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From the human brain to the creation of the universe: Some new discoveries in

statistics and probability, found using tools from topology and geometry, have been

applied to medical imaging and astrophysics.

The Geometry of Random Images

Keith J. Worsley

The geometry in the title is not the geometry of lines
and angles but the modern geometry of topology and
shape. What has this to do with statistics? Some re-
cent work has found some fascinating applications of a
mixture of geometry, topology, probability, and statis-
tics to some very pressing problems in newly emerging
areas of medical imaging and astrophysics.

Where is the link? Let us begin with a quick intro-
duction to one of the fundamental tools of topology,
the Euler characteristic.

Topology: The Euler Characteristic

Named after Leonhard Euler (1707–1783), the most
prolific mathematician of the 18th century, the Eu-
ler characteristic itself began with Euler’s observation
about polyhedra.

Recall that a polyhedron is a solid object bounded
by plane faces, such as a cube. Euler realized that, if
you count the faces (F ), edges (E), and vertices (V )
of a polyhedron, then V − E + F = 2 no matter how
the polyhedron is constructed.

A cube, for example, has F = 6 faces, E = 12 edges
and V = 8 vertices (see Fig. 1a) so that 8−12+6 = 2.
For a solid that consists of P polyhedra, stuck together
on at least one common face, the slightly more general
formula becomes V − E + F − P = 1.

A little experimentation will convince you that this
new formula works for all solids (see Fig. 1b)—well
almost all. If the solid has a hole going right through

it, like a doughnut (see Fig. 1c), then the result no
longer holds. In fact, the result is V −E + F − P = 0
for any solid with just one hole.

Too bad! But this does not deter a good
mathematician—far from it—it opens up vast new pos-
sibilities! What happens if there are two holes, like
a figure 8 (see Fig. 1d)? Then it turns out that
V − E + F − P = −1, and so on; each hole reduces
V − E + F − P by 1.

So now suddenly we have a fascinating new tool.
We can count the number of holes in a solid using the
formula V − E + F − P ; it has the very interesting
property that no matter how the solid is subdivided
into polyhedra, the value of V −E+F−P is invariant.
Thus is born the field of topology: We define the Euler
characteristic (EC) of a solid as simply

EC = V − E + F − P

for any subdivision of the solid into polyhedra.
Thus the EC of a pretzel-shaped solid (Fig. 1e) is

−2: +1 for the solid part (the part you eat), and −3
for each of the three holes, giving −2 overall. Have
we covered all possibilities? Not quite—if the solid is
hollow, like a tennis ball, then surprisingly enough the
EC is 2 (see Fig. 1f).

Think you’ve got it now? How about a solid shaped
like a bicycle inner tube? Answer: The EC is 0, and if
it has a puncture, then the EC is −1.

One more slight generalization, which will prove to
be extremely useful for practical applications: Suppose
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(a) 8-12+6-1=1 (b) 16-28+16-3=1 (c) 32-64+40-8=0

(d) 48-100+64-13=-1 (e) 56-120+78-16=-2 (f) 64-144+108-26=2

Figure 1. The Euler characteristic (EC) of a solid
is the number of vertices − edges + faces − polyhedra.
For a single polyhedron (a) or several joined together
(b), the EC = 1; if there is a hole in the solid (c) the

we have a set of disconnected solids. No problem—we
can divide them all up into polyhedra, apply the for-
mula, and sum everything. Thus if the set consists of
several disconnected components, with no holes, then
the EC simply counts the number of such components.

Finally, to make it really useful, suppose we start off
with a set in three dimensions with a smooth boundary,
as opposed to a union of polyhedra; how then can we
find the EC? The answer is to cover the set with a
cubical lattice (any lattice would do, but a cubical one
is the simplest). If the lattice is fine enough and the
boundary is smooth everywhere, then it can be shown
that the EC of the lattice inside the set equals the EC
of the set itself.

To summarize, we now have a completely general
tool, the EC, that tells us a lot about the topology of
a set. If the set is composed of many disconnected
components, each containing relatively few holes or
hollows (called a “meatball” topology in astrophysics)
then the EC is large and positive (Fig. 2a). If the
components are connected together by a network of
“bridges” (rather like mozzarella cheese) to form many
holes, then the EC is negative; this is called a “sponge”

EC = 0; and the EC decreases by 1 for each extra hole
(d, e); in (f) the central cube is missing so the solid is
hollow, in which case the EC = 2.

topology (Fig. 2b). If the network dominates to
such an extent that the set consists of many surfaces
surrounding isolated voids (rather like Swiss cheese),
called a “bubble” topology (Fig. 2c), then the hollows
dominate and the EC is once again positive. We are
now ready for the applications.

