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Abstract

We propose a fast, efficient, general, simple, valid and robust method of estimating and making
inference about the delay of the fMRI response modeled as a temporal shift of the hemodynamic
response function (HRF). We estimate the shift unbiasedly using two optimally chosen basis func-
tions for a spectrum of time shifted HRFs. This is done at every voxel, to create an image of
estimated delays and their standard deviations. This can be used to compare delays for the same
stimulus at different voxels, or for different stimuli at the same voxel. Our method is compared to
other alternatives, and validated on an fMRI data set from an experiment in pain perception.



1 Introduction

Brain electrical activity is not directly measured; instead the human hemodynamic responses
to brief periods of neural activity are delayed and dispersed in time. This is modeled by
convolving the stimulus with the hemodynamic response function (HRF) of the vascular
system of the brain. A second component of the delay may come from delays in processing
the stimulus or reacting to it. Thus fMRI measures the subsequent demand for oxygenated
blood that follows about 6 seconds after the neuronal response. It is this delay or latency of
the fMRI response of about 6 seconds that we wish to estimate in this paper.

It is important to estimate precisely this delay since it can inform on the neural dynam-
ics of brain activity. Indeed, even if the metabolic filter may vary from one brain region
to another, leading to some difficulties in interpreting differences in delay between regions,
the hemodynamics can generally be assumed to remain constant in time for a given locali-
sation. This allows us to interpret differences in delay within the same region. It has to be
noted that some authors have shown variation in delay across brain regions with plausible
interpretations, for instance in Kruggel et al. (1999, 2000) in a language task.

Several methods have been proposed for estimating parameters of the HRF. The first,
proposed by Lange and Zeger (1997), models the HRF by a gamma function, then estimates
the delay and dispersion parameters by non-linear regression (see e.g. Seber and Wild,
1989). This requires time consuming iterative methods, such as the Gauss-Newton method,
which can be unstable when the algorithm does not converge. Purdon et al. (2001) also
used non-linear regression for a model of the HRF based on physiological considerations.
This method is also time consuming to implement. An intriguing alternative, proposed by
Rajapakse et al. (1998), uses a non-iterative method that fits a Gaussian function to the
HREF. This method relies on a special property of the Fourier transform of the Gaussian
function: the phase is linearly related to the delay, and the log modulus is linearly related
to the squared dispersion. However the Gaussian is not a good choice for the HRF, since it
implies negative delays and its overall shape does not match the well-known post-peak dip in
the HRF (Friston et al., 1998). Other methods of estimating the delay have been based on
the phase of the response to a periodic stimulus (e.g. Thierry et al, 1999), but this does not
work for non-periodic stimuli. The method of Saad (2001) is more direct: using the Hilbert
transform, the cross-correlation between the stimulus and the fMRI data is searched for
the maximum. Again this may be time consuming if different stimuli have different delays,
and there is no theoretical estimate of the standard error of the delay, so that this must be
estimated empirically from repeated runs.

In Friston et al. (1998) latency differentials were modeled using a linear model with a first
order Taylor expansion of evoked responses with respect to latency or delay, so that the model
includes the expected response and the derivative with time of this response. This is a simple
and relatively robust approach that enabled the authors to make inferences about latency
differences between one trial type and another in the order of a few hundred milliseconds.
The shortcoming of the approach described in Friston et al (1998) is that the parameter
scaling the contribution of the temporal derivative term depends upon the magnitude of the
evoked response and not just the latency itself. In fact the approach adopted in Friston et
al (1998) is more properly understood in terms of a second order Taylor expansion around a
response with zero magnitude and delay where the temporal derivative term represents the



second order interaction between amplitude and delay. In other words, the method is exact
only if there is no delay and zero magnitude.

To overcome these shortcomings we have explored the use of estimation and inference
procedures using a linear model that focuses on the delay itself. We do this by using two
optimally chosen basis functions of the hemodynamic response that allows us to estimate
and make inferences about the delay or latency irrespective of the amplitude. Our approach
is very similar to the recent work of Henson et al. (2002). For a detailed comparison see the
note added in proof (Appendix A.4).

We have chosen a model for the HRF in which the time axis of a fixed reference HRF is
shifted by a single unknown parameter. We will show that our method is reasonably robust
to misspecification of the form of the HRF. In other words, even if the time shift model
is not correct (which remains to be investigated but is not the purpose of this paper), our
method still gives a reasonably accurate estimate of the delay. Moreover our method is quite
general and could be applied to any single parameter that modulates the HRF, such as the
dispersion.

