
CUBULATING SMALL CANCELLATION FREE PRODUCTS

KASIA JANKIEWICZ AND DANIEL T. WISE

Abstract. We give a simplified approach to the cubulation of small-cancellation quo-
tients of free products of cubulated groups. We construct fundamental groups of com-
pact nonpositively curved cube complexes that do not virtually split.

1. Introduction

Martin and Steenbock recently showed that a small-cancellation quotient of a free
product of cubulated groups is cubulated [MS16]. In this paper we revisit their theorem
in a slightly weaker form, and reprove it in a manner that capitalizes on the available
technology. Combined with an idea of Pride’s about small-cancellation groups that do
not split, we answer a question posed to us by Indira Chatterjee by constructing an
example of a compact nonpositively curved cube complex X such that π1X is nontrivial
but does not virtually split.

Section 2 recalls the definitions and theorems that we will use from cubical small-
cancellation theory. Section 3 recalls properties of the dual cube complex in the relatively
hyperbolic setting. Section 4 recalls the definition of small-cancellation over free prod-
ucts, and describe associated cubical presentations. Section 5 reproves Pride’s result
about small-cancellation groups that don’t split. Section 6, relates small-cancellation
over free products to cubical small-cancellation theory, and proves our main result which
is Theorem 6.2. Finally, Section 7 combines Pride’s method with Theorem 6.2 to provide
cubulated groups that do not virtually split in Example 7.1.

2. Background on Cubical Small Cancellation

2.1. Nonpositively curved cube complexes. We shall assume that the reader is
familiar with CAT(0) cube complexes which are CAT(0) spaces having cell structures,
where each cell is isometric to a cube. We refer the reader to [BH99, Sag95, Lea, Wis].

A nonpositively curved cube complex is a cell-complex X whose universal cover X̃ is a

CAT(0) cube complex. A hyperplane Ũ in X̃ is a subspace whose intersection with each
n-cube [0, 1]n is either empty or consists of the subspace where exactly one coordinate

is restricted to 1
2 . For a hyperplane Ũ of X̃, we let N(Ũ) denote its carrier, which

is the union of all closed cubes intersecting Ũ . The hyperplanes Ũ and Ṽ osculate if

N(Ũ)∩N(Ṽ ) 6= ∅ but Ũ∩Ṽ = ∅. We will use the combinatorial metric on a nonpositively
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curved cube complex X, so the distance between two points is the length of the shortest
combinatorial path connecting them. The systole ‖X‖ is the infimal length of an essential
combinatorial closed path in X. A map φ : Y → X between nonpositively curved cube
complexes is a local isometry if φ is local injective, φ maps open cubes homeomorphically
to open cubes, and whenever a, b are concatenatable edges of Y , if φ(a)φ(b) is a subpath
of the attaching map of a 2-cube of X, then ab is a subpath of a 2-cube in Y .

2.2. Cubical presentations and Pieces.

Definition 2.1. A cubical presentation 〈X | Y1, . . . , Ym〉 consists of a nonpositively
curved cube complex X, and a set of local isometries Yi # X of nonpositively curved
cube complexes. We use the notation X∗ for the cubical presentation above. As a
topological space, X∗ consists of X with a cone on Yi attached to X for each i.

Definition 2.2. A cone-piece of X∗ in Yi is a component of Ỹi ∩ gỸj , where g ∈ π1X,

excluding the case where i = j and g ∈ Stabilizer(Ỹi). A wall-piece of X∗ in Yi is a

component of Ỹi∩N(Ũ), where Ũ is a hyperplane that is disjoint from Ỹi. For a constant
α > 0, we say X∗ satisfies the C ′(α) small-cancellation condition if diam(P ) < α‖Yi‖
for every cone-piece or wall-piece involving Yi.

When α is small, the quotient π1X
∗ has good behavior. For instance, when X∗ is

C ′( 1
12) then each immersion Yi # X lifts to an embedding Ỹi ↪→ X̃∗. This is proven in

[Wis, Thm 4.1], and we also refer to [Jan16] for analogous results at α = 1
9 .

