should be zero. This is successfully removed by bias reduction (Figure 2(c))
to reveal correlations ranging from 0.2 to 0.4 in cortical areas.

Fmrilm was used to fit an AR(4) error model (30 minutes execution time), and the
resulting 15mm smoothed reduced bias parameter estimates of α1, α2, α3, α4 are shown in
Figure 3. The first coefficient α1 clearly dominates, but the presence of non-zero values in
the higher order parameters cannot be entirely ruled out, since some anatomical structure is
clearly discernible particularly in α2. To see if this has any effect on the resulting T statistics
for the pain effect, we calculated T statistics for AR(p) models with p = 1, 2, 4. As is evident
in Figure 4, there is almost no difference in the T statistics. Even for an AR(16) model, the
T statistics were almost identical (not shown). However if the correlation is ignored and the
data are assumed to be independent then the T statistic is about 11% higher than it should
be (Figure 4(a)). Thus the AR(1) model seems to be adequate for this experiment.

The experiment was repeated in n∗ = 4 consecutive runs separated by 18, 7 and 4 minutes
respectively. The run just analysed was in fact the second run, chosen to illustrate a high
pain effect. Using an AR(1) model, the resulting effects E1–E4, standard errors S1–S4 and
T statistics Tj = Ej/Sj with ν = 118 − 6 = 112 degrees of freedom are given in Figure 5.
There is some evidence for a pain effect in the central region, but the most striking feature
is the considerable variability from run to run; the first run in particular seems to show very
little evidence for a pain effect in this slice.

Multistat was used to average the effects using covariates zj = 1 and the final effect
E∗, standard deviation S∗ and T statistic T ∗ are shown in the last column of Figure 5.
The method of regularizing the variance ratio is illustrated in Figure 6. The random effects
standard deviation (Figure 6(a)) is very noisy due to its low degrees of freedom (ν∗ =
n∗−p∗ = 4−1 = 3). It shows similar spatial structure to the fixed effects standard deviation
(Figure 6(b)) that has very high degrees of freedom (νfixed = n∗ν = 448). The ratio of the
two (Figure 6(d)) is much more stationary, though still very noisy. After smoothing (Figure
6(e)), it is apparent that the ratio is close to one outside the brain and in many brain regions
as well, indicating little evidence for a random effect, except in frontal and anterior regions
where it attains values as high as 1.6. This means that in these regions the variability of
the effects is up to 60% higher than their variability due to the scans. If we had just done a
fixed effects analysis, our T statistics would be up to 60% higher in these regions than they
should be. To correct for this, we multiply the smoothed ratio by the fixed effects standard
deviation to obtain a roughly unbiased estimate of the variance (Figure 6(c)). Note that the
standard deviation is up to 60% higher in frontal and anterior regions to compensate for the
random effects. The random effects due to repetitions over subjects is much higher (Figure
6(f)), up to 3 times the fixed effects. The smoothing increases the degrees of freedom of
the variance ratio from 3 to 149, then the multiplication back by the fixed effects standard
deviation decreases it to approximately ν̃∗ = 112 degrees of freedom (middle column, Table
1).

Tstat threshold with a search volume of 1000cc, a voxel volume of 38.4cc, 6mm FWHM
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smoothing, and ν̃∗ = 112 degrees of freedom gives a P = 0.05 threshold of 4.86. Even if the
degrees of freedom is in error by a factor of 2, it does not greatly affect the critical threshold.
The final thresholded T statistic is shown in Figure 7.