Astrophysics: Large-scale Structure of the
Universe

One of the most fascinating problems in astrophysics is
the large-scale structure of the universe. Ever since the
discovery of galaxies, it has been realized that galaxies
themselves group together to form clusters, and these
group together to form superclusters. With more accu-
rate observations and larger galaxy surveys, it became
evident that galaxies were not scattered throughout
the universe in a random fashion.

Instead there are large voids, completely free of vis-
ible matter, surrounded by strings and even sheets of
galaxies; one such has been named the “Great Wall” by
astrophysicists. It is of great interest to build models
of the formation of the universe that could explain
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(a)
Figure 2. Different topologies and examples of

their Euler characteristics: (a) A “meatball” topol-
ogy: many disconnected components, each containing
relatively few holes or hollows gives EC = 21; (b) A
“sponge” topology: the components are connected to-
gether by a network of “bridges”, to form many holes,
gives EC = −15; (c) a “bubble” topology: surfaces
surrounding isolated voids, giving EC = 1.

Figure 3. How to find two surfaces that intersect in
a knot. Start with any knot, such as a trefoil knot (a),
which can always be represented as the boundary of
a two-sided surface (b, c), its “Seifert representation.”
Thicken the surface (d), cut it in half (e) and round off
the edges (f). Push the two surfaces together (g) and
the intersection (h) is the knot you want (i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(b)

(c)
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such structure, and compare the results of these models
to the structure we observe today (see Sidebar 1).

This is where the EC came in. In a series of articles
in the Astrophysical Journal, starting in the mid-80s,
Richard Gott and his colleagues at Princeton used the
EC as a descriptive tool of the topology of large-scale
structure. Astronomers had produced a 3-D map of all
galaxies in a certain region of the universe (called the
search region), and from this a map of galaxy density
was produced.

The places where the density exceeded a fixed
threshold, called the excursion set, was determined,
and the EC of this set was calculated as described pre-
viously. If the universe is like meatballs or bubbles,
then the EC would be positive; if it is like a sponge,
then the EC would be negative.

Unfortunately the EC depends very strongly on the
threshold. If the threshold is high, then all the holes
and hollows tend to disappear and the EC counts the
number of high-density regions; if it is low then it
counts the number of low-density hollows; in between,
the EC is negative.

To see this dependence, the galaxy density is first
standardized by transforming to a Gaussian distribu-
tion; then the EC is plotted as a function of the thresh-
old, to produce Fig. 4, which is based on the lat-
est galaxy survey (Vogeley, Park, Geller, Huchira, and
Gott 1994). The universe looks like meatballs at high
density, a sponge at medium density, and bubbles at
low density. As we shall soon see, this behavior is in
fact quite normal for one of the simplest models of
galaxy density.
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Figure 4 Plot of the observed EC of the set of high-
density regions of the real galaxy data (points), and
the expected EC from the formula (curve) for a Gaus-
sian random field model, plotted against the density
threshold. The observed and expected are in reason-
able agreement, confirming the Gaussian random field
model: high thresholds produce a “meatball” topol-
ogy (Fig. 2a); medium thresholds produce a “sponge”
topology (Fig. 2b), and low thresholds produce a
“bubble” topology (Fig. 2c).

Enter the Statistician—I

The models describe not the actual density patterns
produced, but the randomness of the density patterns.
This gives rise to a random EC, so this is where the
statistics comes in. We can work out the EC of the
observed universe, and compare it to the expected EC
under our model, averaged over all random repetitions
generated by the model.

This does not seem a very simple task; we must cre-
ate a random universe, find the EC of the excursion
set, repeat this many times, and average. Is there a
neat theoretical formula for this that would save us
the trouble of simulating? For one of the simplest and
most popular models, a stationary Gaussian random
field (see Sidebar 2), the answer is yes.