2.3. The B(6) and B(8) conditions. A piece-path in Y is a path in a piece of Y .

Definition 2.3. The B(6) condition assigns a wallspace structure to each Yi as follows:

(1) The collection of hyperplanes of each Yi are partitioned into classes such that no
two hyperplanes in the same class cross or osculate, and the union U = ∪Ui of
the hyperplanes in a class forms a wall in the sense that Yi − U is the disjoint
union of a left and right halfspace.

(2) If P is a path that is the concatenation of at most 7 piece-paths and P starts
and ends on the carrier N(U) of a wall then P is path-homotopic into N(U).

(3) The wallspace structure is preserved by the group Aut(Yi → X) which consists

of automorphisms φ : Yi → Yi such that
Yi −→ Yi
↘ ↙

X
commutes.

The B(8) condition is analogous except with 8 replacing 7 in Condition (3).

2.4. Properness Criterion. A closed geodesic w → Y in a nonpositively curved cube
complex, is a combinatorial immersion of a circle whose universal cover w̃ lifts to a

combinatorial geodesic w̃ → Ỹ in the universal cover of Y .
We quote the following criterion from [FW16]. The wallspace it assigns to each Yi has

a wall for hyperplanes dual to pairs of antipodal edges in the core circle wi of each Yi.
(The complex X is subdivided to ensure that each |wi| is even.)

Theorem 2.4. Let X∗ = 〈X | Y1, . . . , Yk〉 be a cubical presentation. Suppose each Yi
deformation retracts to a closed combinatorial geodesic wi, and each hyperplane of Yi
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has an embedded carrier and intersects wi. If X∗ is C ′( 1
18) then X∗ is B(6) and π1X

∗

acts properly and cocompactly on the CAT(0) cube complex dual to the wallspace on X̃∗.
Furthermore, if X∗ is C ′( 1

20) then X∗ is B(8). Moreover, if each wi is primitive, then
π1X

∗ acts freely and cocompactly on the associated dual CAT(0) cube complex.

2.5. The wallspace structure.

Definition 2.5 (The walls). When X∗ satisfies the B(6) condition, X̃∗ has a wallspace

structure which we now briefly describe: Two hyperplanes H1, H2 of X̃∗ are cone-

equivalent if H1 ∩ Yi and H2 ∩ Yi lie in the same wall of Yi for some lift Yi ↪→ X̃∗.
Cone-equivalence generates an equivalence relation on the collection of hyperplanes of

X̃∗. A wall of X̃∗ is the union of all hyperplanes in an equivalence class. When X∗ is
B(6), the hyperplanes in an equivalence class are disjoint, and a wall w can be regarded

as a wall in the sense that X̃∗ is the union of two halfspaces meeting along w.

Lemma 2.6. Let W be a wall of X̃∗. let Y ⊂ X̃∗ be a lift of some cone Yi of X∗. Then
either W ∩ Y = ∅ or W ∩ Y consists of a single wall of Y .

The carrier N(W ) of a wall W of X̃∗ consists of the union of all carriers of hyperplanes
of W together with all cones intersected by hyperplanes of W . The following appears as
[Wis, Cor 5.27]:

Lemma 2.7 (Walls quasi-isometrically embed). Let X∗ be B(6). Suppose that pieces in

cones have uniformly bounded diameter. Then for each wall W , the map N(W ) → X̃∗

is a quasi-isometric embedding.

We will need the following result of Hruska which is proven in [Hru10, Thm 1.5]:

Theorem 2.8. Let G be a f.g. group that is hyperbolic relative to {Gi}. Let H ⊂ G be a
f.g. subgroup that is quasi-isometrically embedded. Then H ⊂ G is relatively quasiconvex.

3. Relative Cocompactness

The following is a simplified restatement of [HW14, Thm 7.12] in the case ♥ = ?:
We use the notation Nd(S) for the closed d-neighborhood of S.