Finally, we have chosen a method of estimation which is fast (it takes only slightly longer
than estimating the magnitude of the response), general (it can estimate different delays
for different stimuli simultaneously), efficient (it is almost as good as the non-linear least-
squares estimator), valid (it is roughly unbiased and has low root mean squared error) and
reasonably robust to the assumed model for the HRF.

In Section 2 we shall develop the method, and in Section 3.1 we shall validate it on simu-
lated data. In Section 3.2 we shall apply it to an fMRI experiment in pain perception. Some
discussion and concluding remarks will be given in Sections 4 and 5. Finally, the complete
MATLAB code for the method is available from http://www.math.mcgill.ca/keith/fmristat.

2 Methods

The first step in the statistical analysis of fMRI data is to build a model of how the data
responds to an external stimulus. Suppose the external stimulus at time ¢ is given by s(t)
and the fMRI response at a particular voxel is given by x(t). For the pain experiment to
be analyzed in Section 3.2, we might model the hot stimulus by 1 when the stimulus is on,
and 0 when it is off (Figure 1(a)). The corresponding fMRI response is not instantaneous;
there is a delay and blurring of the peak response by about 6 seconds. The simplest way
of capturing this is to assume that the fMRI response depends on the external stimulus by
convolution with an HRF A(t) as follows:

2(t) = (s 4 h)(t) = /OOO s(t — w)h(u)du,

where x is the convolution operator. Several models for h(f) have been proposed. The
simplest is a gamma function (Lange and Zeger, 1997) or a difference of two gamma functions
to model the slight intensity dip after the response has fallen back to zero (Friston et al.,
1998). An example is the HRF available in SPM’96:

h(t) = (t/d)* exp(—(t — d) /b) — c(t/d)" exp(—(t — d)/V)), (1)



where ¢ is time in seconds, d = ab is the time to the peak, d' = a'b’ is the time to the
under-shoot, and a = 6, a’ = 12, b = b’ = 0.9 seconds, and ¢ = 0.35 (Glover, 1999) (Figure
1(b)). Its convolution z(t) with the hot and warm stimuli s(¢) are shown in Figure 1(c).
This is then subsampled at the n frame acquisition times t1, ..., t, to give the response x(t;)
at frame ¢. The linear model for the observation at frame 7 is:

Y; = a(t;) 8 + ¢, (2)

where the error €; has a Normal distribution with mean zero and standard deviation o,
i=1,...,n (Friston et al., 1995). Without loss of generality, we can assume that the errors
in (2) are independent; correlated errors will be discussed in Section 2.4. Further responses
and linear drift terms, such as a polynomial in time t; or low-frequency cosine transform
basis functions (SPM’99), can be added to the model (2), but for simplicity of presentation
we shall just consider a single response and no drift terms. These can easily be added later
(see Section 2.4).

2.1 Proposed time shifted model

So far we have assumed a fixed parametric form for the hemodynamic response function.
Although the parameters are usually reasonably well known, it is still worth estimating these
parameters. For some types of experiment, the parameters themselves, such as the delay,
are of intrinsic interest for determining the chronology of brain activation.

The first step is to create a parametric family of HRF’s. To do this, we start with a
reference HRF hg(t) which should be chosen to be close to the true HRF, for example the
gamma difference HRF (1). We then propose varying the delay by shifting the origin of the
HRF by 9, to give

B(t;8) = holt — 6).
and the problem is to estimate §. For practical purposes, we shall measure the delay d by
the time to the first peak of the HRF, in other words d = dy + §, where dj is the time to

the first peak of the reference HRF, for example dy = 5.4 seconds for the gamma difference
HRF (1). An example of the time shifted model is shown in Figure 2(a).

2.2 The spectral estimator of the time shift

Friston et al. (1998) proposed capturing the shifted HRF h(¢;0) by linear combinations of
just two basis functions hg(t) and

Oh(t; )

hi(t) = EY;

— —ho(t),

6=0

where dot represents derivative with respect to time (see Figure 2(b)). If the time scale shift
0 is small, that is the true HRF is close to the reference HRF, then we can approximate
h(t;0) by the first two terms of a Taylor series about ¢ = 0:

h(t;0) ~ ho(t) + hy(t)0. (3)



We can convolve the stimuli with ho(t) and hq(t), then estimate their coefficients by least
squares. The ratio of these coefficients is the ratio estimator of 9. We might naturally ask if
there is another choice of the two basis functions that can better approximate h(t; ) over a
range —A < 6 < A (Figure 2(a)), in other words, basis functions ug(t), u;(t) and coefficients
wp(d), w1 (d) chosen so that

h(t; 6) = uo(t)wo() + ua (t)wi (9). (4)

In Appendix A.3 we show how to choose the basis functions in an optimal way using a
singular value decomposition; the results are shown in Figure 2(b),(c). Letting