This remarkable result, remarkable for its simplicity,
was discovered by Robert Adler in 1976 as part of his
PhD thesis, and I added a boundary correction this
year (see Sidebar 3 for a proof). The formula for the
expected EC is (the new editor of Chance said I was
allowed one formula per page, but he didn’t say how
big it could be!):

E(EC) =
Volume λ3

(2π)2
(t2 − 1)e−t2/2

+
(1/2) Area λ2

(2π)3/2
te−t2/2

+
2 Diameter λ

(2π)
e−t2/2

+
EC

(2π)1/2

∫ ∞

t
e−z2/2dz.

The quantities on the right side all refer to the volume,
surface area, “caliper” diameter, and EC of the search
region, the region in space where the random field is
defined, λ is a measure of the “roughness” of the field,
and t is the threshold level.

The caliper diameter of a convex solid is defined as
follows. Place the solid between two parallel planes or
calipers and measure the distance between the planes,
averaged over all rotations of the solid. For a sphere it
is just the usual diameter; for a box of size a× b× c it
is (a + b + c)/2, half the “volume” used by airlines to
measure the size of luggage.

Notice that if the search region is a plane or slice in
2-D, then the volume is 0 and the first term disappears;
if the search region is a single point with zero volume,
surface area, and diameter, then only the last term is
left, which astute statisticians will recognize as just the
probability that a Gaussian random variable exceeds
the threshold t.

All these parameters are easily estimated, and we
can plot the EC against the threshold t, and add it to
the plot of the observed EC (Fig. 4). As we can see,
the results are in reasonable agreement. What this
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Sidebar 1: Cover Story

Fractal Models for Galaxy Density

Fractal models for galaxy density have been proposed
by Mandelbrot (1982) to describe the grouping of
galaxies into clusters, strings and sheets. Recall that
a fractal has the property that it looks similar at all
scales, that is, galaxies group together in clusters, the
clusters group together in superclusters, which them-
selves join together to form immense structures such as
the “Great Wall”, a recently-discovered sheet of galax-
ies stretching across a large portion of the observable
universe. One of Mandelbrot’s models is based on a
random walk (Mandelbrot 1982, p. 136). Start at one
point, jump a random distance in a random direction
and mark the spot with a galaxy. Jump again from this
galaxy and mark the new spot with another galaxy.
Repeat this process indefinitely. Depending on the
distribution of the jump distance, different patterns
of galaxies emerge. If you choose a jump with a finite
mean but an infinite standard deviation, then the pat-
terns begin to look interesting. Mandelbrot suggested
a jump probability density proportional to the distance
raised to the power −21

2 . The result is known as a
Rayleigh-Lévy random “flight”—rather than “walk”—
because it occasionally takes very large jumps. The
pattern of galaxies that it produces does resemble those
actually observed (Fig. 5), although there is no physi-
cal explanation for the jump process itself.

Chi-squared Random Fields

Where is the link to random fields? Hamilton (1988)
calculated the expected EC (Euler characteristic) of
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Figure 5. Mandelbrot’s fractal model for galaxy
density is generated by a Rayleigh-Lévy random flight:
(a) Starting at a point, jump a random distance

excursion sets for Mandelbrot’s model. Strangely
enough, they agree exactly with those of a so-called
χ2 (chi-squared) random field with two degrees of free-
dom. This is defined as follows. Take two smooth inde-
pendent Gaussian random fields, say Z1 and Z2 (Side-
bar 2), then the χ2 random field is defined as Z2

1 +Z2
2 .

Such random fields have very peculiar properties when
the threshold is set close to zero. The excursion set,
instead of consisting of isolated hollows, corresponding
to local minima of the field, consists instead of strings
of hollows which form closed loops with no free ends
(outside front cover, bottom right panel). The expla-
nation for this curious phenomenon comes from the
fact that if the χ2 field is zero, then each of the com-
ponent fields Z1 and Z2 must also be zero. Now the
zero set of a smooth Gaussian field is a sort of 3-D con-
tour in space; it consists of a smooth surface with no
free ends (outside front cover, top left and right pan-
els). The places where both Z1 and Z2 are zero are
the places where these two smooth contours intersect
(outside front cover, bottom left panel). A moment’s
reflection will convince you that the intersection of two
smooth surfaces must be a string, closed to form a loop.

