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Abstract: If the noise component of image data is non-isotropic, that is, if it has non-
constant smoothness or effective point spread function in every direction, then theoretical
results for the P-value of local maxima and the size of supra-threshold clusters of a statistical
parametric map (SPM) based on random field theory are not valid. This assumption is
reasonable for PET or smoothed fMRI data, but not if this data is projected onto an unfolded,
inflated or flattened 2D cortical surface. Anatomical data such as structure masks, surface
displacements and deformation vectors are also highly non-isotropic. The solution proposed
in this paper is to suppose that the image can be warped or flattened (in a statistical sense)
into a space where the data is isotropic. The subsequent corrected P-values do not depend
on finding this warping – it is only sufficient to know that such a warping exists.
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1 INTRODUCTION

The theoretical results for P-values of local maxima and size of supra-threshold clusters of
a statistical parametric map (SPM) are not valid if the noise component of the image data
is non-isotropic (Worsley et al., 1996). One of the conditions for isotropy or ‘flatness’ (in
the statistical sense) is that the FWHM should be the same in all directions and across
all voxels in the image. This assumption is reasonable for PET data or smoothed fMRI
data, but not for two new types of image data. The first is PET or fMRI data projected
onto an unfolded, inflated or flattened 2D cortical surface (Drury et al., 1998; Fischl et al.,
1999), where the different amounts of stretching of the surface alter the original constant
FWHM, making it non-isotropic. The second is anatomical data such as 3D binary masks
of a structure (Zijdenbos et al., 1998), 2D surface displacements (MacDonald et al., 1998),
and 3D vector deformations required to warp the structure to an atlas standard (Collins et
al., 1998; Thompson et al., 1999). In all these cases, the smoothness of the images varies
considerably from region to region, so they too are not isotropic. The purpose of this paper
is to present a simple method for overcoming these problems so that random field theory
can be applied to most non-isotropic images.

2 METHODS

The first step is to transform the data to a triangular (2D) or tetrahedral (3D) lattice. Pixels
on a square lattice can be easily transformed by subdividing the squares (of 4 adjacent pixels)
into 2 triangles. Voxels on a cubical lattice can be transformed by subdividing each cube of 8
adjacent voxels into 5 tetrahedra as shown in Figure 1 (four round the sides, and one inside).
Note that no new vertices (voxels) are created, only their connectivity is altered. Some data,
particularly data on cortical surfaces, is already triangulated, so this step is unnecessary.

Figure 1: Voxels (balls) on a cubical lattice can be subdivided into 5 tetrahedra per cube in
an alternating checkerboard arrangement.
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The second step is to estimate the effective FWHM (eFWHM) along each edge of the
lattice, defined as the FWHM of a Gaussian kernel that would produce the same local
smoothness of the noise component of the observed images. This is based on the normalized
residuals from fitting a linear model at each voxel. Label the two voxels at either end of an
edge by 1 and 2. We now fit a linear model to data from n images at each voxel by least
squares. For image i, let ri1 denote the scalar residual (observed - fitted) at voxel 1, and let
ri2 denote the scalar residual at voxel 2, i = 1, . . . , n. The normalized residuals at the ends
are

uij =
rij√∑n
i=1 r2

ij

, i = 1, . . . , n, j = 1, 2.

We first estimate the roughness of the noise, defined as the standard deviation of the deriva-
tive of the noise divided by the standard deviation of the noise itself. First let

∆u =

√√√√
n∑

i=1

(ui1 − ui2)2.

Then an unbiased estimator of the roughness is

λ = ∆u/∆x

where ∆x is the length of the edge (Worsley, 1999). For multivariate data, such as 3-
component vector deformations, the above calculations can be applied separately to each
component, then pooled by taking the root mean square of λ across components. The
effective FWHM along the edge is then

eFWHM =
√

4 loge 2 /λ.

If the image is isotropic or ‘flat’ then the eFWHM should be constant; departures from this
indicate non-isotropy.

A first attempt at correction is to warp the coordinates of the voxels so that the eFWHM
is approximately constant, or equivalently, λ ≈ 1. If the new edge length is ∆x̃, then this
implies that ∆x̃ ≈ ∆u. This is equivalent to a local multidimensional scaling that makes
the new edge length ∆x̃ proportional to the old edge length ∆x divided by the eFWHM ,
which means that edges with low eFWHM are stretched and those with high eFWHM are
shrunk (relative to the average). This was achieved by minimising

S =
∑

edges

(∆x̃2 −∆u2)2

for each point separately, holding all others fixed, then iterating till convergence. By ap-
proximating ∆x̃ as a linear function of the warp (ignoring the quadratic term), there is a
simple matrix expression for the optimal warp at each iteration.