Theorem 3.1. Consider the wallspace (X̃∗,W). Suppose G acts properly and cocom-
pactly on X preserving both its metric and wallspace structures, and the action on W
has only finitely many G–orbits of walls. Suppose Stabilizer(W ) is relatively quasiconvex
and acts cocompactly on W for each wall W ∈ W. Suppose G is hyperbolic relative

to {G1, . . . , Gr}. For each Gi let X̃i ⊂ X̃∗ be a nonempty Gi–invariant Gi–cocompact

subspace. Let C(X) be the cube complex dual to (X̃∗,W) and for each i let C?(X̃i) be

the cube complex dual to (X̃∗,Wi) where Wi consists of all walls W with the property

that diam
(
W ∩Nd(X̃i)

)
=∞ for some d = d(W ).

Then there exists a compact subcomplex K such that C(X) = GK ∪
⋃
iGC?(X̃i).

Hence G acts cocompactly on C(X) provided that each C?(X̃i) is Gi-compact.

In our application of Theorem 3.1, the cube complex C?(X̃i) will be Gi-cocompact for
the following reason:
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Lemma 3.2. Let W be a wall of X̃∗. Suppose diam(W ∩ Nd(X̃i)) = ∞ for some i.

Then W contains a hyperplane of X̃i. Hence C?(X̃i) = X̃i for each i.

Proof. Each X̃i has the property for each d ≥ 0, λ ≥ 1, ε ≥ 0 there exists d′ such that if α

is a (λ, ε)-quasigeodesic that starts and ends at points in Nd(X̃i) then α ⊂ Nd′(X̃i). This
follows from the analogous statement for parabolic subgroups of a relatively hyperbolic
group which can be deduced from [DS05, Thm 1.12.(1)]. The quasigeodesics we consider
are contained in N(W ) which is quasi-isometrically embedded by Lemma 2.7, so there
is a uniform value of d′ for all such quasigeodesics.

By the fellow-travelling property above, we see that if diam(N(W ) ∩ Nd(X̃i)) = ∞
then by cocompactness, there exists an infinite order element g stabilizing both W and

X̃i. Each X̃i ⊂ X̃∗ is convex by [Wis, Lem 3.70], and we may therefore choose a geodesic

γ̃ be in X̃i that is stabilized by g, and let λ̃ be a path in N(W ) that is stabilized by g. We
thus obtain an annular diagram A between closed paths γ and λ which are the quotients
of γ̃ and λ̃ by 〈g〉. Suppose moreover that A has minimal complexity among all such
choices (A, γ, λ) where γ → Xi has the property that γ̃ is a geodesic, and λ→ N(W ) is
a closed path. By [Wis, Thm 5.53], A is a square annular diagram, and we may assume
it is has no spur. (The hypothesis of Thm 5.53 requires “tight innerpaths” which holds
at C ′( 1

16) by Lem 3.65. And it requires B(8), which holds in our B(6) setting by [Wis,
Rem 5.50].)

Observe that if s has is a square with an edge in X̃i, then s ⊂ X̃i. Consequently, the
minimality of A ensures that A has no square, and so γ = A = λ.

There are now two cases to consider: Either λ̃ ⊂ N(U) for some hyperplane U of W ,

or λ̃ has a subpath u1yju2 traveling along N(U1), Yj , N(U2), where U1, U2 are distinct
hyperplanes of W , and U1, U2 intersect the cone Yj in antipodal hyperplanes.

In the latter possibility contradicts the B(6) condition for Yj , since X̃i ∩ Yj contains
the single piece-path yj which starts and ends on carriers of distinct hyperplanes of the
same wall of Yj .

In the former possibility, N(U) ⊂ X̃i, and so the above square observation ensures

that N(U) ⊂ X̃i. Hence W cuts X̃i as claimed. �

Example 3.3. Consider the quotient: G = Z2 ∗ Z2/〈〈w1, w2〉〉, with the following pre-
sentation for some number m > 0:〈

〈a, b | aba−1b−1〉 ∗ 〈c, d | cdc−1d−1〉
∣∣∣ a1c1a2c2 · · · amcm, b1d1b2d2 · · · bmdm〉

Note that each piece consists of at most 2 syllables, whereas the syllabic length of each
relator is 2m. Hence the C ′∗(

1
m−1) small-cancellation condition over free products is

satisfied. See Definition 4.1.
So X is the long wedge of two tori X1, X2 corresponding to 〈a, b〉 and 〈c, d〉. And Y1

is a bunch of rectangles glued together along arcs.