Knots in the Excursion Set

Knot theory has always been an interest of mine since
Vaughan Jones, one of my friends from my high-school
and undergraduate days in New Zealand, became a
well-known knot theorist. For his contributions to knot
theory, in particular his discovery of a new knot invari-
ant now called the Jones polynomial, he was awarded
the Fields Medal, the equivalent of the Nobel Prize

with probability proportional to the distance to the
power −21

2 in a random direction and (b) leaving be-
hind a galaxy after each jump.
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(there is no Nobel Prize for mathematics), and he was
made a Fellow of the Royal Society. So as soon as I
hear the word “string” I immediately think of knots.
Can these zero-sets of χ2 fields ever be knotted? That
is, is it possible for two smooth surfaces to intersect
and form a knot? For a long time I thought the an-
swer was no. I just couldn’t see how it could be done. I
mentioned this to Vaughan one day after we had been
wind-surfing on San Francisco Bay. After he came out
of the shower, he said that not only could he find such a
pair of surfaces, but any knot could be formed as the in-
tersection of two suitably chosen smooth surfaces. Fig.
3 shows how to do it for the simplest knot, the trefoil
(Fig. 3a). An elementary theorem in knot theory says
that any knot can be represented as the boundary of
a two-sided surface, its “Seifert representation” (Fig.

]

Sidebar 2. The Gaussian Random Field

A random field is not an intimidating object; it is just a
set of random variables defined at every point in space,
a bit like a 3-D version of a time series. A Gaussian
random field is one that has a Gaussian distribution
at every point and at every collection of points. A
stationary field is one that has the same distribution
at all points, in other words, it looks the same every-
where. The simplest way of making a smooth station-
ary Gaussian random field is to start with independent
Gaussian observations (‘white noise’) at each point in
space, for simplicity on a fine cubical lattice, each with
mean zero and standard deviation one (see Fig. 6a).
Then smooth it with a smooth kernel, such as a Gauss-

(c)

(a)

(d)
FWHM

(b)

smooth

smooth

Figure 6. How to make a smooth Gaussian ran-
dom field in 2-D: (a) Start with independent Gaussian
observations (“white noise”) on a 64× 64 lattice, each
with mean 0 and standard deviation 1 (the plots be-
low each image show the values along the horizontal
line through the middle of each image); (b) take the
weighted average of the white noise, weighted by a

3b, c). The fact that the surface is two-sided, as op-
posed to a one-sided surface such as a Moebius strip, is
crucial to the success of the proof (I have colored one
side green and the other blue). Now thicken the sur-
face (Fig. 3d) and carefully cut it in half, separating
the two sides (Fig. 3e). Now take out some sandpaper
and smooth the two pieces (Fig. 3f) and push them
back together so that they intersect (Fig. 3g). The in-
tersection (Fig. 3h) is the knot we desire (Fig. 3i). So
there it is . . . although there are some details to fill in
to complete the proof, it seems likely that the zero-sets
of χ2 fields, and perhaps also the areas of zero density
in the Mandelbrot fractal model for galaxy density, can
form knots. This may be nothing more than a math-
ematical curiosity with no practical relevance . . . but
who knows?

ian shaped kernel, that is take the weighted average of
the white noise, weighted by the kernel (Fig. 6b).The
roughness of a field, denoted by λ, is measured by the
standard deviation of the slope of the field relative to
the standard deviation of the field itself. It can be
shown that for a Gaussian random field constructed
as above, λ =

√
4 loge 2/FWHM, where FWHM is the

Full Width of the smoothing kernel at Half its Max-
imum height. For PET images, the FWHM is mea-
sured experimentally by placing a tiny point source of
isotope into the PET machine (Fig. 6c) and measuring
the FWHM of the resulting blurred image of the point
source, which should be an image of the kernel itself
(Fig. 6d).

(c)

(a)

(d)
FWHM

(b)

smooth

smooth

smooth Gaussian-shaped kernel. To see the kernel it-
self (c), replace the lattice by zeros everywhere apart
from a value of 1 at the central point; the result (d)
is an image of the kernel. The amount of smoothing
is measured by the FWHM—the Full Width of the
smoothing kernel at Half its Maximum height. This is
how the FWHM of the PET machine is actually mea-
sured.
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shows is that the hollows, sheets, strings, and clus-
ters of galaxies might have been generated by a Gaus-
sian random field model for galaxy density and that
the meatball, sponge, and bubble topologies arise nat-
urally from the model when the threshold is high,
medium, or low, respectively.

Medical Images: Positron Emission Tomog-
raphy

For a long time I had been doing some statistical con-
sulting work for the Montreal Neurological Institute.
Nothing too demanding—the odd t test or perhaps an
analysis of variance now and again. But then in the
summer of 1990 a new type of experiment was per-
formed by the brain imaging center.