Ty = S * U, Ty = S*Uyp,
the linear model (2) then becomes
Yi & zo(ti)wo(0)B + z1(t:)wi(0) 8 + &, (5)

which is now a linear model in vy = wp(0)F and ; = wy(0)3. These can be estimated
rapidly by least-squares as follows. Switching to matrix notation, let Y = (Y7,...,Y,),
xo = (xo(t1)...zo(tn)), x1 = (x1(t1)...21(ts)) and X = (x¢9 x1). The least squares
estimators are
(F)szWXY (6)
M
This gives estimates of two functions of the two unknown parameters 3 and . We can now
equate the functions to their estimates:

wo(8)3 =Fo, w1(8)3 = A1, (7)
and solve for § and B . This can be done uniquely provided
wy ()
r(d) =
(6) 20(8)
is a monotonic function of 4. If this is so our estimator of § is the solution of
P
r(d)=r= = 8
(9) % (8)

Clearly this estimator will be highly variable if 7, is small. Since wg(d) > 0 (see Figure 2(c)),
this will happen when [ is small and the stimulus produces little response. In Appendix A.1
we show how to improve 7 by finding its expectation, then correcting the bias by shrinking
the estimator towards zero if little signal is present. To do this, we first define the T statistic
for testing for nonzero magnitude, that is # = 0, or equivalently, 79 = wy(9)5 = 0. The

residuals are ~
R:Y-X(P),
Ba!

and the estimated variance is

/
. _RR
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where v = n — 2 is the residual degrees of freedom. The T statistic for the magnitude is

~

Yo o
Toh = — = —, 9
" Sd(R) Vo ®)

where Vj is the first diagonal element of (X’X)~!. The proposed corrected estimator of r is

,;,?

Fo =

g (10)

and our proposed (corrected) spectral estimator of 4 is
0 =17 (Fc). (11)

We can see that when there is little evidence for a stimulus response and so Tj is really small,
7o is shrunk to zero. Since 7(0) = 0 (see Figure 2(c)), then 4 is also shrunk to zero where
there is little evidence for activation.

The spectral method can be applied to any single parameter that modifies the HRF, such
as a shift of scale rather than a shift of origin. It can also be extended to estimate two or more
parameters simply by adding more basis functions, one for each extra parameter. Provided
the mapping from coefficients to parameters is one-to-one, the coefficients can be inverted to
estimate the parameters, though in practice this inversion can be time consuming. Is there
anything to be gained by adding yet more basis functions, in order to better approximate the
HRF? The answer is that of course the approximation will be better, but now one will now
have more equations than unknowns, forcing us to resort to iterative non-linear methods to
estimate the parameters, something that our method is striving to avoid.

2.3 Inference about the delay

So far we have only looked at §, the shift parameter. The parameter of most interest is the
delay d to the first peak. Let dy be the delay for the reference HRF hy. Then

d =dy+ 9.

Our estimator of d is R R
d=dy+ 96

and its estimated standard deviation Sd(d) is given in Appendix A.2, equation (13). We can
now test that d takes a specified value d* in the usual way using a T" statistic

~

T = g.
Sd(d)

The degrees of freedom v is the residual degrees of freedom of the linear model that includes
the pair of terms zy and x; for each stimulus, together with the drift terms. If d = d*, then
T™ has an approximate ¢ distribution with v degrees of freedom.



However for the special case of testing that d is equal to the reference delay dy there is
an exact test. Note that if d = dy then 6 = 0 and so 71 = w(0)3 = 0 (see Figure 2(b)).
Hence the test can be based on the 7' statistic

where Sd(3;) = v/Vié and V; is the second diagonal element of (X'X)~!. If d = dy then T}
has an exact ¢ distribution with v degrees of freedom.

A more interesting question is to compare two delays. Comparing delays at two different
well separated voxels is straightforward. Because we can assume that distant voxels are
independent, then to test that two delays d; and ds are equal, we can use the test statistic

dy — dy
VSA(d))? + Sd(dy)?

which will have an approximate ¢ distribution with v degrees of freedom if the two delays are
equal. The most interesting question is to compare delays at the same voxel, or in general,
an arbitrary linear contrast in the delays specified by cd, where c is a row vector of the
contrasts and d is a column vector of the delays. To do this we need the covariances between
the delays, as well as their variances, which are given in Appendix A.2. The estimated
standard deviation of the contrast is

Sd(cd) ~ y/cVar(d)c'.

The test statistic for the contrast is

~

cd
Sd(cd)

which will once again have an approximate ¢ distribution with v degrees of freedom if cd = 0.