The cube complex dual to X̃∗ has m(m+1)
4 -dimensional cubes arising from the cone-cells

Y1 and Y2. More interestingly, the cube complex dual to (X̃∗,W1) where W1 consists of

the walls intersecting a copy of X̃1, has dimension 2m. This is because all hyperplanes
dual to the path am cross each other because of Y1 and likewise all hyperplanes dual to
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Figure 1. The walls associated to a 13 cube in the cubulation of a flat.

the path bm cross each other because of Y2, and every hyperplane dual to the path am

crosses every hyperplane dual to the path bm because X̃1 is a 2-flat.

4. Small cancellation over free products

Definition 4.1. [Small cancellation over a free product] Every element R in the free
product G1∗· · ·∗Gr has a unique normal form which is a word h1 · · ·hn where each hi lies
in a factor of the free product and hi and hi+1 lie in different factors for i = 1, . . . , n− 1.
We say R is cyclically reduced if h1 and hn also lie in different factors. We say that R is
weakly cyclically reduced if h−1n 6= h1 or if |R|∗ ≤ 1. We refer to each hi as a syllable. The
number n, which we denote by |R|∗, is the syllable length of R. There is a cancellation
in the concatenation P · U of two normal forms if the last syllable of P is the inverse of
the first syllable of U .

Consider a presentation over a free product 〈G1∗· · ·∗Gr | R1, . . . , Rs〉 where each Ri is
a cyclically reduced word in the free product. A word P is a piece of Ri, Rj if they have
weakly cyclically reduced conjugates R′i, R

′
j that can be written as concatenations P ·Ui

and P ·Uj respectively with no cancellations. The presentation is C ′∗(
1
n) if |P |∗ < 1

n |R
′
i|∗

whenever P is a piece.

Each factor Gi embeds in a C ′∗(
1
6) small-cancellation presentation G over a free product

G1 ∗ · · · ∗Gr [LS77, Cor. 9.4], and thus G is nontrivial if some Gi is nontrivial. We quote
the following result from [Osi06]:

Lemma 4.2. Let G be a quotient of G1 ∗ · · · ∗Gr arising as a C ′∗(
1
6) small-cancellation

presentation over a free product. Then G is hyperbolic relative to {G1, . . . , Gr}.

4.1. Cubical presentation associated to a presentation over a free product.

Construction 4.3. Let Tr be the union of directed edges e1, . . . , er identified at their
initial vertices. The long wedge of a collection of spaces X1, . . . , Xr is obtained from Tr
by gluing the basepoint of each Xj to the terminal vertex of ej . We will later subdivide
the edges of Tr. Given group G1, . . . Gr such that for each 1 ≤ j ≤ r, let Gj = π1Xj

where Xj is a nonpositively curved cube complex, the long wedge X of the various Xj

is a cube complex with π1X = G1 ∗ · · · ∗Gr.
Given an element R ∈ G1 ∗ · · · ∗Gr with |R|∗ > 1, there exists a local isometry Y → X

where Y is a compact nonpositively curved cube complex with π1Y = 〈R〉. Indeed, let
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Figure 2. Y is depicted on the left and X on the right.

R = h1h2 · · ·ht where each hk is an element of some Gm(k). For each k let Vk be the
compact cube complex that is the convex hull of the basepoint p and its translate hkp in

the universal cover X̃m(k). We call p the initial vertex of Vk and hkp the terminal vertex

of Vk. For each 1 ≤ k ≤ t let σk be a copy of e−1m(k)em(k+1) where m(t + 1) = m(1).