7 Discussion

Many of the methods presented in this paper are refinements on existing ones: bias reduction
and spatial regularization of temporal autocorrelation parameters; model fitting by pre-
whitening; careful coding to reduce computations. The main novel contribution is a simple
random effects analysis for combining runs/sessions/subjects, including spatial regularization
to increase the degrees of freedom. When we talk about an under-estimation of the standard
error this is from the perspective of a random or “mixed” effects analysis. In our experience
the sorts of questions addressed by neuroimaging experiments call for a mixed effects analysis
so that the inferences can be generalised to the population from which the subjects were
drawn. Our novel approach embodies some sensible constrains that allow for a much better
estimation of the error variance required for mixed effects inferences. This better estimation
improves sensitivity. However, it should be noted that this does not preclude an important
role for fixed effects analyses, which are very sensitive but can only be generalised to the
subjects studied. Fixed effects analyses have to be used in the context of single case studies
(e.g. patients with specific brain lesions), or when the functional anatomy of interest does
replicate from subject to subject(e.g. ocular dominance columns in visual cortex). Ignoring
the random effect and treating the effects as fixed could lead to standard errors that are
three times too small (see Figure 6(f)) resulting in T statistics that are three times too
large. On the other hand, using a purely random effects analysis gives very small degrees of
freedom resulting in less sensitivity. For example, the P = 0.001 point of the t distribution
with 3 degrees of freedom is T = 10.2, more than three times larger than with 100 degrees
of freedom (T = 3.2). The method proposed here is a compromise between the two that
maintains high degrees of freedom while still capturing most of the random effect.

There are many approximations leading to the result for the effective degrees of freedom
ν̃∗, so the true effective degrees of freedom could be quite different. By choosing the amount
of smoothing to give a calculated effective degrees of freedom of at least 100, we hope to
cover up for any errors in this approximation. Even if the calculated ν̃∗ is off by a factor of
two, it will not greatly affect our inference, since T statistics with more than 50 degrees of
freedom are very close to a standard Gaussian.

Regularization by spatial smoothing is used first to stabilize the autocorrelation, and
second to increase the degrees of freedom of the random effects analysis. Obviously this
introduces some bias due for instance to smoothing data outside the brain with data inside
the brain. This could be alleviated by smoothing along the cortical surface, either by spatially
informed basis functions (Kiebel et al., 2000) or by cortical surface mapping (Andrade et al.,
2001).

It is the last stage when multistat is used to combine the subjects that has the greatest
influence in determining the final standard deviation of the effect. This is because the random
subject effect is much larger than the random effects from previous stages. This means that
if the cost of the experiment is proportional to total scanner time, then it is better to enroll
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more subjects and scan them less, than to increase the number sessions, runs, or scans per
run on fewer subjects. In reality there is additional cost associated with recruiting and
training new subjects, so some compromise between the two is better.

8 Conclusion

We have presented a simple method for the statistical analysis of fMRI data that does a
reasonable job of giving valid results. We have paid particular attention to the combination
of results from separate runs, sessions and subjects, because it is the latter in particular that
has the greatest affect on our final inference about the nature of the fMRI response in the
population. There are many places where this could be improved, at the expense of more
computation time. For example, Volterra kernels for non-linear hemodynamics are not yet
available in fmristat. However fmrilm can estimate the delay of the HRF at every voxel
and for every stimulus (Liao et al., 2000). This makes it possible to produce separate images
of the delay of the HRF and its standard deviation for each stimulus, that themselves can
be combined over runs, sessions and subjects using multistat.

The user will naturally ask how this method differs from SPM’99. The differences are
given in Table 2. They are all small but in each case we think the choices we have made
may be slightly better. The similarities are many: both methods use linear models with
a simple autocorrelation structure, drift removal by additive trends, and the same random
field theory to detect activated regions. Both methods are written in MATLAB and are freely
available on the web. The differences are perhaps more of taste than substance, so we expect
both methods to give roughly similar results.

Fmristat is only in the early stages of development. It only does a simple statistical
analysis of fMRI data, and other functions such as motion correction and spatial normal-
ization are done by other software in our lab. It now has a GUI, and it reads and writes
both analyze and minc formatted image files (the latter accessed through the emma toolbox
available for Windows, Linux and SGI IRIX (Morales et al., 2000)).

