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We present a new continuity correction to the P-value for local max-
ima of a statistical parametric map that bridges the gap between small
FWHM , when the Bonferroni correction is accurate, and large FWHM ,
when random field theory is accurate. The new method, based on dis-
crete local maxima, is always an upper bound (like the Bonferroni),
but lower and hence more accurate for large FWHM , without increas-
ing false positives. It resulted in P-values that were ∼43% lower than
the best of Bonferroni or random field theory methods when applied to
a typical fMRI data set.

Methods
The last step in the statistical analysis of a statistical parametric

map Z is to assign P-values P to local maxima of height t. The choice
is between a Bonferroni correction (BON):

P ≤ PBON = N × P (Z > t) (1)

where N is the number of voxels in the search region, or random field
theory (RFT), which for large search regions has the form:

P ≈ PRFT = R× EC(t) (2)

where R is the number of resels and EC is the Euler characteristic
density of the SPM [1]. The resels of a search region of volume V in
D dimensions is R = V/FWHM D. The proposed approximation is the
expected number of discrete local maxima (DLM) above threshold:

P ≤ PDLM =
∑

x

P (Z > t and Z > neighbouring Z′s), (3)

where summation is over all voxels x in the search region. The 2D
neighbours are those that differ by just one voxel in each lattice direc-
tion.

The DLM P-value for a Gaussian SPM only involves the correlation
ρd of (whitened) residuals between adjacent voxels along each lattice
axis d [2]. To allow for non-isotropy, average these over all voxels x in
the search region to give ρ̄d chosen so that

√
1− ρ̄d =

∑
x

√
1− ρd/N, (4)

φ(z) = exp(−z2/2)/
√

2π, Φ(z) =

∫ ∞

z

φ(u)du, (5)

α = sin−1
(√

(1− ρ2)/2
)

, h =

√
1− ρ

1 + ρ
, (6)

Q(ρ, z) = 1− 2Φ(hz+) +
1

π

∫ α

0

exp(− 1
2
h2z2/ sin2 θ)dθ, (7)

PDLM = N

∫ ∞

t

(
D∏

d=1

Q(ρ̄d, z)

)
φ(z)dz. (8)

• DLM is valid for almost any spatial correlation structure [2].
• Like BON, DLM is conservative, which is reassuring for practical

applications, but unlike BON it is very accurate for all FWHM ; for
large FWHM and thresholds DLM converges to RFT.

• A boundary correction is easily implemented. For a voxel on the
boundary of the search region with just one neighbour in axis direction
d, replace Q(ρ, z) by 1− Φ(hz), and by 1 if it has no neighbours.

• For a non-Gaussian SPMs, such as a T-statistic SPM, Gaussianize
the statistic, then adjust the FWHM so that PRFT of the statistic
matches PRFT of a Gaussian statistic, then apply the DLM method:

– Gaussianize: Zmax = Φ−1(P (T > Tmax)).
– Find c = ECT(Tmax)/ECZ(Zmax).
– Let f = c2/D, and replace ρ̄d by |ρ̄d|f to adjust the FWHM .
– Now calculate PDLM as in (8) for t = Zmax.

Results
Simulated isotropic Gaussian and T-statistic SPMs with 10 and 20

degrees of freedom, N = 323 voxels and increasing FWHM are shown
in the Figures below (error bars show one standard deviation).
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DLM is always an accurate upper (conservative) bound on the true
P-value, which almost equals BON when FWHM=0 and slightly over-
estimates RFT when FWHM>6 voxels. In between DLM is better than
either of them. The greatest discrepancy occurs at FWHM=3 voxels,
where DLM is about half either of the others.

We compared our methods on fMRI data from one run of one sub-
ject from a study in pain perception [3]. A subject received 9s hot
stimulus to the right calf, 9s rest, 9s warm stimulus, 9s rest, repeated
10 times for a total of 360s (TR=3s). 6mm smoothing was applied in-
slice during motion correction to give FWHM ∼ 2.55 voxels which puts
us in the zone where BON and RFT are not very accurate. P-values
for local maxima of a T-statistic (110 df) for the effect of the hot minus
the warm stimulus are shown below.

We first notice that BON is better than RFT, but DLM is better than
BON, giving P-values ∼43% lower. The net result is that DLM detects
one extra local maximum at P < 0.05, and three extra at P < 0.01.

Discussion
DLM is an upper bound (like Bonferroni), so if it is lower than

other methods, it has to be better. It depends solely on the correlation
of whitened residuals between adjacent voxels. It does not depend on
isotropy, and there is a simple boundary correction. It is reasonably
accurate, though still conservative, over the middle range of FWHM
to voxel size, the values often encountered in practice. The Bonferroni
(BON) method is still more accurate for very small FWHM , and the
random field theory (RFT) method is more accurate for large FWHM .
To cover the whole range of FWHM , we recommend simply taking the
best of the three methods: BON, RFT and DLM. This method has
been implemented in the FMRISTAT and BRAINSTAT packages [4].
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