Finally we form Y from
⊔t
k=1 Vk and

⊔t
k=1 σk by gluing the terminal vertex of Vk to the

initial vertex of σk and the terminal vertex of σk to the initial vertex of Vk+1. Note that
there is an induced map Y → X which is a local isometry.

Given a presentation 〈G1, . . . , Gr | R1, . . . , Rs〉 over a free product there is an associ-
ated cubical presentation X∗ = 〈X | Y1, . . . , Ys〉 where each Yi → X is a local isometry
associated to Ri as above. Finally, any subdivision of the edges e1, . . . , er induces a sub-
division of X, and accordingly a subdivision of each Yi. We thus obtain a new cubical
presentation that we continue to denote by X∗.

Lemma 4.4. Suppose 〈X | Y1, . . . , Ys〉 is B(6) (after subdividing). And let X̃k be the
universal cover of Xk with the wallspace structure such that each hyperplane is a wall.

Then 〈X | Y1, . . . , Ys, X̃1, . . . , X̃r〉 is B(6). Moreover, the walls of X̃∗ with respect to the
two structures are identical.

Proof. The pieces between X̃i and Yj are copies of the Vk associated to Xi that appear

in Yj , and hence the B(6) properties hold for each Yj as before. For each X̃i, Condi-
tions 2.3.(1) and 2.3.(3) hold automatically by our choice of wallspace structure, and

Condition 2.3.(2) holds since X̃i is contractible. �

Corollary 4.5. For each wall W of X̃∗, the intersection of W ∩ X̃i is either empty or
consists of a single hyperplane.

Proof. This follows by combining Lemma 4.4 and Lemma 2.6. �

5. Construction of Pride

The following result was proven by Pride in [Pri83]. We give a slightly more geometric
version of his proof, which was originally stated for a C(n) presentation instead of a
classical C ′( 1

n) presentation [LS77].
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v x·v

y·v y−1·v

y

x

Figure 3. The case where Min(x) ∩Min(y) = ∅.

Lemma 5.1. Let G = 〈x, y | R1, R2, R3, R4, R5, R6〉 where the relators Ri are specified
below for associated positive integers αi, βi, γi, δi, ρi, σi, τi, θi for each 1 ≤ i ≤ k, and
k ≥ 1. Then G does not split as an amalgamated product or HNN extension.

R1(x, y) = xyα1xyα2 · · ·xyαk

R2(x, y) = yxβ1yxβ2 · · · yxβk

R3(x, y) = xγ1y−δ1xγ2y−δ2 · · ·xγky−δk

R4(x, y) = xyρ1xy−ρ1xyρ2xy−ρ2 · · ·xyρkxy−ρk

R5(x, y) = yxσ1yx−σ1yxσ2yx−σ2 · · · yxσkyx−σk

R6(x, y) = (xy)τ1(x−1y−1)θ1(xy)τ2(x−1y−1)θ2 · · · (xy)τk(x−1y−1)θk

Proof. Suppose G = A ∗C B or G = A∗C and let T be the associated Bass-Serre tree.
Without loss of generality, assume that the translation length of y is at least as large as
the translation length of x. Choose a vertex v ∈ Min(x) for which dT (y·v, v) is minimal.

For use in the argument below, given a decomposition of w ∈ G as a product w =
w1w2 · · ·w`, the path [v, w1·v][w1·v, w1w2·v] · · · [w1w2 · · ·w`−1·v, w·v] is said to read w.

We now show that v ∈ Min(y). First suppose that x, and hence y, is a hyperbolic
isometry. If v /∈ Min(y), then by the choice of v we have [v, y·v] ∩ Min(x) = {v},
hence the concatenation of two nontrivial geodesics [x−1·v, v][v, y·v] would be a geodesic.
See Figure 3. Similarly [x·v, v][v, y·v], [x−1·v, v][v, y−1·v] and [x·v, v][v, y−1·v] would be
geodesics. Consequently, regarding R6 as a product of elements {x±1, y±1}, the path
reading R6 would be a geodesic, which contradicts that R6 =G 1. Now, suppose that
x is elliptic and so x·v = v. Let e denote the initial edge of [v, y·v] and note that e
is also the initial edge of [v, y−1·v] since v /∈ Min(y). The choice of v implies x·e 6= e,
and so the concatenation of the nontrivial geodesics [y−1·v, v][v, xy·v] is a geodesic, and
similarly for [y−1·v, v][v, x−1y−1v], [y·v, v][v, xy·v] and [y·v, v][v, x−1y−1v]. It follows that
regarding R6 as a product of elements {xy, x−1y−1}, the path reading R6 is a geodesic,
which contradicts that R6 =G 1.