In this experiment, a subject is injected with a ra-
dio isotope emitting positrons, which annihilate with
nearby electrons to release gamma rays that are de-
tected by the center’s new Positron Emission Tomog-
raphy (PET) machine. By careful reconstruction, the
researchers are able to build up an image of blood flow
in the brain, a measure of brain activity.

This opened up the possibility of actually seeing
which regions of the brain were activated by differ-
ent stimuli, to actually see the brain “thinking”. For
a good introduction, see the cover story of Time mag-
azine, July 17, 1995.

In one of the first experiments, conducted by Dan
Bub, a subject was told to perform a linguistic task,
silent reading of words on a screen, during the imaging
process. By subtracting an image in which the subject
was “at rest” looking at a blank screen, the experi-
menters were able to see evidence of increased blood
flow in certain brain regions corresponding to the effort
required for the task.

The images are very blurred, however, and the signal
(if any) is very weak compared to the background

Table 1: Blood-Flow at a Single Voxel

Subject Task Rest Diff.
1 123.72 125.18 1.46
2 129.64 140.85 11.21
3 133.20 137.41 4.21
4 141.03 148.13 7.10
5 128.41 139.82 11.41
6 167.19 169.65 2.46
7 124.58 135.77 11.19
8 104.55 105.23 0.68
9 114.24 121.65 7.41

10 111.75 113.93 2.18
mean 127.83 133.76 5.93

Voxel average s.d. = 3.61
Z =

√
10 mean/s.d. = 5.19

noise, so to increase the signal-to-noise ratio the exper-
iment was repeated on 10 subjects. The brain images
were aligned in 3-D, and the blood flow was averaged
(see Fig. 9a, b, c).

The images are stored as values at 128 × 128 × 80
locations called voxels. If we just look at one voxel, we
have 10 pairs of blood-flow values, one pair for each
subject, one taken while the subject was performing
the task, the other while the subject was at rest. Table
1 shows some values from just one voxel in the left
frontal region of the brain.

Now comes the hard part: It looks as if some voxels
show increased activation, but is it real or is it just
due to the noise? Here is where the statistics (and the
statistician!) come in.

Enter the Statistician—II

Any student who has been through a first course in
statistics should know what to do with this sort of
data: A paired-difference T statistic can be used to
measure the statistical significance of the activation.
This is calculated by taking the mean difference (Fig.
9d), dividing by the standard deviation (s.d., Fig. 9e),
and multiplying by the square root of the number of
subjects (

√
10). To increase the accuracy of the stan-

dard deviation, it was replaced by the average over
all voxels to obtain a Z statistic with an approximate
normal or Gaussian distribution.

Proceeding in this way, we can make an image of Z
statistics, one for each voxel (Fig. 9f). The researchers
then scan this image, looking for high values of Z, by
choosing a threshold value t and looking at all values
where Z exceeds the threshold.

Now comes the tricky part: How do we choose the
threshold so that we exclude all the noise or at least
exclude it with a probability of say .95? In other words,
how do we control the specificity? The first thing that
springs to mind is to use the standard .05 critical values
for Z from the Normal distribution tables, which is
t = 1.64 in this case. If there is really no activation
at one particular voxel then the chance of finding any,
that is the chance that Z > 1.64, is controlled to be
.05.

But wait a minute—suppose there was really no ac-
tivation anywhere in the brain, just random noise—
then we would expect 5% of the voxels to exceed this
threshold by chance alone. So if we use t = 1.64, we
might end up finding activation in at least 5% of the
brain, even when there is none at all—obviously unac-
ceptable! Is there a way of correcting for this?

Students in a good course in statistics are told to
watch out for “data dredging,” carrying out a multi-
tude of tests and only reporting the significant ones,
using the usual 5% level for each test. There are about
300,000 voxels inside the brain, so we are carrying out
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Sidebar 3: The Expected Value of the Euler
Characteristic

Our formula for the expected value of the Euler char-
acteristic (EC) is remarkable because it deals with a
such a difficult random variable. How are we to apply
the concept of expectation to such a curious quantity
as the EC? As it turns out, there are two ways of at-
tacking the problem, coming at it from two different
branches of mathematics: differential topology and in-
tegral geometry.