SPM’99 is a much more complete package with a GUI, a help line, and a course, that
analyses much more than fMRI data. Future releases of SPM will remove temporal smoothing
or low pass filtering as an option and replace the AR(1) model on the original data with
AR(1) plus white noise estimated using the EM algorithm. SPM’01 will still retain a global
parameter for the serial correlations and continue to use the least squares estimator as
described in Worsley and Friston (1995) and in Section 3.1 for simplicity and flexibility
(Friston, personal communication).
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Appendix

A Extensions to AR(p) models

A.1 Bias reduction of the autocovariances

Let Dl be a matrix of zeros with ones on the lth upper off-diagonal, so that the expectation
of the lag l autocovariance, 0 ≤ l ≤ p, is

E(r′Dlr) = tr(RDlRV)σ2 ≈ tr(RDl)v0 +
p∑

j=1

tr(RDlR(Dj +D
′
j))vj,

where Vσ2 is approximated by vj on the jth off-diagonal, 0 ≤ j ≤ p, and zero elsewhere.
Equating r′Dlr to its approximate expectation for 0 ≤ l ≤ p gives p + 1 linear equations
in p + 1 unknowns which can be solved for vj, 0 ≤ j ≤ p, giving approximate unbiased
estimators of the autocovariances. To do this, let

al =
n∑

i=l+1

riri−l, mlj =

{
tr(RDl) j = 0,

tr(RDlR(Dj +D
′
j)) 1 ≤ j ≤ p,

a =




a0
...
ap


 , M =




m00 . . . m0p
...

...
mp0 . . . mpp


 , v̂ =




v̂0
...
v̂p


 .

The estimated covariances are
v̂ =M−1a,

and the autocorrelations at lag l are estimated by

ρ̂l = v̂l/v̂0.

Note that M−1 does not depend on the voxels, so it only needs to be calculated once per
slice, making this bias reduction step very fast.

A.2 Smoothing the autoregressive model

As explained in Section 3.3, the autocorrelation coefficient for an AR(1) model is smoothed
spatially to reduce its variability. For an AR(p) model there are two choices: smooth the

autocorrelations, or smooth the elements of V− 1
2 (for AR(1) models they are identical). We

have decided to take the first approach and smooth the autocorrelations. The main reason
for this is that it requires less effort, since there are only p autocorrelations but there are
(p + 1)(p + 2)/2 different elements that define V− 1

2 (see Section A.3). Moreover it is easy
to show that if the filter is positive, then smoothed autocorrelations still define a positive
definite correlation matrix, hence a stationary AR(p) model.

The reason is this. Let f be the filter, normalized to integrate to 1, and let C the Toeplitz
matrix whose diagonals are ρ = (1 ρ1 . . . ρp), that is the reduced bias correlations of the first
p+ 1 scans. We shall assume that C is still positive definite, even after bias reduction. Let
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f ?C be the convolution of f with each element of C. Consider an arbitrary quadratic form
in f ?C:

a′(f ?C)a = f ? (a′Ca) ≥ 0

since f ≥ 0 and a′Ca ≥ 0. Hence the smoothed correlation matrix f ?C is a positive definite
Toeplitz matrix. The diagonal elements are 1, so it is a correlation matrix and can be used
to derive a stationary AR(p) model.

A.3 A simple method of whitening

The whitening matrix V− 1
2 can be found directly from the autocorrelations, without solving

the Yule-Walker equations, by the following piece of MATLAB code. The row vector rho

contains the regularized autocorrelations (1 ρ̂1 . . . ρ̂p), n contains n and Vmhalf contains

V− 1
2 :

[Ainvt posdef]=chol(toeplitz(rho));

p1=size(Ainvt,1);

A=inv(Ainvt’);

Vmhalf=toeplitz([A(p1,p1:-1:1) zeros(1,n-p1)],zeros(1,n));

Vmhalf(1:p1,1:p1)=A;

Note that this code allows for the possibility that due to round-off error the estimated AR(p)
model is non-stationary (p1 < p+ 1), in which case the higher order AR coefficients are set
to zero and an AR(p1− 1) model is fitted instead.

B The EM algorithm

The EM algorithm for REML estimates is laid out in Laird, Lange and Stram (1987), specif-
ically equation (3.8). Let S = diag(S1, . . . , Sn∗) and I be the n∗ × n∗ identity matrix. Then
the variance matrix of the effects vector E = (E1, . . . , En∗)

′ is, from (10),

Σ = S2 + Iσ2random. (13)

Define the weighted residual matrix

RΣ = Σ−1 −Σ−1Z(Z′Σ−1Z)+Z′Σ−1, (14)

where Z = (z1 . . . zn∗)
′. We start with an initial value of σ2random = E′RIE/ν

∗ based on
assuming that the fixed effects variances are zero. The updated estimate is

σ̂2random = (σ2random(p
∗ + tr(S2RΣ)) + σ4randomE

′RΣ
2E)/n∗. (15)

Replace σ2random with σ̂2random in (13) and iterate (13-15) to convergence. In practice 10
iterations appears to be enough.