Since v ∈ Min(x)∩Min(y), the element y is a hyperbolic isometry, because otherwise
x, y are elliptic and so v is be a global fixed point. Suppose x is also a hyperbolic isometry.
At least one of [y−1·v, v][v, x·v] or [x−1·v, v][v, y·v] is not a geodesic, because otherwise the
path reading R1 regarded as a product of {x±1, y±1} would be a geodesic. Consequently,
both [x·v, v][v, y·v] and [x−1·v, v][v, y−1·v] are geodesics, and hence regarding R3 as a
product of elements {x±1, y±1}, the path reading R3 must be a geodesic, which is a
contradiction. Thus, x is an elliptic isometry.
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v

y−1·v y·v

xy·v

x·e+

e− e+

Figure 4. If x·e+ 6= e− then [y−1·v, v][v, xy·v] is a geodesic.

Let e+ and e− denote the initial edges of [v, y·v] and [v, y−1·v] respectively. See
Figure 4. We must have x·e+ = e− because otherwise [y−1·v, v][v, xy·v] would be a
geodesic since the last edge of [y−1·v, v] is e− and the first edge of [v, xy·v] is e+.
Likewise, for n,m > 0 the path [y−n·v, v][v, xym·v] would be a geodesic, and so too
would be its translate [v, xyn·v][xyn·v, xynxym·v]. Finally, regarding R1 as a product
(xyα1)(xyα2) · · · (xyαk), the path reading R1 would be a geodesic, contradicting R1 =G 1.

Neither e− nor e+ is fixed by x. For any n,m > 0 the last edge of [yn·v, v] is e+ and the
first edge of [v, xym·v] is x·e+ = e− 6= e+, and so the path [yn·v, v][v, xym·v] is a geodesic,
and so is [v, y−n·v][y−n·v, y−nxym·v] . Similarly, the last edge of [y−n·v, v] is e− and the
first edge of [v, xy−m·v] is x·e− 6= e−, and so the path [y−n·v, v][v, xy−m·v] is a geodesic as
is [v, xyn·v][xyn·v, xyn·xy−m·v]. RegardingR4 as a product (xyρ1)(xy−ρ1) · · · (xyρk)(xy−ρk),
the path reading R4 is a geodesic, contradicting R4 =G 1. �

Remark 5.2. In the context of Lemma 5.1, for each n there are choices of k and
{αi, βi, γi, δi, ρi, σi, τi, θi : 1 ≤ i ≤ k}, such that the presentation is C ′( 1

n).
Given n > 1, let k = 3n and choose 8k numbers αi, βi, γi, δi, ρi, σi, τi, θi that are all

different and lie between 50n and 75n. Then any piece P in Ri where i 6= 6 is of the
form xlyxm or ylxym for some l,m (possibly 0). Thus |P | ≤ l +m+ 1 ≤ 150n+ 1. We
also have |Ri| ≥ (k + 1)50n = (3n + 1)50n and so |P | ≤ 1

n(150n + 1)n ≤ 1
n |Ri|. If P is

a piece in R6, then P is of the from (xy)l(x−1y−1)m and so |P | ≤ 2(l +m) ≤ 300n. We
also have |R6| = 2(τ1 + θ1 + τ2 + · · ·+ θk) ≥ 2(2k)50n = 600n2. Hence |P | ≤ 1

n |R6|.