2.4 Adding more stimuli and drift terms

So far we have only considered the case of a single stimulus and no drift terms. More
stimuli with or without different shift parameters § can be added, and drift terms can be
incorporated as extra columns of X. We are thus able to produce different estimators for
the delay for each stimulus, and remove drift at the same time. For correlated errors with
known covariance matrix Vo?, this method can be used by first transforming the model
(5) by multiplying through both sides by V~2. This then produces independent errors
(‘white noise’) as required. Autocorrelation parameters can be estimated from the residuals
to estimate V, which can then be used to whiten the data and the model by multiplying
both by V2 before re-estimating all the parameters. For a method of fitting such a model,
see Worsley et al. (2002).



2.5 Estimating the magnitude

-~

Solving (7) for 3, a natural estimator of 3 is 7g/wo(d). Simulations show that this estimator
of the magnitude is reasonably accurate for a wide range of delays, but it is very sensitive
to the dispersion of the HRF. A better estimator of the magnitude should also attempt to
estimate the dispersion as well as the shift. This will be the subject of future research. As
a compromise, we propose to estimate the magnitude by first scaling ug(t) by dividing by
Juo(t)dt (in fact both wy(d) and wq(d) in Figure 2(c) have been multiplied by [ ug(t)dt to
compensate for this). Since now ug(t) integrates to 1, then for block designs with long blocks
the coefficient of z((t) is the signal magnitude. We then estimate the signal magnitude 3
by B = 7. As already pointed out, this estimator will be unbiased for block designs with
long blocks. However for event related designs, where knowledge of the shape of the HRF
is crucial, this estimator is slightly biased. From Figure 2(c) the resulting wy(6) is slightly
greater than 1 if the shift is less than 2 seconds, suggesting that for event related designs
the magnitude will be slightly over estimated in this region, and slightly under estimated
if the shift is more than 2 seconds. Altering the dispersion has a greater effect: a change
of +2 seconds in the dispersion of the HRF produces about a 20% change in the estimated
magnitude. Note that neither a shift in the delay nor a change in the dispersion has any
effect on the bias of § for block designs with long blocks.

3 Results

3.1 Simulations

We validated the corrected estimators by simulation of noise distributions and stimuli typi-
cally found in fMRI data sets. We looked at bias, root mean squared error, standard deviation
and estimated standard deviation to see if the model parameters derived analytically comply
with the experimentally obtained results.

To assess the parameter estimators, we used simulated fMRI data sets with 120 frames,
separated by 3 seconds, excluding the first two frames. The block design of 3 frames rest, 3
frames hot stimulus, 3 frames rest, 3 frames warm stimulus, was repeated 10 times so we have
120 frames in total (see Figure 1(a)). The reference HRF was the difference of two gamma
functions (1). We added polynomial covariates of degree 3 in the frame times to the design
matrix to remove the drift. Note that these drift terms are not convolved with the HRF. We
simulated the fMRI experiment 2000 times with AR(1) errors and an autocorrelation of 0.3,
typical of the values in real data. We only chose the hot stimulus for delay estimation.

We investigated the properties of three estimators:

1. The ratio estimator using ho(t) and hy(t) as HRF basis functions, and estimating the
shift by the ratio of their coefficients.

2. The corrected ratio estimator obtained by dividing the ratio estimator by 1 + 1/7T%,
where Tj is the T statistic for the magnitude of the stimulus (9).

3. The spectral estimator § obtained by using optimally chosen basis functions and the
relationship between the (corrected) ratio of their coefficients and the true shift.



We varied the true shift from -4.5 to 4.5 seconds, the standardised magnitude

_ B _ P
Sd(3) Voo

(approximated by the T statistic Tp), from 1 to 10 (Figure 3) and the dispersion of the HRF
from 2.6 to 10.4 seconds (by multiplying the time scale of the HRF by factors from 0.5 to 2
about the first peak with a width of 5.2 seconds) (Figure 4). The dispersion was measured
by +/8log2b+/a, which is the FWHM of a Gaussian density with the same peak curvature
as the first gamma density.

We expect the methods for estimating the delay to break down when the signal to noise
ratio is too small to detect the signal in the first place. This is confirmed by Figure 3(a),
which shows that the simple ratio estimator is highly unstable if the magnitude of the signal
is small, resulting in a large RMSE (Figure 3(d)). Correcting the ratio estimator by shrinking
it to zero when the magnitude is small overcomes these problems (Figures 3(b,e)) but there
is still large bias for shifts greater than 3 seconds. The spectral estimator controls the bias
to within 0.5 seconds even for shifts as large as 4.5 seconds, and it has lower RMSE (Figures
3(c,f)). The estimated standard deviation of the spectral estimator is within 5% of the true
standard deviation when the magnitude is large (Figures 3(g-1)); the overestimated standard
deviations for small magnitudes result in more conservative inference about the shift, which
1s not too serious.

