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Abstract

This work develops validated numerical methods for linear stability analysis at an equi-
librium solution of a system of delay differential equations (DDEs). The case of a single
constant delay is considered. The method downplays the role of the scalar transcendental
characteristic equation in favor of a functional analytic approach exploiting the strengths of
numerical linear algebra/techniques of scientific computing. The idea is to consider an equiv-
alent implicitly defined discrete time dynamical system which is projected onto a countable
basis of Chebyshev series coefficients. The projected problem reduces to questions about
certain sparse infinite matrices, which are well approximated by N × N matrices for large
enough N . We develop the appropriate truncation error bounds for the infinite matrices,
provide a general numerical implementation which works for any system with one delay, and
discuss computer-assisted theorems in a number of example problems.

Key words. Delay differential equations, spectral analysis, Chebyshev series, rigorous numerics,
computer-assisted proofs

1 Introduction
A fundamental problem of numerical linear algebra is to find the eigenvalues and (possibly
generalized) eigenvectors of an N ×N matrix. The literature on the topic is vast, and we refer
to [15] for a broad overview. From the perspective of the present work what is important to
mention is that a number of researchers have developed self validating numerical algorithms for
solving eigenvalue/eigenvector problems. These methods employ fast numerical algorithms, pen
and paper analysis, and deliberate control of rounding to provide mathematically rigorous error
bounds on approximate eigendata. See the works of [37, 38, 29, 16, 23, 31, 8], and also the
survey paper [30] for a thorough review of the literature.

An important line of research is to extend the finite dimensional methods just cited to infinite
dimensional problems. Suppose for example that X is a Banach space and that A : X → X is
a bounded linear operator. Numerical analysis of the spectrum of A presents new challenges,
as some truncation is required before A can be represented on the digital computer. If A is a
compact operator then for large enough N ∈ N there is an N×N matrix AN approximating A as
well as we like. By studying the eigenvalues of AN and bounding the difference between A and
AN in an appropriate norm we can, in many cases, obtain mathematically rigorous information
about the spectrum of the linear operator A.
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Some works of this kind include the validated numerics for Floquet theory developed in [9],
the methods for validated Morse index computations (unstable eigenvalue counts) for infinite
dimensional compact maps in [19, 24], similar methods for equilibria of parabolic PDEs posed
on compact domains in [26, 1, 28, 35, 25, 36], the validated numerics for stability/instability of
traveling waves in [3, 2, 7, 5, 6] the stability analysis for periodic solutions of delay differential
equations [18], the computer-assisted proofs of instability for periodic orbits of parabolic partial
differential equations found in [14], and the computer-assisted proofs for trapping regions of
equilibrium solutions of parabolic PDEs in [11].

The present work develops validated numerical methods for spectral analysis of equilibrium
solutions of delay differential equations (DDEs), focusing on systems of scalar equations with a
constant delay. Under suitable hypotheses a DDE generates a compact semiflow on a function
space, and the problem is inherently infinite dimensional. Yet, as is well known, the equilibrium
solutions solve a finite dimensional system of nonlinear equations, and the eigenvalues of the
linearized problem are the complex zeros of a scalar analytic characteristic equation. Since the
associated eigenfunctions are exponentials, the entire spectral analysis reduces to finding roots
of finite dimensional equations.

The present work exploits the observation that parts of the analysis are actually easier
when we stay in the infinite dimensional setting. The intuition behind this remark is simple:
the infinite dimensional problem is linear, while the transcendental characteristic equation is
highly nonlinear. Indeed, even the finite dimensional numerical analysis referred to in the
first paragraph rarely passes through the characteristic equation. We argue that a functional
analytic/scientific computing perspective is especially well suited to addressing the following
problems.

Problem 1 (approximate eigenvalues): Given a reasonable approximation of an eigenvalue
we iteratively refine via Newton’s method applied to the characteristic equation. This typically
results in an approximation good to within a few multiples of machine precision. Moreover,
as discussed in Section 2.7, mathematically rigorous a-posteriori error bounds are obtained
using a Newton-Kantorovich argument. The hypotheses of the a-posteriori theorem are checked
using interval arithmetic. The question remains, how do we find these “reasonable” initial
approximations in the first place?

Problem 2 (eigenvalue exclusion): Suppose that after some numerical search we locate M
approximate unstable eigenvalues. Assume moreover that we prove the existence of true unstable
eigenvalues nearby, as already discussed in the statement of Problem 1. While this procedure
provides a lower bound on the number of unstable eigenvalues, we would like to obtain also a
sharp upper bound – in fact a validated exact count – on the number of unstable eigenvalues.
This count is called the Morse index. This is a delicate problem as it involves ruling out the
existence of any unstable eigenvalues not found by some search. More generally we would like
to be able to count the eigenvalues in the complement of a circle of radius r > 0 in C. We refer
to this quantity as the r-generalized Morse index.

One solution to Problem 1 is to perform a random search for approximate zeros in some large
enough region of the complex plane. In the present setting something better can be done, as the
zeros of the characteristic equation are the eigenvalues of a linear operator. We develop a func-
tional analytic approach to the spectral analysis based on Galerkin projection of a compactified
version of the linearized problem. This leads to a matrix whose eigenvalues approximate the
compactified spectrum of the linearized DDE. The eigenvalues of the finite matrix are computed
using standard methods of numerical linear algebra, and provide the initial guesses used for more
refined calculation and validation. The eigenvalues of the compactified operator are related to
the zeros of the transcendental characteristic equation through the complex exponential map.
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Similarly, since Problem 2 involves counting the zeros of a complex analytic function, one
solution is to apply the argument principle of complex analysis. When combined with validated
numerical methods for computing line integrals, this provides the desired eigenvalue counts.
Unfortunately, as we argue below, an approach based on the argument principle scales poorly
with the dimension of the system of DDEs. The functional analytic approach on the other hand
leads to a general scheme which is easy to implement for any system of DDEs with a constant
delay.

To clarify the goals of the present work, and as motivation for the technical developments to
follow, we present two example results obtained using our validated numerical arguments. For
r > 0, let

Br(z0) = {z ∈ C : |z − z0| < r} ,

denote the standard ball of radius r about z0 in the complex plane. Here | · | is the usual complex
absolute value.

Theorem 1.1 (Morse index for Mackey-Glass). Consider the Mackey-Glass equation with pa-
rameter values τ = 2, γ = 1, β = 2, and ρ = 10. The constant function y(t) = 1 is an
equilibrium solution with Morse index 2. Moreover, let

r = 9.1× 10−16,

and
λ̄1,2 = −1.635336834622171± 1.428179851552561i.

The two unstable eigenvalues λ1
u, λ

2
u ∈ C are complex conjugate numbers with

|λ1,2
u − λ̄1,2| < r.

(See Section 2.6.1 for the mathematical definition of the Mackey-Glass Equation).

Theorem 1.2 (Morse index for a delayed van der Pol Equation). Consider the delayed van
der Pol equation with parameter values τ = 2, κ = −1, and ε = 0.15. The constant function
x(t) = 0, y(t) = 0 is an equilibrium solution with Morse index 2. Moreover, let

r = 4.26× 10−15,

and
λ̄1,2 = −0.61810956461394± 1.84334863710072i

The two unstable eigenvalues λ1
u, λ

2
u are complex conjugate numbers with

|λ1,2
u − λ̄1,2| < r.

(See Section 2.6.3 for the mathematical definition of the delayed van der Pol Equation)

Other results of this kind are presented in Section 4 using the methods of the present work.
Indeed our main result is a computational recipe which applies to any scalar system of DDEs
with a constant delay. The remainder of the paper is organized as follows.