After convergence and regularization as described in Section 4.3, step (13) is repeated
with σ2random replaced by σ̃2random, then the estimate of γ is

γ̂ = (Z′Σ−1Z)+Z′Σ−1E,

and its estimated variance matrix is

V̂ar(γ̂) = (Z′Σ−1Z)+.
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C The effective degrees of freedom of the smoothed

variance ratio

We start by supposing that standard deviations Sj are all fixed and equal, and that σ2random =
0. In this case the model (10) is equivalent to a model with constant unknown variance so
that ν∗τ 2 has a χ2 distribution with ν∗ degrees of freedom at every point u in D dimensional
space. Suppose the error in the effect ηj is modeled as D dimensional white noise convolved
with a Gaussian kernel f(u) with variance veffect = w2

effect/(8 log 2):

f(u) = φ(u; veffect)

where
φ(u; v) = (2πv)−D/2e−||u||2/(2v)

is the D dimensional Gaussian density with mean zero and variance v. Then the spatial
correlation function of ηj is

c(u) =
(f ? f)(u)

(f ? f)(0)
= (2π2veffect)

D/2φ(u; 2veffect)

where ? denotes convolution. Then it can be shown (Adler, 1981, Chapter 7) that the spatial
covariance function of the squared error is

2c(u)2 = 2(2πveffect)
D/2φ(u; veffect).

Now τ 2 has the same distribution as a linear function of the average of ν∗ independent η2j
and so its spatial covariance function is 2c(u)2/ν∗. If τ 2 is convolved with a Gaussian filter

g(u) = φ(u; vratio)

with variance vratio = w2
ratio/(8 log 2), to give τ̃ 2, then the covariance function of τ̃ 2 is that of

τ 2 convolved with (g ? g)(u), namely

2(c2 ? g ? g)(u)/ν∗ = 2(2πveffect)
D/2φ(u; veffect + 2vratio).

Thus the variance of τ̃ 2 is the spatial covariance function at u = 0 namely

Var(τ̃ 2) = 2(c2 ? g ? g)(0)/ν∗ = 2(veffect/(veffect + 2vratio))
D/2/ν∗.

Finally the effective degrees of freedom of the variance ratio is, by the Satterthwaite approx-
imation,

ν̃∗ =
2 E(τ̃ 2)2

Var(τ̃ 2)
= ν∗

(
2
(
wratio

weffect

)2
+ 1

)D/2

.

Since this result does not depend on the value of Sj, it is also true if Sj is random. This result
is expected to hold approximately when the Sjs are unequal and non-stationary, provided
their expectations are fairly smooth.

The last question is the effective degrees of freedom of σ2fixed+σ̃
2
random, equal to the product

of τ̃ 2 and σ2fixed. These two factors are approximately independent. The degrees of freedom of
σ2fixed is νfixed. The coefficients of variation (percentage errors) of the product of independent
quantities add (approximately, if they are small), so the reciprocals of the effective degrees
of freedom add (by the Satterthwaite approximation), which leads to the final result (12).
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D Positivity of the regularized mixed effects variance

Even though the estimated mixed effects variance S2
j + σ̂2random is guaranteed to be positive

at each voxel (even if the EM algorithm has not converged), we discovered that after spatial
smoothing S2

j + σ̃2random from (11) can sometimes be negative. This is because σ̂2random can be
negative, particularly when there is a small random effect; recall that this ensures that σ̂2random
is unbiased. The problem happens in scanner artifacts outside the brain near the border of
regions of exact zeros, and we have never observed it in the brain itself. To overcome this,
we cannot simply set negative variances to ‘missing’ values, since there are always some very
small variances at neighboring voxels that give very large T statistics. Instead, multistat
uses the maximum of S2

j + σ̃2random and S2
j /4 as the variance of Ej whenever wratio > 0. This

guarantees that the standard deviation of Ej is never less than half the fixed effects standard
deviation. It does not alter any of the voxel values in any of the figures.
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Table 1: The effective degrees of freedom ν̃∗ for an experiment with n∗ = 4 runs (ν∗ = 3
degrees of freedom) of n = 118 scans (ν = 112 degrees of freedom) and weffect = 6mm
effective FWHM.