Corollary 5.3. Let G1, . . . , Gr be nontrivial groups generated by finite sets of infinite
order elements, and suppose r > 1. For each n > 0 there is a finitely related C ′∗(

1
n)

quotient G of G1 ∗ · · · ∗Gr that does not split.

Proof. Let Sp be the given generating set of Gp for each p, and assume no proper subset
of Sp generates Gp. The desired quotient G arises from a presentation 〈G1 ∗ · · · ∗Gr | R〉,
where following Lemma 5.1, the set of relators is:

R = { R`(x, y) : 1 ≤ ` ≤ 6, (x, y) ∈ Sp × Sq, where 1 ≤ p < q ≤ r}
where k(x, y) = 3n for each (x, y) and where the constants αi(x, y), βi(x, y), γi(x, y),
δi(x, y), ρi(x, y), σi(x, y), τi(x, y), θi(x, y) will be described below. For each (x, y) let
αi(x, y), δi(x, y) and ρi(x, y) be distinct integers > 1 and such that ym /∈ 〈z〉 for m ∈
{αi(x, y), δi(x, y), ρi(x, y)} and z ∈ Sq−{y}. This is possible because y has infinite order
and y /∈ 〈z〉. Similarly, let βi(x, y), γi(x, y) and σi(x, y) be distinct integers > 1 such
that xm /∈ 〈z〉 for m ∈ {βi(x, y), γi(x, y), σi(x, y)} and z ∈ Sp − {x}. Finally, let τi(x, y)
and θi(x, y) be distinct integers between 10n and 20n.
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Having chosen the above constants for each (x, y) we now show that the presentation
for G is C ′∗(

1
n). We begin by observing that each |R`(x, y)|∗ ≥ 6n. Let P be a piece in

R1 = R`1(x1, y1) and R2 = R`2(x2, y2) where x1 ∈ Sp1 , y1 ∈ Sq1 , x2 ∈ Sp2 , and y2 ∈ Sq2 .
If {p1, q1} 6= {p2, q2} then |P |∗ ≤ 1. Assume that {p1, q1} = {p2, q2}. First suppose
that `1 6= 6, then |P |∗ ≤ 3. Indeed, if |P |∗ ≥ 4 then two consecutive syllables would
appear in distinct cyclically reduced forms of relators, which contradicts our choice of
the constants. If `1 = 6, then |P |∗ ≤ max{τi(x, y)} + max{θi(x, y)} ≤ 80n. We also
have |R6(x, y)|∗ = 2 (τ1(x, y) + θ1(x, y) + · · ·+ τk(x, y) + θk(x, y)) ≥ 2(2k)10n = 120n2,
so |P |∗ ≤ 1

n |R6(x, y)|∗.
We now show that G does not split as an amalgamated product. For each x ∈ Sp, y ∈

Sq with p ≤ q we let H(x, y) = 〈x, y | R`(x, y) : 1 ≤ ` ≤ 6〉. By Lemma 5.1, we see that
H(x, y) does not split. As there is a homomorphism H(x, y)→ G, we deduce that for any
splitting of G as an amalgamated free product G = A ∗C B, the elements x, y are either
both in A or both in B. Considering all such pairs (x, y), we find that the generators of
G are either all in A or all in B. Moreover G cannot split as an HNN extension, since
the the relators R4(x, y) and R5(x, y) show that all generators have finite order in the
abelianization of G. �

6. Main theorem

Lemma 6.1. If 〈G1, . . . , Gr | R1, . . . , Rs〉 is C ′∗(
1
n) then for a sufficient subdivision of

e1, . . . , er the cubical presentation X∗ is C ′( 1
n).