In Section 2 we review some background material for abstract dynamical systems defined
by an implicit rule, and derive expressions for the linearization at a fixed point. This leads to
a generalized eigenvalue problem for the linearized problem. We recall the method of steps for
DDEs and see how it fits into the abstract formulation, defining the so-called step map which
we study throughout the remainder of the paper. We discuss compactness properties of the step
map, and give an elementary derivation of its characteristic equation. We relate this equation to
the usual characteristic equation for the infinitesimal problem. We recall a simple a-posteriori
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theorem which provides validated error bounds for approximate solutions of the characteristic
equation, and hence validated eigenvalue bounds. Finally we describe the example systems used
in the application sections.

Next, in Section 3 we present some heuristic arguments explaining the potential use of
techniques from complex analysis to analyze the spectrum of the linearized step map, and
discuss why this analysis is not as straight forward as it first appears. Section 4 presents the
main results of the paper, developing the functional analytic approach necessary for studying the
spectrum of the step map via numerical linear algebra. We project the problem onto a space of
Chebyshev series and see that the linear operators have a sparse representation in this basis. We
truncate and compute numerical eigenvalues, and prove a theorem relating r-generalized Morse
index of the numerical matrix to the index of the infinite dimensional problem. We discuss the
application of these ideas to a number of problems. Finally in Section 5 we summarize our
results and discuss some possible future extensions.

The computer programs which validate the computer assisted theorems presented in this
paper are implemented in MATLAB and use the INTLAB library for interval arithmetic [32].

2 Background
In this section we review some well known facts about delay differential equations. Several of
the derivations are included so that the manuscript is more self-contained.

2.1 Abstract formulation of the problem

Let X,Y be Banach spaces and T : Y ×X → Y be a smooth function. Moreover suppose that
for each (y, x) ∈ Y × X the Fréchet derivatives with respect to the first and second variables,
denoted respectively by D1T (y, x) and D2T (y, x), exist and are bounded linear operators. For
fixed x ∈ X consider the problem of finding a y ∈ Y so that

T (y, x) = y.

We think of x as a parameter and look for fixed points of the family of fixed point operators
Tx : Y → Y defined by

Tx(y) = T (y, x).

Let D ⊂ X have
D = {x ∈ X : Tx has a unique fixed point y ∈ Y } ,

and define a mapping F : D ⊂ X → Y by the correspondence

F (x) = y, if and only if T (y, x) = y (uniquely).

In words y = F (x) if and only y is the unique fixed point of Tx in Y .
Suppose that x0 ∈ D and let y0 ∈ Y denote the unique fixed point of Tx0 in Y . Assume that

that Id−D1T (y0, x0) is an isomorphism of Y . It follows from the implicit function theorem that
F is defined, continuous, and Fréchet differentiable in a neighborhood of x0.

To see this consider the function G : Y ×X → Y defined by

G(y, x) = y − T (y, x).

Note that G(y0, x0) = 0, and that D1G(y0, x0) = Id − D1T (y0, x0) is an isomorphism. Then
there is an ε > 0 and a continuous function y : Bε(x0)→ Y so that y(x0) = y0 and

G(y(x), x) = 0 for all x ∈ Bε(x0).
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It follows that
T (y(x), x) = y(x),

for all x ∈ Bε(x0) ⊂ X. That is, the function F is locally well defined near x0 by

F (x) = y(x).

Moreover, after differentiating the equation T (F (x), x) = F (x) with respect to x, we have that

DF (x) = [Id−D1T (F (x), x)]−1D2T (F (x), x). (1)

2.2 Linearization of the abstract problem at a fixed point

Consider the special case when X = Y , so that F : X → X is a self-map. We are interested in
the dynamics generated by F . In particular we study the linearization at a fixed point. Note
that x0 ∈ X is a fixed point of F if and only if

T (x0, x0) = x0.

From Equation (1) we have that the derivative of F at a fixed point x0 is given by

DF (x0) = [Id−D1T (x0, x0)]−1D2T (x0, x0),

as long as Id−D1T (x0, x0) is an isomorphism.
Then λ ∈ C is an eigenvalue of DF (x0) if and only if there is a non-zero ξ ∈ X so that

[Id−D1T (x0, x0)]−1D2T (x0, x0)ξ = λξ, (2)

which is equivalent to the generalized eigenvalue problem

M2ξ = λM1ξ,

where
M2 = D2T (x0, x0), and M1 = Id−D1T (x0, x0). (3)

Equations (2) and (3) provide a way to study the spectrum of DF (x0) even if F is only implicitly
defined.

2.3 The method of steps for DDEs

Let f : Rd×Rd → Rd be a smooth function, τ > 0 a positive constant, and x0(t) ∈ Ck([−τ, 0]) a
given smooth function. We say that y : C([−τ, T ]) is a solution of the delay differential equation

y′(t) = f(y(t), y(t− τ)), (4)

with history x0(t) if y(t) = x0(t) for t ∈ [−τ, 0] and y(t) satisfies Equation (4) for all t ∈ (0, T ).
Consider the mapping T : Ck([−τ, 0])× Ck([−τ, 0])→ Ck([−τ, 0]) defined by

T (y, x)(t) = x(0) +
∫ t

−τ
f(y(s), x(s)) ds. (5)

Then we are in precisely the setting of Section 2.1, and we define the map F : Ck([−τ, 0]) →
Ck([−τ, 0]) by the rule that F (x) = y if and only if T (y, x) = y.

One checks that if x ∈ Ck([−τ, 0]) then F (x(t)) = y(t) is as differentiable as x(t) and f by
repeatedly differentiating the formula

y(t) = x(0) +
∫ t

−τ
f(y(s), x(s)) ds.
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Indeed, y(t) has one more derivative than the least smooth of f and x. It follows that if f is C∞
then F : Ck([−τ, 0])→ Ck+1([−τ, 0]), so that iterates gain one derivative with every application
of F .

This map F is called the step map for Equation (4), and its iterates are related to solutions
of the DDEs by the following Lemma. The elementary proof is found in [20].

Lemma 2.1 (Orbits of the step map are solutions of the DDE). Let y0 ∈ C([−τ, 0]) and assume
that y1, . . . , yN ∈ C([−τ, 0]) are the first N iterates of y0 under the step map. Then the function
y : [−τ,Nτ ]→ R defined by

y(t) =



y0(t), t ∈ [−τ, 0)
y1(t− τ), t ∈ [0, τ)
y2(t− 2τ), t ∈ [τ, 2τ)

...
yN (t−Nτ), t ∈ [(N − 1)τ,Nτ ],

(6)

is a solution of Equation (4) on (0, Nτ) with initial history y0.

2.4 Linear stability of constant fixed points of the step map

Now consider the relationship between constant solutions of Equation (4) and fixed points of
the step map F . Indeed, suppose that c ∈ Rd has

f(c, c) = 0.

We say that the function x(t) = c is an equilibrium solution of the DDE. Observe that

T (x(t), x(t)) = x(0) +
∫ t

−τ
f(x(s), x(s)) ds

= c+
∫ t

−τ
f(c, c) ds

= c

= x(t),

so that the constant function x(t) = c is a fixed point of the map F . A partial converse holds:
one can show that if x(t) is a fixed point of F then x(t) is either constant or is a non-constant
function of period τ – that is a periodic solution of Equation (4) whose period is in one-to-one
resonance with the delay. This later property is not generic, so that in general fixed points of F
correspond to equilibrium solutions of Equation (4).

Now consider the eigenvalue problem at a fixed point x0(t) = c. The eigenvalue problem

DF (x0)ξ(t) = λξ(t)

can be rewritten as
[Id−D1T (c, c)]−1D2T (c, c)ξ(t) = λξ(t),

which is equivalent to the generalized eigenvalue problem

D2T (c, c)ξ(t) = λ [Id−D1T (c, c)] ξ(t).