So far in Figure 3 we have varied the delay of the HRF, keeping the shape of the HRF
equal to that of the reference HRF. In Figure 4 we try varying the dispersion of the HRF
about its peak to assess robustness of our estimators, keeping the standardised magnitude of
the signal at 7 = 6 (marked by a dotted horizontal line on Figure 3). We see that all methods
of estimating the shift are remarkably robust to the dispersion, although there is still some
bias for large shifts and extreme dispersions (Figures 3(a-c)). The RMSE is smallest when
the dispersion matches that of the reference HRF (5.2 seconds), indicated by a horizontal
dotted line (Figures 3(d-f)). Overall the spectral estimator appears to perform slightly better
than the other two. Its estimated standard deviation is within 5% of the truth over nearly
all the shifts and dispersions.

Overall we conclude that the spectral estimator is reasonably accurate at detecting shifts
up to +4.5 seconds if the standardised magnitude is at least 4, even if the true dispersion
varies by a factor of 2 from that assumed.

3.2 Illustrative example

Using the same experimental protocol as in Section 3.1, data were collected from several
scans on a group of subjects, but we shall just analyse the data from a single scan on a
single subject (Chen et al, 2000). As we mentioned before, the reference HRF was modeled
as the difference of two gamma density functions with a delay of 5.4 seconds to the peak (1).
First, the T statistic Ty for the magnitude is shown in Figure 5(a). It is clear that there is
a significant area in the middle region where the T' statistic is above 4.5 (red-white color),
indicating that there is strong signal in this region (the center of the 3 x 3 array in Figure 6
shows a magnification of this region). Figure 5(b) shows the T statistic 77 for the time shift.



Note that it is close to zero in the red-white region, indicating no evidence of a difference
between the delay and the reference delay. Figure 5(c) shows the estimated delay 07, which
is close to the reference delay dy = 5.4 seconds, as expected from the test in Figure 5(b).
Furthermore the standard deviation of the estimated delay (Figure 5(d)) was Sd(d) ~ +0.6
seconds over almost all the region.

To check the success of the method, we used different reference HRF’s: we shifted the
original gamma difference HRF by 43 seconds to give a reference delay of 5.4 + £3 seconds,
and we varied the dispersion by a factor of two about the first peak. If our method is success-
ful, then we should still estimate the delay as about 5.4 seconds even using these different
choices of reference HRF. The results are shown in Figure 6 where we only concentrate on
the region of activation in Figure 5. In (a) we see that the T statistic for the magnitude is
highest when the peak of the reference HRF is close to the anticipated HRF, in other words,
the stimulus is easiest to detect when the reference HRF is close to the true one. In (c) we
note that no matter what reference HRF is chosen, the estimated delay remains at about
5.4 seconds. This is confirmed in (b) where we see that the shift is not different from zero
when the reference delay is 5.4, but it is greater than zero when the reference delay is less
than 5.4 seconds, and less than zero when the reference delay is greater than 5.4 seconds. In
(d) we note that the standard error of the estimated delay is low when the reference HRF is
close to the true one. This suggests that our method for estimating the delay is reasonably
robust to the choice of reference HRF.

Figures 7 and 8 show the delay superimposed on the region of significant stimulus. The
range of delays is from about 4.5 to 6.5 seconds, with a standard deviation of about 0.6
seconds. These are not significantly different from the reference delay of 5.4 seconds. Overall
our conclusion is that there is little evidence in this data for a delay that is different from
5.4 seconds. There was also no evidence for a difference in delay between the hot and warm
stimuli.

4 Discussion

4.1 On the difficulties of the interpretation of the GLM

First, we would like to stress that this work casts some light on some of the often not well
enough acknowledged or documented difficulties of the analysis of functional data with the
general linear model. Indeed, although linear models are both simple and flexible, and their
resolutions comply with the speed requirements that are found in the analysis of large time
series, the construction of the model is generally difficult. The choice of how many and
which regressors to include in the model is often ad hoc (the functional imaging community
lacks verification and model selection tools), and the results may well be misinterpreted. A
first source of possible misinterpretation due to correlations of the regressors constituting
the GLM have already been pointed out in Andrade et al. (1999).

There is another possible source of confusion even in the case of no correlation in the
model. Typically, the comparison of the magnitude of two responses, when the model in-
cludes derivatives in time to accommodate for differential delays of those responses, is biased
if indeed there is a difference in the delay of the responses. This has probably been very
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often overlooked when analysing data. The magnitude of the bias of course depends on the
difference of the delays, but it can be shown that for a delay around one second, the bias is
around 7-8% of the magnitude, a figure comparable with the magnitude of changes observed
in fMRI datasets. Of course, not modeling the delay does not solve the problem but only
makes it impossible to look at and to solve. This will be the subject of future research.

