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The purpose of this abstract is to investigate the possibility of recov-
ering the information in the drift in fMRI data, paralleling the recovery
of inter-block information in ANOVA pioneered by Yates in 1939 [1].

Introduction
The optimal stimulus paradigm for fMRI data is to vary the stim-

ulus every ∼10s to optimize the design and maximize the efficiency of
the experiment. However sometimes the stimulus is presented in very
long blocks, or else is slowly varying with time. An example is a pain
experiment conducted in our lab in which the stimulus was a hot pep-
per spice applied to the skin. The pain response builds up slowly over
time, and we are interested in detecting those regions of the brain that
are activated.

The usual statistical analysis of such data is frustrated by the fact
that the stimulus time course closely resembles drift. Drift is usually
modelled as a slowly varying function, such as a spline or low-frequency
cosines, that are added to the linear model for the fMRI data [2-6]. The
stimulus is almost confounded with the drift, so that removing the drift
from the data by adding it it as covariates will also remove most of the
stimulus. In other words, the stimulus is almost indistinguishable from
drift, so it is impossible to detect.

Methods
However there is another option. We can model the drift as a

random effect, rather than a fixed effect. To do this we must rely on
the drift varying randomly across subjects, showing no preferred sign
(up or down), with a mean drift of zero (over subjects). Then if the
fMRI data shows a consistent temporal increase (over subjects), then
this can be attributed to the stimulus, and not the drift.

The appropriate analysis can be performed by fitting a mixed effects
model, preferably using the ReML criterion [7-9]. In a hierarchical de-
sign (e.g. runs, sessions, subjects), the stimulus covariates are incorpo-
rated into the linear model as fixed effects at the first level. In addition
to the residual error with temporal correlation structure (e.g. AR(1)
model), we add an additional term of the form ZΣZ′ to the variance
matrix of the observations, where Z is the matrix of drift covariates
and Σ is their unknown variance matrix. The data must be combined
over all runs/sessions/subjects in order to estimate the parameters of
the model (fixed effects, random effects, and variance parameters σ2

and Σ). In other words, the analysis cannot be broken up into separate
levels as in [7-9].

Results
Before performing such a random effects analysis, we investigate

the hypothesis that the drift is random with a mean of zero. Without
this assumption, the above analysis is impossible. We chose the FIAC
contest data [10] with 14 subjects and a mixture of event and block
designs with short epochs so that the stimulus is not confounded with
the drift. We chose a cubic in the scan time t as covariates for mod-
elling the drift. Letting x = t −mran(t), u = x/ max x, then the drift
covariates were: u, u2, u3, each varying from -1 to 1.

The effects of the three drift terms were estimated on each run,
then combined over runs using a fixed effects analysis, then combined
over subjects using a mixed effects analysis, exactly as in [10]. The
results are shown opposite for several Talairach slices.

The P = 0.05 threshold for a whole brain search of the T statistic
images (40 df) is ±5.67, so we conclude that there are consistent linear
and quadratic drift effects, but not cubic. The linear drift appears to
increase in white matter and decrease in grey matter, with a positive
quadratic effect in white matter.

The ratio of random/fixed effects sd image is particularly interest-
ing. It shows that there are random effects for both linear and quadratic
drift that are more or less uniform throughout the brain, averaging at
about 2.5. However the cubic drift term shows no evidence of a random
effect, since the sd ratio is very close to 1 throughout the brain.
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Conclusion
Unfortunately the results of this study show that recovering the

information in the drift, as advocated above, is impossible. This is
because the linear and quadratic drift exhibit consistent non-zero effects
across subjects. In other words, if the stimulus varies in a linear or
quadratic fashion then it is impossible to distinguish it from drift.

However the cubic drift term appears to show no consistent effects,
so if the stimulus varies in a cubic fashion, then there is some hope of
recovering the information in the drift.

To detect a stimulus that looks like drift, the best approach seems
to be to apply the stimulus to half the runs in a cross-over design,
randomising the order of the runs with and without stimulus. Then
we can compare the drift of runs with the stimulus to the drift of runs
without the stimulus, by the usual mixed effects analysis. This will be
the subject of future work.
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