Define the d× d matrices

K1
def= ∂1f(c, c) and K2

def= ∂2f(c, c), (7)
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so that we have the eigenvalue problem

λξ(t)− λ
∫ t

−τ
K1ξ(s) ds = ξ(0) +

∫ t

−τ
K2ξ(s) ds. (8)

and observe that while the eigenvalue problem involves infinite dimensional integral operators,
these operators are completely determined by the entries of the two matrices K1,K2, that is by
the partial derivatives of f at c.

Observe that if (λ, ξ) is an eigenvalue/eigenvector pair for Equation (8), then ξ(t) is differ-
entiable for all t ∈ (−τ, 0). Differentiating Equation (8) with respect to t gives that ξ satisfies
the constant coefficient linear differential equation

ξ′(t) =
(
∂1f(c, c) + 1

λ
∂2f(c, c)

)
ξ(t),

or
ξ′(t) =

(
K1 + 1

λ
K2

)
ξ(t), (9)

subject to the initial condition
λξ(−τ) = ξ(0). (10)

For fixed λ ∈ C, Equation (9) is a homogeneous linear system of ordinary differential equa-
tions with constant coefficients. Recall that a complex number α ∈ C is an eigenvalue of
K1 + λ−1K2 if and only if α is a zero of the characteristic equation

det(K1 + λ−1K2 − αId) = 0.

For any such α, a vector η ∈ Cd is an eigenvalue of K1 + λ−1K2 if and only if(
K1 + λ−1K2

)
η = αη.

Given any eigenvalue/eigenvector pair (α, η) of K1 + λ−1K2, the function

ξ(t) = eαtη,

is a solution of Equation (9). Then ξ(t) is in fact real analytic on [−τ, 0].
Imposing the constraint of Equation (10) gives

λe−ταη = η,

which leads to the scalar constraint
λe−τα = 1,

or
λ = eτα.

Solving for α gives
α = ln(λ)

τ
,

as the relationship connecting λ and α.
Substituting this expression back into the characteristic equation leads to the transcendental

equation
det

(
K1 + 1

λ
K2 −

ln(λ)
τ

Id
)

= 0, (11)

whose zeros are the eigenvalues of Equation (8).
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Equation (11) written in terms of α is

det
(
K1 + e−ταK2 − αId

)
= 0, (12)

and for every root α we obtain an eigenvalue λ by the relationship λ = eτα. The dynamical
relationship between the two problems is that the solutions of Equation (12) are the usual
infinitesimal eigenvalues for the ODE on C([−τ, 0]) generated by Equation (4), while λ solving
Equation (11) are the eigenvalues of the time-τ map on C([−τ, 0]) generated by the flow. Then
it is natural that the two notions are related through the complex logarithm. The advantage
of working with the method of steps – that is with the solutions of Equation (11) – is that the
spectrum is a compact subset of C.

2.5 Further remarks on the characteristic equation

Denote the entries of the d× d matrices K1 = ∂1f(c, c) and K2 = ∂2f(c, c) by

K1 =


k1

11 . . . k1
1d

... . . . ...

k1
d1 . . . k1

dd

 , and K2 =


k2

11 . . . k2
1d

... . . . ...

k2
d1 . . . k2

dd

 ,

so that the characteristic equation (11) is

det


k1

11 + 1
λk

2
11 −

ln(λ)
τ . . . k1

1d + 1
λk

2
1d

... . . . ...

k1
d1 + 1

λk
2
d1 . . . k1

dd + 1
λk

2
dd −

ln(λ)
τ

 = 0.

Expanding the determinant leads to a polynomial of the form

p(x, y) = c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2 + . . .+ c0dx
d + cd0y

d

=
d∑

n=0

n∑
k=0

cn−k,kx
n−kyk.

in the variables
x = 1

λ
, and y = ln(λ).

Note that when |λ| < 1 both x and y are large, and taking products and powers introduces
numerical instabilities.

When d = 1 Equation (11) reduces to the scalar equation

K1 + 1
λ
K2 −

ln(λ)
τ

= 0,

which we rewrite as
ln(λ) = τK1 + τ

λ
K2.

Exponentiating leads to
λ = eτK1+ τK2

λ .

Then in the one-dimensional case we look for complex roots of the function

g(z) = z − eτK1e
τK2
z ,
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to determine the eigenvalues of the equilibrium.
When d ≥ 2 the situation is more delicate. To see why we consider explicitly the case of

d = 2, where we must study the equation

det

 k1
11 + k2

11
λ −

ln (λ)
τ k1

12 + k2
12
λ

k1
21 + k2

21
λ k1

22 + k2
22
λ −

ln (λ)
τ


=
(
k1

11 + k2
11
λ
− ln (λ)

τ

)(
k1

22 + k2
22
λ
− ln (λ)

τ

)
−
(
k1

12 + k2
12
λ

)(
k1

21 + k2
21
λ

)

= ln(λ)2

τ2 + c1
ln(λ)
λ

+ c2 ln(λ) + c3
1
λ

+ c4
1
λ2 + c5

= 0,

for some constants c1, c2, c3, c4, and c5 which can be worked out explicitly. Note that the problem
is fundamentally different from the one-dimensional case, as there is no obvious way to isolate and
remove the logarithmic terms. We can switch back to the exponential form of the characteristic
equation given in Equation (12), but then the compactness of the spectrum is lost.

2.6 The Example Systems

The following four delay equations are used to illustrate the utility of our validation scheme.

2.6.1 The Mackey-Glass Equation

Consider the scalar Mackey-Glass equation [22]

y′(t) = f(y(t), y(t− τ)) = −γy(t) + β
y(t− τ)

1 + y(t− τ)ρ , γ, β, ρ > 0 (13)

where
f(y, x) = −γy + β

x

1 + xρ
. (14)

This DDE was originally introduced to model the concentration of white blood cells in a subject.
We refer to γ = 1, β = 2 and ρ = 10 as the classic parameter values for Mackey-Glass.

Note that

c0 = 0, or c1 =
(
β

γ
− 1

) 1
ρ

,

are equilibrium solutions, and at the classic parameter values we see that c1 = 1, and moreover
that

K1 = ∂1f(c, c) = −γ and K2 = ∂2f(c, c) = β
1 + (1− ρ)cρ

(1 + cρ)2 . (15)

2.6.2 The Cubic Ikeda-Matsumoto Equation

Consider the delay differential equation

y′(t) = f(y(t), y(t− τ)) def= y(t− τ)− y(t− τ)3, (16)

which was considered in [33, 34] as a simple model exhibiting chaotic motion (for instance for
the parameter values τ ∈ [1.538, 1.723]). Remark that Equation (16) can be recovered (via the
rescaling y(t) def= 1√

3z(t)) as the third order approximation of the DDE z′(t) = sin(z(t − τ))
considered by Ikeda and Matsumoto in [17]. For that reason, we call the DDE (16) the Cubic
Ikeda-Matsumoto equation. There are three steady states given by x ≡ c ∈ {−1, 0, 1}, and note
that

K1 = ∂1f(c, c) = 0 and K2 = ∂2f(c, c) = 1− 3c2.
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2.6.3 Delayed van der Pol

Consider the delayed van der Pol delay differential equation (as considered in [27])

z′′(t)− εz′(t)(1− z(t)2) + z(t− τ)− κz(t) = 0,

which leads (letting y1(t) = z(t), y2(t) = z′(t) and y = (y1, y2)) to

y′(t) = f(y(t), y(t− τ)) def=

 y2(t)

εy2(t)(1− y1(t)2)− y1(t− τ) + κy1(t)

 . (17)

Given κ 6= 1, note that c = (0, 0)T is the only steady state. Moreover,

K1 = ∂1f(c, c) =

 0 1

−2εy1(1)y2(t) + κ ε(1− y1(t)2)