A similar method is covariant regularization (Thompson et al., 1998). Here the data is not
warped, but is left in its original configuration. Instead, a new curvilinear mesh is induced
in the space of the data, so that any particular tensor (here it would be the smoothness)
becomes isotropic in the new coordinate system. However the result is in the end the same;
a new coordinate system is defined that makes the data isotropic.
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The usual random field theory for P-values of local maxima and cluster sizes can then
be applied to the resulting isotropic or ‘flattened’ images with constant roughness equal to

1, or FWHM =
√

4 loge 2. For large search regions, the P-value of local maxima of a SPM T
in D dimensions is then well approximated by

P(max T ≥ t) ≈ Resels ρD(t),

where ρD(t) is the D-dimensional EC density function from Worsley et al. (1996), and

Resels = V (4 loge 2)−
D
2 ,

where V is the area (D = 2) or volume (D = 3) of the search region in the flattened image.
The P-value of cluster sizes above a threshold can also be evaluated by simply measuring
cluster size in the flattened space and applying the usual formulas (Friston et al., 1995; Cao,
1999). Note that an additional correction is required to account for the randomness of the
cluster Resels themselves. This will be the subject of a subsequent paper.

However the flattening step is not entirely necessary. Inspection of the preceding cal-
culations shows that Resels can be derived directly from the normalised residuals without
actually carrying out the flattening. To see this, let u0,u1, . . . ,uD be the n-vectors of the
normalised residuals at each vertex of a triangular (D = 2) or tetrahedral (D = 3) component
of the search region. Define the n×D matrix of differences by

∆u = (u1 − u0, . . . ,uD − u0).

Then the resels of a region or cluster becomes

Resels =
1

D!

∑

components

|∆u′∆u| 12 (4 loge 2)−
D
2 .

It can be shown that |∆u′∆u| does not depend on which vertex is labelled as 0, and that
Resels is unbiased, with no adjustment for degrees of freedom (Worsley, 1999). Note also
that Resels does not depend on the actual Euclidean coordinates of the vertices (voxels),
only the information about how the voxels are connected to form components.

How does this compare with current methods for a square or cubical lattice of voxels?
At present, most software for the statistical analysis of SPMs uses the following:

Resels =
N

D!

∣∣∣∣∣∣
∑

components

∆u′∆u

N

∣∣∣∣∣∣

1
2

(4 loge 2)−
D
2 ,

where N is the number of components, which must all be oriented and labelled in the same
way. The discrepancy is then due to summing before or after taking the square root of the
determinant, but this discrepancy is slight in practice.

However for cluster size statistics there can be a very large discrepancy. The reason is
simply this: by chance alone, large size clusters will occur in regions where the images are
very smooth, and small size clusters will occur in regions where the image is very rough.
The distribution of cluster sizes will therefore be considerably biased towards more extreme
cluster sizes, resulting in more false positive clusters in smooth regions. Moreover, true
positive clusters in rough regions could be overlooked because their sizes are not large enough
to exceed the critical size for the whole region. The proposed method will compensate by
replacing cluster size by resel size, which is invariant to differences in smoothness.
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3 RESULTS

As a test, the method was applied to detecting local shape differences between the cortex of
normal males (n = 83) and females (n = 68) using smoothed 3D binary masks (Zijdenbos et
al., 1998), 2D surface normal displacements (MacDonald et al., 1998) and 3D deformation
vectors (Collins et al., 1998). In all cases the eFWHM varied considerably from 5mm to
30mm depending on location, so the images were highly non-isotropic. Despite this, the
P-values for local maxima were not greatly affected, but the P-values for cluster sizes were
very sensitive to non-isotropy. Details will be reported elsewhere.

4 CONCLUSIONS

We have derived a theoretical method for calculating P-values for local maxima and cluster
sizes of non-isotropic image data inside a large search region. The only statistical requirement
is that there exists a sufficiently high dimensional space in which the image data can be
warped to flatness. Knowing the dimension of this space, or the actual warping into it, is
not required. Thus the method can be applied simply and efficiently to a very wide range
of non-isotropic image data.

For small search regions, the entire flattened image is still necessary to find the remain-
ing boundary correction terms for the unified P-value of local maxima, which is accurate for
search regions of almost any shape or size (Worsley et al., 1996). Once again the flattening
can be avoided by the following trick. We note that the unified P-value formula does not
depend on the dimension of the space used to embed the warped image; a higher dimensional
space could be used to achieve a more successful flattening. Taking this to the limit, it can
be shown that exact flatness can be achieved by warping the data into a space whose dimen-
sionality equals the number of images: the coordinates are just the normalized residuals.
Although this cannot be visualized, the resulting boundary corrections to the P-value can
be easily calculated from the resels of the component tetrahedra, triangles and edges alone.
This will be pursued in a subsequent paper (Worsley, 1999).
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