Proof. Let X ′ be a subdivision of X induced by a q-fold subdivision of each ej . We
accordingly let Y ′i be the induced subdivision of Yi, so Y ′i =

⊔
Vk ∪

⊔
σk as in Con-

struction 4.3 and with each σ-edge subdivided q times. We thus obtain a new cubi-
cal presentation 〈X ′ | Y ′1 , . . . , Y ′s 〉. We have ‖Y ′i ‖ = ‖Yi‖ + 2|Ri|∗(q − 1). Note that

‖Y ′i ‖ >
∑|Ri|∗

i=1 |σi| = 2q|Ri|∗ and so ‖Y ′i ‖ > 2(1 + ε)q|Ri|∗ for sufficiently small ε > 0.
Let Mi = maxk {diam(Vk)}. For a wall-piece P we have diam(P ) < Mi. Consider a
maximal cone-piece P in Y ′i , and suppose it intersects ` different Vk’s and contains `′

different ek edges. Note that 2` ≥ `′ since if P starts or ends with an entire σk arc,
then it intersects an additional Vk (possibly trivially). We have diam(P ) ≤ `Mi + q`′.
When `′ > 0, for any ε > 0 we can choose q � 0 so that diam(P ) < (1 + ε)q`′. Since P
corresponds to a length ` syllable piece, the C ′∗(

1
n) hypothesis implies that ` < 1

n |Ri|∗,
and so diam(P ) < (1 + ε)q`′ < 2(1 + ε)q( 1

n |Ri|∗) <
1
n‖Y

′
i ‖. When `′ = 0, then assuming

q > nMi we have diam(P ) ≤Mi < 2 qn |Ri|∗ <
1
n‖Y

′
i ‖. �

Theorem 6.2. Suppose G = 〈G1, . . . , Gr | R1, . . . , Rs〉 satisfies C ′( 1
20). If each Gi is

the fundamental group of a [compact] nonpositively curved cube complex, then G is the
fundamental group of a [compact] nonpositively curved cube complex.

Proof. Let X∗ be the associated cubical presentation. Lemma 6.1 asserts that X∗ is
C ′( 1

20) after a sufficient subdivision. Theorem 2.4 asserts that π1X
∗ acts freely (or with

finite stabilizers if relators are proper powers) on a CAT(0) cube complex C dual to X̃∗

Let X ′∗ be the cubical presentation 〈X | {Yi}, {X̃j}〉. By Lemma 4.4, X ′∗ satisfies
B(6) with our previously chosen wallspace structure on each Yi and the hyperplane
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wallspace structure on each X̃j . Thus by Lemma 2.6 each X̃j in X̃∗ = X̃ ′∗ intersects the

walls of X̃∗ in hyperplanes of X̃j .
Lemma 4.2 asserts that π1X

∗ is hyperbolic relative to {G1, . . . , Gr}.
The pieces in X∗ = 〈X | {Yi}〉 are uniformly bounded since diam(Yi) is uniformly

bounded. Thus N(W ) → X̃∗ is quasi-isometrically embedded by Lemma 2.7. Hence
Stabilizer(N(W )) is relatively quasiconvex with respect to {π1Xj} by Theorem 2.8.

Theorem 3.1 asserts that π1X
∗ acts relatively cocompactly on C. Lemma 3.2 asserts

that each C?(X̃i) = X̃i. Hence if each Xi is compact, we see that C is compact. �

7. A cubulated group that doesn’t virtually split

Examples were given in [Wis] of a compact nonpositively curved cube complex X such
that X has no finite cover with an embedded hyperplane. It is conceivable that those
groups have no (virtual) splitting, but this was not confirmed there.

Example 7.1. There exists a nontrivial group G with the following two properties:

(1) G = π1X where X is a compact nonpositively curved cube complex.
(2) G does not have a finite index subgroup that splits as an amalgamated product

or HNN extension.

Let G1 be the fundamental group of X1 which is a compact nonpositively curved cube
complex with a nontrivial fundamental group but no nontrivial finite cover. For instance,
such complexes were constructed in [Wis96] or [BM97].

By Corollary 5.3 there exists a C ′∗(
1
20) quotient G of the free product G1 ∗ · · · ∗G1 of

r copies of G1, such that G does not split. The group G has no finite index subgroups
since G1 ∗ · · · ∗G1 has none.

Since G1 = π1X1, by Theorem 6.2, G is the fundamental group of a compact nonpos-
itively curved cube complex.
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