To eliminate ambiguities of the linear model, one could resort to non linear fits of models
that explicitly parametrise the delay, amplitude or other parameters. First, as mentioned
before, these procedure are computationally costly, and the computation cost might well be
itself a limit when analysing a group of subjects (often 10 to 20) with often more than a
thousand time points per subject. Second, the non linear fitting in the presence of noise does
not always converge to the global minimum and the computation is therefore often limited
to the voxels that show an effect. The selection of those voxels can be done during the non
linear fit but this may require an arbitrary threshold on the energy to be minimised. In the
method proposed here, we solve for this by including in the corrected delay estimator the
statistics that reflects the evidence for a response (see (10)).

4.2 On the shifted HRF model

The computations presented in this paper are based on a model of the HRF that shifts
with time. A drawback of this model is that if the shift is negative then responses in the
future can influence BOLD signal in the present. However, we usually anticipate positive
shifts (longer delays) so this may not be a problem. We do not propose experimental data
and a formal test to validate this model (although some data seem to show such an effect)
since this would go beyond the purpose of this work. However, it has to be emphasised that
the method proposed is reasonably robust to other forms of the HRF, including change in
dispersion. It also extends to any single parameter model — we only need to replace uy and
up by the SVD of the spectrum of HRF’s with respect to that parameter. If the shifted HRF
model is shown to be less appropriate than another model — something that still has to be
demonstrated — the basis for accurate estimators of both the delay and the magnitude would
be found in previous sections. Interestingly, one of the earliest models proposed for the HRF
in Friston et al. (1995) was of the form of a Poisson distribution in which the dispersion
varies as the square root of the delay.

While a non-parametric estimation of the HRF is feasible, this estimation is noisy and is
likely to generally require temporal regularisation. These operations are costly to perform
at the voxel level, especially if several types of stimuli are considered for estimation. Extrac-
tion of parameters from a non-parametric form could be performed after a non-parametric
estimation of the HRF but a parametric model would still be required to extract the delay.

4.3 On the ultimate goal: to retrieve the neuronal signal

Extracting various parameters from the HRF does inform on the neural activity only under
some strong assumptions. The comparison of the delay or the magnitude of the response
is most likely to make sense only at the same position in the brain or else it may only
reflect differences in the microvasculature system across cerebral regions. Today, the amount
of information on neural activity that can be extracted from the BOLD response is not
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known and this question (together with the method used to extract this information) is an
active field of research. Typically, if the HRF is known exactly or with great precision,
not changing with time (stationarity), and the BOLD response is formed by convolution of
the neural response with this function (linearity), one could deconvolve the measured BOLD
signal to find the neural activity. However, non-linearities have been demonstrated by several
authors (Boynton et al., 1996; Glover et al., 1999; Vazquez & Noll, 1998; Birn et al., 2001)
and current research investigates how much of these are due to non-linearities of the transfer
from the stimulus to the neural response and how much are due to the transfer from the
neural to the hemodynamic signal (see for instance Buxton et al. (2001)). Non-stationarities
with time have yet to be investigated.

It is likely that questions related to the nature of the coupling between stimulus/neural
and response/vascular response will find their answers with techniques that use concurrent
recordings of electrical and metabolic responses, such as implanted electrodes in epileptic
patients or EEG recording in the MRI scanner. At the moment, given our knowledge of both
the shape and the characteristics with respect to the neural inputs of the HRF, little can
be inferred on the neural activity from the BOLD signal with certitude and many different
neural inputs can lead to almost identical BOLD signals. Yet, a precise and rapid estimation
of the delay of the HRF is important since for well controlled experimental designs for which
the neural response is thought to be modulated in terms of delay and magnitude, the HRF
parameters are likely to reflect actual neural changes, as confirmed by a recent study using
optical imaging (see Gratton et al., 2001). In fact, to investigate if the variation of those
parameters actually represents neural changes, accurate estimation is needed.

5 Conclusions

We have implemented an efficient, robust algorithm for estimating the delay of the response
in fMRI data. The MATLAB program (http://www.math.mcgill.ca/keith/fmristat) takes
about 4 minutes to analyse one fMRI data set. We then used this algorithm for statistical
inference of the delay of the response to a painful heat stimulus. From the data set analyzed,
we found significant positive responses in three main areas (Figures 7 and 8). In these areas,
the estimated delay was around 5.4 seconds and it varied little with the reference HRF that
was used. This last point confirms the success of the method.

