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In the statistical analysis of fMRI data, the parameter of primary
interest is the effect of a contrast; of secondary interest is its standard
error, and of tertiary interest is the standard error of this standard er-
ror, or equivalently, the degrees of freedom (df). In a ReML (Restricted
Maximum Likelihood) analysis with AR(p) errors, we show how spatial
smoothing of temporal autocorrelations increases the effective df (but
not the smoothness of primary or secondary parameter estimates), so
that the amount of smoothing can be chosen in advance to achieve a
target df, typically 100. This has already been done at the second level
of a hierarchical analysis by smoothing the ratio of random to fixed
effects variances [1]; we now show how to do it at the first level, by
smoothing autocorrelation parameters [2].

Methods
The effective df is derived as-

suming the true lag j autocor-
relations ρj = 0; we then show
(Figure 1) that this is reasonably
accurate even if ρj 6= 0.

Suppose X is the n×m design
matrix of the linear model whose
columns are the covariates, and
let c be an m-vector of contrasts
in those columns whose effects
we are interested in. Let

x = (x1, . . . , xn)′ = X(X ′X)−1c
(1)

be the least-squares contrast in
the observations, and let τj be
its lag j autocorrelation

τj =

n∑
i=j+1

xixi−j/

n∑
i=1

x2
i . (2)

Let FWHM data be the effective
FWHM of the fMRI data, and

let FWHM filter be the FWHM of
the Gaussian filter used for spa-
tial smoothing of the temporal
autocorrelations. Let

f =

(
1 + 2

FWHM 2
filter

FWHM 2
data

)−D/2

(3)
where D is the number of dimen-
sions. Then the effective df of
the contrast is

ν̃ ≈ ν/(1 + 2f

p∑
j=1

τ2
j ) (4)

where ν = n − m is the usual
least-squares residual df. For an
F statistic that simultaneously
tests k columns of the m×k con-
trast matrix C, the effective nu-
merator df is the same as (4) but
with x replaced by the normal-
ized matrix of the least-squares
contrasts in the observations

x = X(X ′X)−1C(C′(X ′X)−1C)−1/2, (5)

so that x′x is the k × k identity matrix, and with the autocorrelation
τj replaced by the average of the k temporal autocorrelations of the
columns of x. The effective df of the smoothed autocorrelation is ν/f .
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Results
Figure 1 (bottom left): Validation of the theoretical effective df ν̃

(red) with simulations (blue) for AR(1). Four different contrasts were
considered; the time course of each contrast in the observations, x, is
plotted below in cyan (τ1 is its lag 1 autocorrelation). Effective df is
plotted against the spatial smoothing of the temporal autocorrelations,
relative to the spatial smoothing of the fMRI data. Smoothing increases
the effective df, up to the least-squares df ν = n−m = 120− 6 = 114
(yellow). We can see that the theoretical result (4), derived assuming
the autocorrelation ρ1 is zero, is a reasonable approximation even if
the autocorrelation is not zero. Using this, we can find the amount of
smoothing needed to target a particular df, here 100 (green).
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Figure 2: Application to a typical 6 minute, TR=3, 1.5T fMRI
data set with 6mm smoothing [1]. Temporal autocorrelation without
(top row) and with (bottom row) spatial smoothing, the corresponding
T statistics for a hot-warm effect, and the detected activation. 8.5mm
smoothing is needed to achieve 100 df, the resulting P = 0.05 threshold
decreases, and roughly twice as much activation is detected.

Discussion
The proposed method is extremely fast and it does not require any

image processing. It can be used in conjunction with other regulariza-
tion methods [3] to calculate their effective df.

Temporal correlation of the covariates decreases effective df, but
since f ≤ 1, spatial smoothing ameliorates this effect. Reversing this
formula (4), we can calculate the amount of smoothing required to
achieve a desired df. Note that this will depend on the contrast, so we
suggest being conservative by taking the maximum of the amounts of
smoothing.

We can never get more than the least-squares df without smoothing
the residual variance as well, in which case the factor f would be applied
to all the terms in the denominator of (4). Of course we do not wish
to do this because the residual variance contains too much anatomical
structure, and so smoothing could result in serious biases.

This strategy may not result in any smoothing at all; if in the
example in Figure 2 we had twice as many observations over a 12 minute
time period then the effective df would be more than 100 without any
smoothing, so no smoothing would be necessary. If on the other hand
we had a short sequence with less than 100 least-squares df, then no
amount of smoothing can increase this above 100 (without smoothing
the variance itself). In this case, we recommend choosing the amount of
smoothing to target a high proportion, say 90%, of the least-squares df.
This strategy has been implemented in the FMRISTAT and BRAINSTAT

packages [4].
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