∣∣
y=c

=

0 1

κ ε

 (18)

and

K2 = ∂2f(c, c) =

 0 0

−1 0

 . (19)

2.6.4 Delayed predator-prey model

Denoting y = (y1, y2) ∈ R2, consider the delayed predator-prey model (as studied in [12])

y′(t) = f(y(t), y(t− τ)) def=

 τy1(t)(r1 − ay1(t)− y2(t− 1))

τy2(t)(−r2 + y1(t− 1)− by2(t))

 , (20)

where τ, r1, r2 > 0 and a, b ≥ 0. The model has a unique positive equilibrium solution given by

c =

y∗1
y∗2

 =


r2 + br1
ab+ 1
r1 − ar2
ab+ 1

 . (21)

In this case,

K1 = ∂1f(c, c) =

τr1 − 2aτy1(t)− τy2(t− 1) 0

0 −τr2 + τy1(t− 1)− 2bτy2(t)

∣∣
y=c

=

−aτ(r2+br1)
ab+1 0

0 − bτ(r1−ar2)
ab+1

 =

−aτy∗1 0

0 −bτy∗2


and

K2 = ∂2f(c, c) =

 0 −τy1(t)

τy2(t) 0

∣∣
y=c

=

 0 −τy∗1
τy∗2 0

 .
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2.7 Validated zero finding for a complex analytic function

Suppose that g is an analytic function and that we have located an approximate zero z̄ ∈ C of
g. We would like to conclude that there is a true zero of g near z̄, and the following standard
theorem provides numerically verifiable sufficient conditions. We include the elementary proof
in the Appendix for the sake of completeness.

Theorem 2.2. Suppose that g : Br∗(z̄)→ C is analytic. Assume that g′(z̄) 6= 0 and let

a = 1
g′(z̄) .

Suppose that Y , and Z are positive constants with

|ag(z̄)| ≤ Y, (22)

and
|a| sup

z∈Br∗ (z̄)
|g′′(z)| ≤ Z. (23)

Define the polynomial
p(z) = Zr2 − r + Y.

Then for any 0 < r0 < r∗ so that
p(r0) < 0,

there exists a unique z̃ ∈ Br0(z̄) so that

g(z̃) = 0.

Moreover,
g′(z̃) 6= 0.

The utility of the theorem is best seen in examples, so we illustrate the procedure for validat-
ing eigenvalue bounds for DDEs. Note that the following examples do not address how initial
initial conditions for the Newton iteration are found, nor do they touch on eigenvalue exclusion.
The examples do however show quite successfully that it is very easy to obtain existence and
validated error bounds for the eigenvalues, at least in scalar/low dimensional examples.

Example 1 (eigenvalue validation for a scalar DDE): Consider for example the Mackey-
Glass equation (13) with τ = 2, γ = 1, β = 2, and ρ = 10 at the equilibrium solution c = 1.
Recalling (15), at these parameter values

K1 = −1 and K2 = −4

and the corresponding characteristic equation is given by

g(z) = −1− 4
z
− ln(z)

2 = 0.

Starting a Newton iteration from z0 = −1 results in

z̄ = −1.635336834622171 + 1.428179851552561i,

and we can check that
|g(z̄)| ≈ 1.3× 10−15.

11



We will now apply Theorem 2.2 with z̄ as our initial data. Using that

g′(z) = 8− z
2z2 , and g′′(z) = z − 16

2z3 ,

we use interval arithmetic in INTLAB to check that

a = 1
g′(z̄) ∈ Br(w),

where

w = 0.269522080830080− 0.929629614323464i, and r = 2.09963× 10−15.

Again using interval arithmetic we check that

|ag(z̄)| ∈ [9.015× 10−16, 9.016× 10−16],

and take
Y = 9.02× 10−16,

so that Y satisfies the inequality hypothesized in Equation (22). (This value of Y simplifies
the discussion, however the bounds obtained and stored by the computer are somewhat sharper
than this. The interested reader can refer to the MATLAB program referenced at the end of the
example). Choosing a ball of radius r∗ = 0.5 about z̄ we check, using interval arithmetic that

|a| sup
z∈Br∗ (z̄)

|g′′(z)| ∈ [0.4, 3.4].

This bound is obtained by evaluating the formula for g′′ on the ball about z̄ of radius 2, taking
the complex absolute value of the result, and multiplying it by an interval bound on the absolute
value of a. Again, shaper bounds are stored on the computer.

Taking
Z = 3.4,

insures that Z satisfies the hypothesis of Equation (23).
The quadratic equation p(r) = Zr2 − r + Y has two roots given by

r− = 2Y
1 +
√

1− 4ZY
> 9.1× 10−16, and r+ = 1 +

√
1− 4ZY
2Z < 1.19,

where the expressions have been evaluated using interval arithmetic. Then for any r− < r0 < r+
we have that p(r0) < 0. Since r+ > 0.5 = r∗ we have that for any r− < r0 < r∗, there is a
unique root z̃ of g(z) having

|z̃ − z̄| < r0.

Since these balls are nested we conclude that there is a true zero ẑ of g with

|ẑ − z̄| < 9.1× 10−16

and that any other zeros of g are in the complement of the ball Br∗(z̄).
Observe that since K1 and K2 are real, the complex conjugate of ẑ is another zero g(z), and

we have proven the existence and error bounds claimed in Theorem 1.1. The MATLAB program
script_validateEig_c1_MackeyGlass.m available at [21] executes the operations described
above. To complete the proof of Theorem 1.1 we still have to show that these are the only two
unstable eigenvalues. This will be done using the theory of Section 4.
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Example 2 (eigenvalue validation for a system of DDEs): Consider now the delayed van
der Pol equation (17). Recalling (18) and (19), this leads to the characteristic equation

det


0 1

κ ε

+ 1
z

 0 0

−1 0

− ln(z)
τ

1 0

0 1


 = 0.

det
(
K1 + 1

λ
K2 −

ln(λ)
τ

Id
)

= 0,

Then for the parameters κ = −1, ε = 0.15, and τ = 2 we seek complex zeros of the function

g(z) = (ln(z))2

4 − 3 ln(z)
40 + 1

z
+ 1.

In the MATLAB program script_validateEig_c1_vanDerPol.m available at [21], the formulas
for g′ and g′′ are given. This program performs nearly identical steps as those discussed in
Example 1. Indeed, starting from an initial guess of z = −0.5 we obtain an approximate zero of

z̄ = −0.61810956461394 + 1.84334863710072i,

after seven Newton steps. Taking r∗ = 0.25 we check that Y = 4.26× 10−15 and Z = 9 satisfy
the bounds hypothesized in Theorem 2.2. By computing the roots of p(r) = Zr2 − r + Y we
find that there exists a true zero ẑ of g having that

|ẑ − z̄| ≤ 4.3× 10−15,

and that any other zeros of g are in the complement of the ball of radius 0.25 about z̄. Again, the
complex conjugate is also a solution and we have the existence and error bounds for Theorem 1.2.