A Appendix

A.1 Details of the corrected estimator

It can be shown that the expected value of the ratio estimator, the ratio of two Gaussian
random variables, does not exist, since the ratio becomes infinite when the denominator
approaches zero. Nevertheless, we shall approximate the ratio locally by a Taylor series,
then take expectations. Equating this to the true ratio will lead to a new estimator whose
expectation does exist, and is close to the true value. Assuming 7, and 7; are roughly
independent (true for an event related design with no autocorrelation and no drift terms,
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since ug and uy are orthogonal) then

E(7) ~ E(71)E(1/%).

Since 7y and 7; are least squares estimators they are unbiased so that E(55) = = and
E(71) = 1. Now let f(u) = 1/u, then expanding this as a Taylor series about vy and taking
expectations, we have:

E(1/50) = E(f(%0)) = f(70) + Var(Jo) f (70) /2

Combining the above results we get the following formula to estimate r:

Ef) ~ O <1 + Var(%)

Yo 73

1
(1 5)
neglecting terms in 7® and higher. We can estimate 7 by Ty from (9). This suggests that a

better estimator of r is: )
. . 1Y\
re=r (1 + TO2> 5

which now approaches 0 as 7, approaches 0, so its expectation exists, and is within 2% of
the true ratio if |7| > 4.

Q

Q

A.2 Estimating the variance and covariance

glv,u) =r7" (u/v> ,

14 (s/v)2

where s = sAd(%), so that 6 = ¢(90,91). Then by standard linear Taylor series approxima-
tions, ignoring the variability in s, the estimated variance of ¢ is

Let

@) ~ ko 0% ( 2 ) a7, (12)
where ~
Var ( o ) = (X'X) 16
g
Then
u(s? — v? v




The estimated variance of the delay d=dy+ 9 is
Sd(d)? = Var(d) ~ Var(d). (13)

The estimated covariance between two delays (fl and cig at the same voxel is

N T TN o SR A COV(%17%2) COV(%lﬁlz) ey
COV(dl’dQ)Ng(%l’%l)<Cov(ﬁnﬁm) Cov(3n1, A1) & (Y02, 712)’-

The elements of the inner 2 X 2 matrix come from the corresponding elements of (X'X)~152,
where X now includes the pair of columns x( and x; for each stimulus, together with columns
for the drift.

A.3 Details of the spectral estimator

How do we choose the basis functions? One method is to choose h(t; ) for two fixed values
of §, say +0% where d*x = A/2. This has the advantage that the approximation (4) is exact
for these two values of 9, and perhaps fairly accurate for the others. Equivalently, we could
use the average and the difference of these two functions, equivalent to the average and its
numerical derivative. As the value of 0% — 0, this is equivalent to using hy and h; as the
basis functions, leading to the ratio estimator. Thus the ratio estimator is likely to be very
accurate in the neighbourhood of § = 0.

A better criterion might be to minimise the proportion of variability of h(t; ) accounted
for by its approximation (4), integrated over all values of ¢, rather than at two fixed values
of 0 as just described. To do this in practice, form a matrix H by sampling h(¢; d) at equally
spaced values of ¢ (columns) and ¢ (rows) in the range —A < 4 < A. Then find the singular
value decomposition (svd):

H = USV' = ugsovy + uys1v)

where U = (up u; ---) and V = (vg vy ---) are orthonormal matrices and S = diag(sy >
s1 > ---). The success of the approximation is measured by the proportion of variability
explained, equal to (s3+s7)/(s3+s3+--+) = 0.87 for the gamma difference HRF in the range
—4.5 < § < 4.5 (whereas only 0.75 is explained by hg and hy). The functions wg(d), w:(0)
are then approximated by the elements of sgvg, s;vy. Note that if we had chosen just two
columns for H then this method would be identical to that in the previous paragraph.

We notice straight away a strong similarity between ug, u; and the normalised functions
ho(t), hi(t) (Figure 2(b)). Note also the symmetry of vy and v; as functions of § (Figure
2(c)). There is a simple reason for this: H'H is a Toeplitz matrix, whose eigenvectors V
are either symmetric or antisymmetric about their middle element. A row or column of
the Toeplitz matrix is just the autocorrelation function of hy, whose eigenfunctions are the
Fourier basis functions. If the spectrum is unimodal, then the eigenfunctions corresponding
to the two largest eigenvalues are the lowest frequency sine and cosine waves. This is precisely
what we see in Figure 2(c), altered by the fact that the range of § is truncated to [—A, A].
The first eigenvector vy resembles a cosine wave, the second v, a sine wave. These are close
to a constant and linear function of ¢ as given by the Taylor series expansion, which explains
why the corresponding uy and u; resemble ho(t) and hy(2).
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The key to the success of this method is the monotonicity of r(J). Fortunately Figure
2(b) confirms that this is the case, and moreover it is quite close to a straight line, the
principle behind the ratio estimator. Monotonicity of r(J) breaks down if the range of d is
increased beyond +5.6 seconds, making the method inoperative. Since as noted above this
function is the ratio of two functions that resemble a sine and cosine, it was approximated
by a scaled tangent function (dashed line on Figure 2(c), fitted by non-linear least squares)
which allows us to invert it rapidly using the arctangent function.