Differential Topology: The Mathematical
Mountaineer

Statisticians are used to dealing with the expectation
of simple quantities such as sums of random variables.
The trick is to convert the EC into just such a sum, a
sum of local properties of the random field, rather than
global properties such as connectedness. The necessary
theoretical result needed to perform this comes from
differential topology and Morse theory, discovered in
the 1960s. It is easiest to state in 2-D, where it says
simply this: provided the excursion set does not touch
the boundary of the search region, then the EC of the
excursion set equals the number of local maxima of the
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Figure 7. The EC of the excursion set of a random
field in 2-D is the number of maxima (M) – saddles
(S) + minima (m) of the field inside the excursion set.
For an artificial image (a), the EC of the excursion set
for a low threshold (b) at t = 1 is EC = 4− 4 + 1 = 1;
(c) at t = 2.8 the local minimum disappears, leaving a
hole, and EC = 4− 2 + 0 = 2; (d) at t = 3.2 the hole

random field inside the excursion set, plus the number
of local minima, minus the number of saddle points (
Fig. 7):

EC = #maxima−#saddles + #minima.

The mathematical mountaineer applies this result as
follows: count the number of peaks, minus the number
of saddles, plus the number of basins above a certain
altitude; the result is always the number of connected
mountain ranges above this altitude, minus the num-
ber of lower altitude plains completely surrounded by
mountains. In other words, the mountain heights form
the random field, the peaks are maxima, the basins are
minima, the saddles are just the saddles, and the excur-
sion set is the places above a fixed altitude. Now place
a +1 at every local maximum and local minimum, a
−1 at every saddle point, and a 0 at every other point;
add these up and you have the EC. The expected EC
is then just the sum of the expected +1,−1, or 0 at
every point, which leads, after a lot of delicate manip-
ulation, to the first term of the expected EC, the part
discovered by Robert Adler. There is only one snag:
what happens if the excursion set touches the bound-
ary? For this possibility, a special boundary correction
is required that adds three more terms to Adler’s re-

breaks open leaving components with just one local
maximum in each, and EC = 4− 0 + 0 = 4; (e) at t =
5.6, just below the global maximum, EC = 1−0+0 = 1;
above the global maximum the EC is 0, so that for high
thresholds the expected EC approximates the p value
of the global maximum; (f) is a plot of the EC against
the threshold, t.
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sult. These can also be obtained by counting local
maxima and minima on the boundary, and follow-
ing the same delicate manipulation in Adler’s original
proof. An alternative method of proof, using integral
geometry, is given in the next section.

Integral Geometry: Buffon’s Needle

One branch of integral geometry, called stereology,
concerns the number of times that a randomly placed
object intersects a fixed object. Scientists use these
results to infer the shape of 3-D objects such as cells
that are viewed only as 2-D slices in a microscope. It
all began with Georges Louis Leclerc Comte de Buffon
(1707–1788), a French naturalist, who wrote L’Histoire
Naturelle, one of the most widely-read scientific works
of the 18th century. He is best known to mathemati-
cians for his method of calculating π by simply throw-
ing a needle at random onto the floor and counting the
proportion of times r, say, that it crossed the cracks
between the floor boards (Fig. 8a). If the needle has
the same length as the width of the floor boards, then
he showed that the probability of crossing the cracks
equals 2/π, so that π is approximated by 2/r. A gen-

 

(a) (b)

Figure 8. A generalization of Buffon’s needle is
used to find the formula for the expected EC of the
excursion set; (a) a needle is thrown at random onto
the floor; if the length of the needle is the same as the
separation of the cracks in the floor boards, then the
probability of the needle crossing a crack is 2/π; (b)

eralization of this result was discovered by Blaschke
in the mid-1930s, where the needle and the cracks are
replaced by two arbitrary sets A and B in 3-D, and
the proportion of crosses is replaced by the total EC
of the set of points that belong to both sets. The re-
sult, known as the Kinematic Fundamental Formula—
“Fundamental” because it underlies so many other re-
sults in integral geometry—is as follows:

∫
EC = 8π2(Volume ofA)(EC ofB)

+ 4π2(Area ofA)(Diameter ofB)
+ 4π2(Diameter ofA)(Area ofB)
+ 8π2(EC ofA)(Volume ofB).