3 Interlude: the argument principle of complex analysis
Suppose we want to count the unstable eigenvalues associated with an equilibrium solution
c ∈ Rd of Equation (4). The description of the spectrum of DF (c) in terms of the zeros of a
scalar characteristic equation is at first glance so appealing that it is worth explaining carefully
what we will not do in our approach, and why we will not do it. Recalling that the eigenvalues
of DF (c) are the complex zeros of

g(z) = det
(
K1 + 1

z
K2 −

ln(z)
τ

Id
)
,

we make the change of variables
1
w
→ z,

and define the new function

g̃(w) = det
(
K1 + wK2 + ln(w)

τ
Id
)
. (24)

The zeros of g̃ inside the unit circle are the desired unstable eigenvalues.
Suppose now that Γ is a simple closed curve in C with positive orientation which does not

intersect any pole or zero of g̃, and that g̃ is analytic in the open set enclosed by Γ except
possibly at a finite number of poles. By the argument principle of complex analysis we have
that

Nzeros −Npoles = 1
2πi

∫
Γ

g̃′(z)
g̃(z) dz. (25)
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Figure 1: Validated Morse index by contour integration: imagine that λ1 and λ2 zeros
inside the unit circle for the function g̃ defined in Equation (24), so that λ−1

1 , λ−1
2 are unstable

eigenvalues for the step map F . To validate the eigenvalue count we choose a branch of the
complex logarithm defined on C\(−∞, 0], and consider the “key hole” contour Γ = α+β+γ+ δ
illustrated in the figure. If g̃ is analytic inside the region enclosed by Γ then the argument
principle counts the number of zeros inside. Supposing that there are no zeros or poles of g̃ on
[−1, 0), taking the limit as R→ 0 and d→ 0 gives the unstable eigenvalue count, i.e. the Morse
index. By choosing other circles we could count the number of stable eigenvalue with modulus
larger than some desired bound.

Here Nzeros is the number of zeros and Npoles the number of poles enclosed by Γ. By implementing
a validated numerical scheme for evaluating the contour integral on the right hand side of
Equation (25) one obtains the desired count, that is the Morse index of the equilibrium.

The most significant difficulty in this program comes from the fact that g̃ and its derivatives
involve powers of the complex logarithm ln(z). The function ln(z) is not analytic inside the unit
circle, and indeed it has an essential singularity rather than a pole at 0. Moreover, no single
valued branch of the logarithm can be defined on the punctured disk.

Of course these issues can be resolved satisfactorily using standard arguments form complex
analysis. The idea would be to choose a “key hole” contour as in Figure 1. Indeed, since
Equation (4) has only finitely many unstable eigenvalues there must be a line segment from the
origin to the unit circle in C which does not intersect any zero of g̃. For the sake of simplicity
let us assume that this line segment is the negative real interval [−1, 0] as drawn in Figure 1.

Assume for example that we have located two zeros λ1, λ2 of g̃ in the unit disk and that they
are not on [−1, 0]. Taking a semi-circle of radius R < min(|λ1|, |λ2|) and removing the strip of
width 0 < d < R about [−1, 0] as in Figure 1, we see that g̃ (in this example) is analytic inside
the curve Γ = α + β + γ + δ. If g̃ has no poles in the unit disk then the argument principle
can be used to prove that there are either exactly two zeros in the region enclosed by Γ or, in
the case that the contour integral results in a count different from 2, that we have missed some
eigenvalues.

The strategy just described does not give the Morse index, as there could be zeros of g̃ inside
the smaller circle of radius R or along the strip of width d. Yet by taking the limit as R, d→ 0
we will obtain the correct index, provided there are no poles or zeros along the limiting contour.
Calculations based on interval arithmetic could be used to rule out zeros/poles along the contour
and one can write down explicit formulas for the integrals of powers of ln(z) around β, γ, and δ
so that the limits can be computed mechanically and incorporated into a computer program.

Even though there is no fundamental obstruction to this approach, it is clear that the inte-
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grands involved become increasingly complex as the dimension of the system increases. Writing
a general automated code to compute the necessary line integrals over appropriate key hole
contours would be a serious programing task. (See Section 5 for some brief comparisons in the
one dimensional case). In fact, even expanding the determinants symbolically for the cases of
four or five dimensions is cumbersome, so that general purpose solution would need to use either
a symbolic manipulation package or to compute validated determinants and their derivatives
numerically.

Finally we mention yet another approach, which is to work with Equation (11) instead of
the compactified characteristic equation. In this case the unstable eigenvalues are the complex
zeros in the right half plane. Equation (11) involves powers of the exponential rather than the
logarithm, and its zeros can be counted again via the argument principle. This is not a dramatic
improvement over the approach outlined above because one should take a line integral enclosing
the entire right half plane. Smaller contours are sufficient if we have explicit bounds on the size
of a half circle in the right half plane containing the eigenvalues. However any sharp general
estimates will depend in a complicated way on the entries of K1 and K2, and simpler estimates
will stil require integrating over large semi-circles.

So, while it is possible to perform eigenvalue counts using complex analysis of scalar equations
it appears that developing general purpose software for the job is an involved task. In Section
4 we propose an alternative approach which solves the counting problem just discussed but
which scales well with respect to the dimension of the problem. The method also provides
accurate numerical approximation of the spectrum, and so solves both Problem 1 and 2 from the
Introduction. The price of the method proposed in Section 4 is that it abandons the characteristic
equation and returns to the functional analytic context from which the DDE came.

4 A functional analytic approach to the spectral analysis
Recall from Section 2.4 that any solution ξ ∈ C([−τ, 0]) of the eigenvalue problem given in
Equation (8) is actually real analytic on [−τ, 0]. Then we study the problem in this restricted
space. The question now is how should we discretize the space of real analytic functions on
[−τ, 0]? One obvious choice is to use power series. This has some disadvantages, as a particular
function y(t), real analytic on [−τ, 0] may require many power series to represent.

This depends on the distance to the nearest pole in the complex plane. More precisely, let
z0 ∈ C denote the nearest pole of y and suppose that dist([−τ, 0], z0) < τ . Then a power series
expansion of the form

y(t) =
∞∑
n=0

an(t+ τ)n,

must have radius of convergence smaller than τ . And more than one power series is needed to
represent y in all of [−τ, 0], though it can always be done with a finite number of series.

A better choice is to use a Chebyshev series representation. After rescaling y to the domain
[−1, 1], recall that the Chebyshev series expansion for y : [−1, 1]→ Rd is

h(t) = a0 + 2
∑
n≥1

anTn(t), an ∈ Rd (26)

where T0(t) = 1, T1(t) = t and Tn+1(t) = 2tTn(t) − Tn−1(t), for n ≥ 1. It is a result of
fundamental importance that if y is real analytic on [−1, 1] then the Chebyshev series converges
on the largest ellipse with foci at (−1, 0) and (1, 0) which does not intersect any poles of y. This
is the so-called Bernstein ellipse. Put another way, suppose that z0 is the nearest pole of y. Then
the semi-minor axis of the Bernstein ellipse is no smaller than ρ = |imag(z0)|. The coefficients
{an}∞n=0 decay exponentially fast, with rate determined by ρ. This is a major advantage in the
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<latexit sha1_base64="lXqbcjhtA1YxJpEZL4CiaM0aq+k=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBiyWpgh6LXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777RTW1jc2t4rbpZ3dvf2D8uFR0ySZZtxniUx0O6SGS6G4jwIlb6ea0ziUvBWO7mZ+64lrIxL1iOOUBzEdKBEJRtFK/kUXadYrV9yqOwdZJV5OKpCj0St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBjdBBOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJs1b1Lqu1h6tK/TaPowgncArn4ME11OEeGuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHjE2Ogw==</latexit>