A.4 Note added in proof: Comparison with the method of Henson
et al. (2002)

Since the final revision of this paper, a very similar method has been published by Henson
et al. (2002). This paper also proposes a simple method of estimating the delay using two
basis functions and inverting the relationship between the ratio of the coefficients and the
true delay. There are three main differences. First, Henson et al. (2002) use Taylor series
basis functions (3) rather than our optimally chosen basis functions (4). Second, in Henson
et al. (2002) the ratio of the coefficients is inverted directly as in (8) without our shrinkage
as in (10). Henson et al. (2002) use a logistic approximation here, whereas we prefer an
arctangent approximation, but the difference is negligible. Simulations show that there is
little difference between the two methods except that our shrinkage estimator yields better
results when the signal magnitude is small. Thirdly, Henson et al. (2002) rely on replications
of the experiment to estimate the standard error, whereas we can obtain a standard error
directly from a single replication, as in (13).
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(a) Stimulus, s(t): alternating hot and warm stimuli on forearm, separated by rest (9 seconds each).
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(b) Hemodynamic response function, h(t): difference of two gamma densities (Glover, 1999)
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(c) Response, x(t): sampled at the slice acquisition times every 3 seconds
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Figure 1: (a) The hot and warm stimuli s(¢), (b) the hemodynamic response function h(t)
and (c) its convolution with s(¢) to give the response x(t). The time between frames is
TR=3s, so x(t) is then subsampled at the n = 118 frame acquisition times ¢; = 3i to give
the response x(t;) at time index i = 1,...,n.
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(a) Spectrum of hrf shifted from —-4.5 to 4.5 seconds
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Figure 2: (a) HRFs shifted by —4.5 < ¢ < 4.5 seconds; (b) the spectral basis functions
(ug, uy) found by singular value decomposition (svd) of the HRFs in (a), compared to the
Taylor series basis functions (hg, h1); (¢) the corresponding coefficients of the spectral basis
functions (wo, wy) as functions of the shift parameter, 6. The ratio r = w; /wy (multiplied by
0.4) is monotonic in d, so we can invert it to find the spectral estimator 5. This is particularly
rapid if we use a scaled tangent function approximation (dashed line).
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(a) Bias of ratio (b) Bias of corrected ratio (c) Bias of spectral
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Figure 3: Bias and root mean squared error (RMSE) of the three shift estimators: the
ratio estimator, the corrected ratio estimator, and the spectral estimator S, based on 2000
simulations of the hot stimulus, as a function of the true shift 6 and the true standardised
magnitude 7: (a-c) the bias; (d-f) the root mean squared error. The spectral estimator
appears to be the best. (g) The true standard deviation of the spectral estimator, (h) its
estimated standard deviation using the method in Section A.2, and (i) the ratio of the two.
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(a) Bias of ratio
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Figure 4: As for Figure 3, but varying the dispersion of the HRF for fixed standardised
magnitude 7 = 6, indicated by a dotted horizontal line on Figure 3. The dotted horizontal
line in this figure corresponds to the dispersion (5.2 seconds) used for Figure 3.

20



(a) T statistic for magnitude (b) T statistic for shift

Figure 5: Inference for the delay of the pain stimulus with a reference delay of 5.4 seconds:
(a) the T statistic for the magnitude, Tj, (b) the T statistic for the shift, 77, (c) the estimated
delay d (seconds), (d) the standard deviation of the estimated delay Sd(d) (seconds). Only
one slice (slice 4) is shown.
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(a) T statistic for magnitude (b) T statistic for shift
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Figure 6: Magnification of the region of significant signal in Figure 5 (center of the 3 x 3
array) together with different reference delays and dispersions.
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4

Figure 7: The T statistic Tj for the magnitude of the hot stimulus thresholded at the
P = 0.05 value of 4.86 - top view (coloured) together with the mid cortical surface (pink).
The colours code for the estimated delay of the hemodynamic response, in seconds.
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Figure 8: As for Figure 7: front view with part of the frontal cortex removed to show
activation inside the brain.
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Figure 9: Possible cover for Neurolmage

25