Now we extend the random field out on all sides be-
yond the search region, hold it fixed, and use the ex-
cursion set as the “cracks” (B). Onto this we drop a
random search region (A) that becomes the “needle”
(Fig. 8b). The Kinematic Fundamental Formula then
gives an expression for the expected EC, which after
a little more manipulation becomes the four terms of
the result we want.

replace the needle with the search region (shown in 2-
D) and the cracks with the excursion set of a random
field, extended on all sides; the Kinematic Fundamen-
tal Formula gives the expected EC of the points in
common (black), which leads eventually to the formula
we want.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10. The anomalies in the cosmic microwave
background radiation—thought to be the signature of
the creation of the universe by the “big bang.” The

anomalies were discovered in 1992 by George Smoot
and his coworkers at the Lawrence Berkeley Laborato-
ries.
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← Figure 9. Application to a PET study of brain
areas activated by a reading task. The brain (a) has
been rendered as a transparent solid with the rear left
side facing the viewer; the ventricles in the center form
a single connected hollow that gives the brain an EC
of 2, as in Fig. 1f. One of 80 slices through the brain is
color-coded (red = high, purple = low) to show (b) av-
erage blood flow of 10 subjects under the rest condition
and (c) under the task condition. (d) The difference of
the averaged blood flows, task – rest; (e) the standard
deviation of the 10 differences (9 degrees of freedom);
(f) the Z statistic for testing for a significant increase
in blood flow due to the task. (g) The excursion set of
all Z values greater than a threshold of t = 3.3, where
we expect the EC to be 1 if the image is pure noise
(no activation); in fact the EC = 4, due to the four
components clearly visible, suggesting some evidence
of activation; and (h) at a threshold of t = 4.22, cho-
sen so that the expected EC is .05 when no activation
is present, that is, all noise is excluded with a proba-
bility of .95. Two regions remain (EC of the excursion
set is 2), one in the left frontal lobe, near the language
area of the brain and a broad region in the left visual
cortex and extrastriate. These are the regions signifi-
cantly activated by the task.

300,000 statistical tests. Here is data dredging on a
massive scale!

The classical way of correcting for this is to divide
the 5% level by the number of tests, the so-called
Bonferroni correction, which gives a critical value of
t = 5.10. This usually overcorrects, however, since af-
ter all the voxels are arbitrary and if we subdivided
each into eight voxels of half the size in each direc-
tion, we would divide now by 2,400,000 and obtain an
even larger threshold (t = 5.48). Thus the Bonferroni
threshold is not right. Instead we need to know the
probability that the maximum of a smooth image of
Z values exceeds a threshold value, then adjust the
threshold to attain a .05 probability.

The problem comes down to the distribution or p
value (the probability of a more extreme value) of a
random field maximum. This is definitely not taught in
an elementary statistics course, but after a trip to our
mathematics and statistics library I discovered that in-
deed some work had been done on this problem. No ex-
act formula exists, but Russian probabilists had found
approximate answers in the early 70s. The most fasci-
nating aspect, however, from my point of view, was a
link to the EC.

Enter the Topologist

Simply stated, the probability of the maximum exceed-
ing the threshold is well approximated by the expected
EC of the excursion set (given by that big formula),
provided the threshold is high. This result, linking the

topology of the excursion set to the local maximum,
was reported by Hasofer, Adler’s thesis supervisor, in
1978.

The idea of the proof is very simple: as the threshold
increases the holes in the excursion set (Fig. 7c) disap-
pear until each component of the excursion set includes
just one local maximum (Fig. 7d). At this point, the
EC counts the number of local maxima. Raising the
threshold still further, until only the global maximum
remains (Fig. 7e), the EC takes the value 1 if the
global maximum exceeds the threshold and 0 if it is be-
low; thus, for high thresholds, the expected EC equals
the probability that the global maximum exceeds the
threshold.

So now we have it—we can use the expected EC for
the p value of the maximum activation. First we must
fill in the volume, surface area, caliper, diameter, and
EC of the brain, which are 1,064 cc, 1,077 cm2, .1 cm,
and 2, respectively (the ventricles form a single large
hollow in the center of the brain, visible in Fig. 9, that
increases the surface area, reduces the caliper diame-
ter, and gives the brain an EC of 2, as in Fig. 1f). The
only remaining part is to use the FWHM—Full Width
of the smoothing kernel at Half its Maximum height
(Sidebar 2)—at 2 cm to find λ, equate the expected
EC to .05, and solve for t. The result is t = 4.22, much
higher than 1.64, but not as high as the Bonferroni
value of 5.10.