Random Fixed
effects Variability ←→ Bias effects

analysis analysis
FWHM of smoothing filter wratio(mm): 0 5 10 15 20 25 ∞

Effective degrees of freedom ν̃∗: 3 11 45 112 192 264 448

Table 2: Comparison of SPM’99 and fmristat
Feature SPM’99 fmristat

Different slice acquisition
times:

Augments the model with a
temporal derivative

Shifts the model

Trend removal: Low frequency cosines (flat
at the ends)

Polynomials (free at the
ends)

Temporal correlation: AR(1), global parameter,
bias reduction not necessary

AR(p), local parameters
with bias reduction and
spatial regularization

Estimation of effects: Band pass filter, then least
squares, then correction for
temporal correlation

Pre-whiten the data, then
least squares (no further cor-
rections needed)

Rationale: More robust, but lower de-
grees of freedom

More accurate (if model is
correct), higher degrees of
freedom

Random effects: No regularization, low de-
grees of freedom

Spatial regularization, high
degrees of freedom

Maps of estimates and stan-
dard errors of the delay of
the HRF:

No Yes
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Figure 1: Fmristat flow chart for the analysis of several runs (only one session per subject);
E = effect, S = standard deviation of effect, T = E/S = T statistic.
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Figure 2: Estimation of the autocorrelation ρ: (a) unsmoothed, no bias reduction, (b)
smoothed, no bias reduction, (c) smoothed, reduced bias. Note the biased autocorrelation
of ≈-0.05 outside the brain in (b), which goes to ≈0 after bias reduction in (c).
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Figure 3: Estimation of the AR(4) parameters, smoothed, reduced bias: (a) α̂1, (b) α̂2, (c)
α̂3, (d) α̂4. The most important parameter is obviously the first, but the presence of some
anatomical details in the higher order parameters suggests that they are not identically zero.
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Figure 4: T statistics for the hot-warm contrast by fitting different order AR(p) models: (a)
independent errors (p = 0), (b) p = 1, (c) p = 2, (d) p = 4. The T statistics for the AR(1),
AR(2) and AR(4) models are almost identical, differing by less than 1%, suggesting that the
AR(1) model is adequate for this data. In contrast, assuming independent errors gives a T
statistic that is 12% too large.
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 Run 1                     Run 2                     Run 3                     Run 4
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Figure 5: Statistics from fmrilm for four different consecutive runs and their combination
using multistat (left to right). (a) the estimated effect of the hot-warm stimulus E, (b)
its estimated standard deviation S, (c) the T statistic T = E/S. The second run (second
column) was used for Figures 2-4.
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(a) Fixed+random effects sd, 3 df (b) Fixed effects sd, 448 df
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      (c) Regularized fixed+random sd, 112 df

(d) (Fixed+random)/fixed sd ratio, 3 df      (e) Smoothed sd ratio, 149 df
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(f) Subjects sd ratio

Figure 6: Regularizing the variance ratio: (a) the fixed+random effects standard deviation,

σ̂fixed+random =
√
σ2fixed + σ̂2random (3 df), (b) the fixed effects standard deviation σfixed (448

df), (c) the regularized fixed+random standard deviation τ̃σfixed (≈112 df). (d) the ratio
of the (fixed+random)/fixed standard deviations τ = σ̂fixed+random/σfixed (≈3 df), (e) the

smoothed standard deviation ratio τ̃ =
√
smooth(τ 2) (≈149 df), (f) τ̃ for different subjects.

Note that the standard deviation ratio (e) is roughly equal to one, indicating little evidence
for a random effect over runs, except in frontal and anterior regions. However there is strong
evidence for a random effect over subjects (f).
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Figure 7: Final thresholded T statistic T̃ ∗ for detecting the hot–warm stimulus by com-
bining the four runs and thresholding at the P < 0.05 threshold of 4.86 found using
tstat threshold.
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