= t0
<latexit sha1_base64="55jp5DJjb6Hr30zrsx8ugEAtNu0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoBeh6MVjBdMW2lA22027dLMJuxOhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6305hbX1jc6u4XdrZ3ds/KB8eNU2SacZ9lshEt0NquBSK+yhQ8naqOY1DyVvh6G7mt564NiJRjzhOeRDTgRKRYBSt5N8Q7Lm9csWtunOQVeLlpAI5Gr3yV7efsCzmCpmkxnQ8N8VgQjUKJvm01M0MTykb0QHvWKpozE0wmR87JWdW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8TobRdTARKs2QK7ZYFGWSYEJmn5O+0JyhHFtCmRb2VsKGVFOGNp+SDcFbfnmVNGtV76Jae7is1G/zOIpwAqdwDh5cQR3uoQE+MBDwDK/w5ijnxXl3PhatBSefOYY/cD5/AN18jhA=</latexit>

z0
<latexit sha1_base64="Fimmt0pwCQvFMvh4GF0b8R32tpI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRKihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEOho2l</latexit>

tj
<latexit sha1_base64="/trs1k3gt9N16VUj2YNfunKGOGE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM12067dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpHnuPvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwBdSo3Z</latexit>

tj+1
<latexit sha1_base64="pbW7T27Us9FI+piaoz7nck9OQ40=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEqigh6LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgorq2vrG8XN0tb2zu5eef+gaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqAccJ9yM6UCIUjKKVWtjLHs+8Sa9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZuRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmf5O+kJzhnJsCWVa2FsJG1JNGdqESjYEb/HlZdI8r3oX1fP7y0rtJo+jCEdwDKfgwRXU4A7q0AAGI3iGV3hzEufFeXc+5q0FJ585hD9wPn8A+2GPVQ==</latexit>

tM
<latexit sha1_base64="mHBaLRSpE+2N/SJQONroUwbdWu8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrRxwn3I/oQIlQMIpWesDeXa9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVrzzSvX+oly7zuMowDGcwBl4cAk1uIU6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx8xVo28</latexit>tj�1

<latexit sha1_base64="VKX4MLagwNYg0x8ETkb7cWYdiAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRQY9FLx4r2A9oQ9lsN+3azSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1gOOE+xEdKBEKRtFKLexlj2fepFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns3Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CJRuCt/jyMmmeV72L6vn9ZaV2k8dRhCM4hlPw4ApqcAd1aACDETzDK7w5ifPivDsf89aCk88cwh84nz/+bY9X</latexit>

Cj�1
<latexit sha1_base64="GN8y8elNa+xPasRl526liamlogo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0Gc/EYwTwgWcLsZDYZMzu7zPQKYclHePGgiFe/x5t/4+Rx0MSChqKqm+6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMalO/9cS1EbF6wHHC/YgOlAgFo2ilVq2XPV54k16x5JbdGcgq8RakBAvUe8Wvbj9macQVMkmN6Xhugn5GNQom+aTQTQ1PKBvRAe9YqmjEjZ/Nzp2QM6v0SRhrWwrJTP09kdHImHEU2M6I4tAse1PxP6+TYnjjZ0IlKXLF5ovCVBKMyfR30heaM5RjSyjTwt5K2JBqytAmVLAheMsvr5Jmpexdliv3V6Xq7SKOPJzAKZyDB9dQhTuoQwMYjOAZXuHNSZwX5935mLfmnMXMMfyB8/kDswOPJg==</latexit>

Cj
<latexit sha1_base64="Gx+9nJbRtRoS3LD+/OkuV7E1ZSc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdiLx4rmFpoQ9lst+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMnGqGfdZLGPdDqnhUijuo0DJ24nmNAolfwjHjZn/8MS1EbG6x0nCg4gOlRgIRtFKfqOXPU575Ypbdecgq8TLSQVyNHvlr24/ZmnEFTJJjel4boJBRjUKJvm01E0NTygb0yHvWKpoxE2QzY+dkjOr9Mkg1rYUkrn6eyKjkTGTKLSdEcWRWfZm4n9eJ8XBdZAJlaTIFVssGqSSYExmn5O+0JyhnFhCmRb2VsJGVFOGNp+SDcFbfnmVtGpV76Jau7us1G/yOIpwAqdwDh5cQR1uoQk+MBDwDK/w5ijnxXl3PhatBSefOYY/cD5/ANcJjrQ=</latexit>

Cj+1
<latexit sha1_base64="vouO3hE7luPcnlGr6Y4vEymZBLc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoM5uIxgnlAsoTZyWwyZnZ2mekVwpKP8OJBEa9+jzf/xsnjoIkFDUVVN91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY1aZ+64lrI2L1gOOE+xEdKBEKRtFKrVove7zwJr1iyS27M5BV4i1ICRao94pf3X7M0ogrZJIa0/HcBP2MahRM8kmhmxqeUDaiA96xVNGIGz+bnTshZ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9qbif14nxfDGz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGBD8JZfXiXNStm7LFfur0rV20UceTiBUzgHD66hCndQhwYwGMEzvMKbkzgvzrvzMW/NOYuZY/gD5/MHr/ePJA==</latexit>

E
<latexit sha1_base64="oW7OyFl8fZOuY5qYrNXg+guGckE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNCtl76JcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZo7jM0=</latexit>

Figure 2: Representation of real analytic functions: Illustration of the complex extension
of a real analytic function y(t) defined on [−τ, 0] whose nearest complex pole is at z0 ∈ C
with dist([−τ, 0], z0) < τ . There is a mesh τ0 = −τ, . . . , τM = 0, and power series expansions
y0(t), . . . , yM (t) so that y(t) = yj(t) for any t where the power series converges. Each power
series yj(t) is centered at the point tj and converges on a disk of radius Rj = |tj − z0|. We refer
to these disks as Cj , 0 ≤ j ≤ M . The same function y(t) can be represented by a Chebyshev
series converging absolutely and uniformly on the Bernstein ellipse E whose semi-minor axis is
at least ρ = |imag(z0)|. The fact that one Chebyshev series is always sufficient to represent a
real analytic function on [−τ, 0] is a significant advantage for our discretization scheme.

discussion to come, hence we adopt the Chebyshev framework from now on. The preceding
discussion is recapitulated graphically in Figure 2.

4.1 Banach spaces of infinite sequences and approximation of compact linear
operators

Let a = {an}∞n=0 be an infinite sequence of complex vectors an ∈ Cd. Choose any norm ‖ · ‖d in
Cd. Given a sequence of weights ω = (ωn)n≥0 with ωn > 0, define the ω-weighted little-ell-one
norm

‖a‖ω =
∞∑
n=0
‖an‖dωn.

The set of all sequences with finite ω-weighted norm is a Banach space which we denote by `1ω.

Remark 4.1. As any solution of the eigenvalue problem given in Equation (8) is real analytic,
its associated sequence of Chebyshev coefficients (an)n≥0 (i.e. see (26)) has the property that
the associate sequence of real numbers {‖an‖d}n≥0 decays geometrically to 0. The weights ω =
{ωn}n≥0 are therefore chosen to incorporate that property. More precisely, consider a number
ν > 1 and let

ωn = νn, n ≥ 0.

This choice of weights lead to the Banach space

`1ω = `1ν =

a = {an}n≥0 : an ∈ Cd and ‖a‖ν
def=
∑
n≥0
‖an‖dνn <∞

 .
The following result provides a general formula to compute a bound for the norm of bounded

linear operators on `1ω. Let B(`1ω) denote the Banach space of all bounded linear operators from
`1ω to itself. We have the following proposition.
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Proposition 4.2. Let A = {am,n}m,n≥0 be a bi-infinite sequence with am,n ∈ Md(C) a d × d
complex-valued matrix for each (m,n) ∈ N2. Define the linear mapping A on `1ω by the formula

(Ah)m =
∑
n≥0

am,nhn ∈ Cd,

for h ∈ `1ω and m ≥ 0. Then A ∈ B(`1ω) with

‖A‖B(`1ω) ≤ KA
def= sup

n≥0

1
ωn

∑
m≥0
‖am,n‖dωm

 , (27)

where ‖am,n‖d denotes the matrix norm of am,n ∈Md(C) induces by the norm ‖ · ‖d.