The resulting excursion set is shown in Fig. 9h, and
these are the places that show significant activation.
There is one in the visual cortex and adjacent left ex-
trastriate and one in the left frontal cortex, near the
language area of the brain.

Finally, Fig. 11 plots the observed EC and the ex-
pected EC against the threshold, as for the galaxy data
(Fig. 4). The main feature of interest is the larger-
than-expected EC for the high thresholds (t > 3), at-
tributable to the two regions of activation noted pre-
viously.

Conclusions

The work described in this article has linked to-
gether several ideas from different areas of mathemat-
ics, statistics, and probability to solve problems in as-
trophysics and medicine. It is a fascinating area, still
developing in different directions and finding different
applications.

It has already been used for detecting activation in
the new field of functional magnetic resonance imag-
ing (fMRI) (see the cover story of Time magazine,
July 17, 1995) and for studying the recently discov-
ered anomalies in the cosmic microwave background
radiation, thought to originate from the creation of
the universe by the “big bang” (see Sidebar 4).

No doubt more applications will arise wherever there
is a need to interpret the geometry of random images.
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Figure 11. Plot of the observed EC of the set of
high-Z regions for the PET data (jagged line) and the
expected EC from the formula (smooth line) if there is
no activation due to the linguistic task, plotted against
the threshold t. The most interesting part is when
t > 3, showing more EC than ex-

]

Sidebar 4: Wrinkles in Time

One of the greatest events in cosmology was the dis-
covery in 1964 by Arno Penzias and Robert Wilson,
two researchers working for Bell Labs, of the cosmic
microwave background radiation, thought to originate
from the creation of the universe by the “big bang”.
The story has been told many times before. Penzias
and Wilson had constructed a powerful microwave an-
tenna used to bounce microwave signals off Echo 1, a
huge reflecting balloon that had been placed in earth
orbit. Instead they discovered background radiation
coming uniformly from all directions in space, showing
no correlation with any known celestial object. They
concluded that it must be coming from outside the so-
lar system, and outside our own galaxy. They brought
their result to the attention of astrophysicists who re-
alized that what had been observed could be the rem-
nants of the enormous release of radiation from the
“big bang.” Since then, the radiation had cooled along
with the expansion of the universe to a lower frequency
in the microwave part of the spectrum. This discovery
was a dramatic confirmation of the “big bang” theory,

pected, confirming that some components of the ex-
cursion set are due to the linguistic task and not the
random noise. In particular, at t = 3.3 we expect an
EC of 1, but we observe 4 (visible in Fig. 9g); at the
5% critical value of t = 4.22, we expect .05 but we
observe 2 components (visible in Fig. 9h).

since the radiation had just the right spectrum, and it
was uniform in all directions. The only problem was
that it was just too uniform; theories for the creation
of large-scale structure in the universe predicted that
the cosmic microwave background radiation should
show some anomalies, or places of decreased fre-
quency, which could have been the seeds that formed
the present-day clusters of matter into galaxies and
clusters of galaxies. Ever since its initial discovery,
astrophysicists tried without success to find these
anomalies, until George Smoot and his co-workers at
the Lawrence Berkeley Laboratory announced their
discovery in 1992 (see the cover story of Scientific
American, July 1992). The paperback book Wrinkles
in Time is a fascinating personal account of the long
road of painstaking scientific work that finally led to
this result. At first glance, the picture of the anomalies
is rather disappointing. The noise component is so
strong that it is very difficult to tell which are the real
anomalies and which are just part of the noise (Fig.
10). When I first saw it, it reminded me of one of the
brain images! In fact astrophysicists have used the
very same methods, the EC of the excursion set, to
try to sort out the signal from the noise (Torres, 1994).
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In this case, the search region is the surface of a unit
sphere, so the volume is zero, the surface area is 8π2

(4π2 for the inside and 4π2 for the outside), the caliper
diameter is zero, and the EC of the search region is 2
(because it is a hollow sphere, like a tennis ball). We
can use these results to calculate the expected EC and
to plot it and the observed EC against threshold level
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Figure 12. Plot of the observed EC of excursion
sets of the anomalies in the cosmic microwave back-
ground radiation (jagged line), and the expected EC
from the formula (smooth line) if there are no real
anomalies. The observed microwave background radi-
ation produces an EC curve similar in shape to that
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