Proof. Given b = {bn}n∈N ∈ `1ω,

‖A‖B(`1ω) = sup
‖b‖ω=1

‖Ab‖ω

= sup
‖b‖ω=1

∑
m≥0

∥∥∥∥∥∥
∑
n≥0

am,nbn

∥∥∥∥∥∥
d

ωm

≤ sup
‖b‖ω=1

∑
m≥0

∑
n≥0
‖am,nωmbn‖d

= sup
‖b‖ω=1

∑
n≥0

∑
m≥0
‖am,nωmbn‖d

≤ sup
‖b‖ω=1

∑
n≥0

∑
m≥0
‖am,n‖dωm

 ‖bn‖d
= sup
‖b‖ω=1

∑
n≥0

cn‖bn‖d,

where the third equality follows from Fubini’s theorem for infinite sums, and where

cn
def=

∑
m≥0
‖am,n‖dωm.

By definition of KA in (27), observe that

KA = sup
n∈N

cn
ωn

and that cn ≤ KAωn, for all n ≥ 0.

Hence,

‖A‖B(`1ω) ≤ sup
‖b‖ω=1

∑
n≥0

cn‖bn‖d ≤ KA sup
‖b‖ω=1

∑
n≥0
‖bn‖dωn ≤ KA sup

‖b‖ω=1
‖b‖ω = KA.

Let N ∈ N and define the projection πN , π∞ : `1ω → `1ω by

πN (h)n =
{
hn 0 ≤ n ≤ N
0 n ≥ N + 1

and

π∞(h)n =
{

0 0 ≤ n ≤ N
hn n ≥ N + 1.

Note that for each n ∈ N, πN (h)n ∈ Cd. We note that πN (`1ω) is a finite dimensional complex
vector space which we can identify with Cd(N+1).
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For any h ∈ `1ω we have that
h = πN (h) + π∞(h),

so that
`1ω = πN (`1ω)⊕ π∞(`1ω).

It is clear that πn, π∞ are bounded linear projection operators. For h ∈ `1ω we write hN = πN (h)
and h∞ = π∞(h). Then h = hN + h∞ and we sometimes identify hN with its natural inclusion
into Cd(N+1), especially when talking about numerics. We think of h∞ as “the tail” of the
sequence h.

We are interested in closed linear subspaces of C([−τ, 0]) isomorphic to `1ω. Suppose that
X is such a subspace, and hence a Banach space in its own right, and let I : X → `1ω denote
the isomorphism. Then the map T : C([−τ, 0]) × C([−τ, 0]) → C([−τ, 0]) induces a mapping
T̃ : `1ω × `1ω → `1ω by the formula

T̃ (u, v) = I
[
T
(
I−1(u), I−1(v)

)]
.

If x(t) = c ∈ Rd is a constant function with T (c, c) = c then I(c) is a fixed point of T̃ .
Moreover the bounded linear operators D1T (c, c), D2T (c, c), DF (c) : C([−τ, 0]) → C([−τ, 0])
induce bounded linear operators on `1ω by similar formulae. In the sequel we suppress the use of
the isomorphism I and identify these bounded linear operators with the sequence space operators
they induce.

Let MN be an d(N + 1) × d(N + 1) matrix. Then MN induces a compact linear operator
M : `1ω → `1ω by the formula

[Mh]n =
{

[MNhN ]n 0 ≤ n ≤ N
0 n ≥ N + 1.

We have that
spec(M) = spec(MN ) ∪ {0},

where 0 is an eigenvalue of infinite multiplicity. That is, the spectrum of the matrix MN

determines the spectrum of the bounded linear operator M .
We are interested in the case where MN is an approximation of the operator DF (x0), where

x0 is the spectral sequence associated with a fixed point of F . Recall from Section 2.3 that we do
not have explicit access to the mapping F , which is only implicitly defined through a fixed point
operator T . The next theorem allows us to draw conclusions about the spectrum of DF (x0)
given knowledge of the spectrum of a good enough approximating matrix MN . The meaning
of “good enough” has to do with the location of the eigenvalues of MN , and also some bounds
on the induced operators Id − D1T (x0, x0) and D2T (x0, x0). The important thing is that the
hypotheses of the theorem involve no information about F or DF (x0). Only the fixed point
operator T and its partial derivatives.

Theorem 4.3. Suppose that M : `1ω → `1ω is a compact linear operator of the form

(Mh)n =
{

[MNhN ]n 0 ≤ n ≤ N
0 n ≥ N + 1.

Given r > 0 assume that none of the non-zero eigenvalues of MN lie on the circle of radius r in
C, so that the numbers λj − reiθ are non-zero for each θ ∈ [0, 2π]. Assume that C1, C2, C3 > 0
are constants with

max
(

sup
θ∈[0,2π]

∥∥∥∥(MN − reiθIdN
)−1

∥∥∥∥
B(`1ω)

,
1
r

)
≤ C1, (28)
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∥∥∥(Id−D1T (x0, x0))−1
∥∥∥
B(`1ω)

≤ C2,

and
‖(Id−D1T (x0, x0))M −D2T (x0, x0)‖B(`1ω) ≤ C3.

If C1C2C3 < 1 then M and DF (x0) have the same number of eigenvalues in the complement of
the closed disk of radius r.

Proof. Define the homotopy
H(s) = (1− s)M + sDF (x0),

from M to DF (x0). Clearly then H(0) = M and H(1) = DF (x0), and H(s) is continuous
for s ∈ [0, 1]. H(0) and M trivially have the same eigenvalues, and hence the same number of
eigenvalues in the complement of the closed disk of radius r. The argument given in the proof
of Lemma 5.3 in in [24] shows that DF (x0) and M have a different number of eigenvalues in
the complement of the disk if and only if there is a crossing during the homotopy. That is if
and only if there is an s0 ∈ (0, 1] and a λ0 ∈ C with |λ0| = r having that λ0 is an eigenvalue of
H(s0).

We show that this cannot happen by showing that reiθ is never an eigenvalue of H. That is,
we show that H(s)− reiθId is boundedly invertible for all s ∈ [0, 1] and θ ∈ [0, 2π]. To see this
define the family of linear operator

N(θ) = M − reiθId

and note that N(θ) is a bounded linear operator. To see this we proceed as follows. For fixed
θ ∈ [0, 1] and q = (qN , q∞) ∈ `1ω we seek an h ∈ `1ω so that

N(θ)h = q,

or equivalently (
MN − reiθIdN

)
hN = qN ,

and
−reiθh∞ = q∞

In the tail we have that h∞ = −q∞e−iθ/r. In the finite dimensional projection we have that
(MN − reiθIdN ) is invertible, and hence boundedly invertible, precisely by the assumption that
MN has no eigenvalues on the circle of radius r. Then

hN = (MN − reiθIdN )−1qN .

Then ∥∥∥N(θ)−1
∥∥∥
B(`1ω)

≤ max
(

sup
θ∈[0,2π]

∥∥∥∥(MN − reiθIdN
)−1

∥∥∥∥
B(`1ω)

,
1
r

)
≤ C1,

by the definition of C1.
Now we consider the difference

M −DF (x0) = (Id−D1T (x0, x0))−1(Id−D1T (x0, x0))(M −DF (x0))
= (Id−D1T (x0, x0))−1 [(Id−D1T (x0, x0))M − (Id−D1T (x0, x0))DF (x0)]
= (Id−D1T (x0, x0))−1 [(Id−D1T (x0, x0))M −D2T (x0, x0)] .

Taking norms gives

‖M −DF (x0)‖B(`1ω) ≤
∥∥∥(Id−D1T (x0, x0))−1 [(Id−D1T (x0, x0))M −D2T (x0, x0)]

∥∥∥
B(`1ω)

≤
∥∥∥(Id−D1T (x0, x0))−1

∥∥∥
B(`1ω)

‖(Id−D1T (x0, x0))M −D2T (x0, x0)‖B(`1ω)

≤ C2C3.
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Since C1C2C3 < 1 we have that∥∥∥sN−1(θ)(M −DF (x0))
∥∥∥
B(`1ω)

≤ ‖N−1(θ)‖B(`1ω)‖M −DF (x0)‖B(`1ω) ≤ C1C2C3 < 1,

for s ∈ [0, 1], hence the operator Id−sN−1(θ)(M−DF (x0)) is boundedly invertible for s ∈ [0, 1]
with ∥∥∥∥[Id− sN−1(θ)(M −DF (x0))

]−1
∥∥∥∥
B(`1ω)

≤ 1
1− C1C2C3

,

by the Neumann series theorem.
To complete the argument we now consider the homotopy

H(s)− reiθId = M − s(M −DF (x0))− reiθId

=
(
M − reiθId

)
− s(M −DF (x0))

= N(θ)
(
Id− sN−1(θ) (M −DF (x0))

)
.

Since N(θ) and Id − sN−1(θ) (M −DF (x0)) are boundedly invertible for s ∈ [0, 1], θ ∈ [0, 2π]
we have that [

H(s)− reiθId
]−1

=
(
Id− sN−1(θ) (M −DF (x0))

)−1
N−1(θ)

with the bound∥∥∥∥[H(s)− reiθId
]−1

∥∥∥∥
B(`1ω)

≤
∥∥∥∥(Id− sN−1(θ) (M −DF (x0))

)−1
∥∥∥∥
B(`1ω)

∥∥∥N−1(θ)
∥∥∥
B(`1ω)

≤ C1
1− C1C2C3

.

Then indeed H(s)− eiθId is boundedly invertible for all s ∈ [0, 1], θ ∈ [0, 2π], and it follows that
reiθ is never an eigenvalue of H(s).

Remark 4.4 (Real systems and complex conjugate eigenvalues). Observe that when f : Rd →
Rd is real then we are only interested in real equilibrium solutions c ∈ Rd and it follows that
the matrices K1 = ∂1f(c, c) and K2 = ∂2f(c, c) have real entries. In this case any complex
zeros of the determinant is a polynomial with real coefficients and the roots of the characteristic
equation occur in complex conjugate pairs. It follows that the spectrum is symmetric about the
real axis so the supremum in the definition of C1 needs only be taken over the interval [0, π],
reducing the computational cost by a factor of 2.

4.2 Chebyshev series discretization

Let us map the time interval t ∈ [−τ, 0] to t̃ ∈ [−1, 1] via t̃ = 2
τ t+ 1. Set h̃(t̃) def= h

(
τ
2 (t̃− 1)

)
=

h(t). Hence, for t ∈ [−τ, 0],

(Id−D1T (c, c))h(t) = h(t)−
∫ t

−τ
K1h(s) ds

= h̃(t̃)− τ

2K1

∫ t̃

−1
h̃(s̃) ds̃.

For sake of simplicity of the presentation, we simply identify h(t) and h̃(t̃). Therefore,

(Id−D1T (c, c))h(t) = h(t)− τK1
2

∫ t

−1
h(s) ds.
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Expand h : [−1, 1]→ Rd with Chebyshev series

h(t) = a0 + 2
∑
n≥1

anTn(t), an ∈ Rd.

Using that
∫
T0(s) ds = T1(s) + const.,

∫
T1(s) ds = T0(s)+T2(s)

4 + const. and
∫
Tn(s) ds =

1
2

(
Tn+1(s)
n+1 − Tn−1(s)

n−1

)
+ const. for n ≥ 2, yields

∫ t

−1
h(s) ds =

a0 −
a1
2 − 2

∑
k≥2

(−1)k

k2 − 1ak

T0(t) + 2
∑
n≥1

1
2n(an−1 − an+1)Tn(t). (29)

Hence,

(Id−D1T (c, c))h(t) = h(t)− τK1
2

∫ t

−1
h(s) ds

= a0 + 2
∑
n≥1

anTn(t)− τK1
2

a0 −
a1
2 − 2

∑
k≥2

(−1)k

k2 − 1ak

T0(t)

− 2τK1
2

∑
n≥1

1
2n(an−1 − an+1)Tn(t)

=

a0 −
τK1

2

a0 −
a1
2 − 2

∑
k≥2

(−1)k

k2 − 1ak

T0(t)

+ 2
∑
n≥1

(
−τK1

4n an−1 + an + τK1
4n an+1

)
Tn(t),

which has a matrix representation

M1 =



Idd − τK1
2

τK1
4

τK1
3 · · · τK1(−1)n

n2−1 . . .

− τK1
4 Idd τK1

4 0 0 . . .

0 − τK1
8 Idd τK1

8 0 . . .

0 0 . . . . . . . . . . . .

0 0 0 − τK1
4n Idd τK1

4n

0 0 0 0 − τK1
4(n+1) Idd

...
...

...
...

... . . .



.

Moreover,

D2T (c, c)h(t) = h(1) + τK2
2

∫ t

−1
h(s) ds

=

a0 + 2
∑
n≥1

an + τK2
2

a0 −
a1
2 − 2

∑
k≥2

(−1)k

k2 − 1ak

T0(t)

+ 2
∑
n≥1

(
τK2
4n an−1 −

τK2
4n an+1

)
Tn(t)
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which has a matrix representation

M2 =



Idd + τK2
2 2Idd − τK2

4 2Idd − τK2
3 · · · 2Idd − τ(−1)nK2

n2−1 . . .

τK2
4 0 − τK2

4 0 0 . . .

0 τK2
8 0 − τK2

8 0 . . .

0 0 . . . . . . . . . . . .

0 0 0 τK2
4n 0 − τK2

4n

0 0 0 0 τK2
4(n+1) 0

...
...

...
...

... . . .



.

Truncating to N modes gives the d(N + 1)× d(N + 1) matrices

MN
1 =



Idd − τK1
2

τK1
4

τK1
3 · · · τ(−1)NK1

N2−1

− τK1
4 Idd τK1

4 0 0

0 − τK1
8 Idd τK1

8 0

0 0 . . . . . . τK1
4(N−1)

0 0 0 − τK1
4N Idd


(30)

and

MN
2 =



Idd + τK2
2 2Idd − τK2

4 2Idd − τK2
3 · · · 2Idd − τ(−1)NK2

N2−1
τK2

4 0 − τK2
4 0 0

0 τK2
8 0 − τK2

8 0

0 0 . . . . . . − τK2
4(N−1)

0 0 0 τK2
4N 0


. (31)

Using (30) and (31), let

BN def= (MN
1 )−1 and MN def= BNMN

2 = (MN
1 )−1MN

2 . (32)

Lemma 4.5. Recalling the definition of BN in (32), define the bounded linear operator B :
`1ω → `1ω by

(Bh)n =
{

(BNhN )n 0 ≤ n ≤ N
hn n ≥ N + 1.

For n = 0, . . . , N , denote by BN
n = (BN

m,n)Nm=0 ∈ RN+1 the nth column of BN . Let ω̌ and ω̂ two
positive numbers satisfying

sup
n≥N+2

ωn−1
ωn

≤ ω̌ and sup
n≥N+2

ωn+1
ωn

≤ ω̂.

Let

ρn
def=



0, n = 0, . . . , N − 1
τ‖K1‖d

4(N + 1)
ωN+1

ωN

, n = N

1
ωN+1

N∑
m=0

∥∥∥ τ(−1)N+1

(N + 1)2 − 1
B

N
m,0K1 +

τ

4N
B

N
m,NK1

∥∥∥
d

ωm +
τ‖K1‖d

4(N + 2)
ωN+2

ωN+1
, n = N + 1

1
ωN+2

τ

(N + 2)2 − 1

(
N∑

m=0

‖BN
m,0K1‖dωm

)
+ ω̌

τ‖K1‖d

4(N + 1)
+ ω̂

τ‖K1‖d

4(N + 3)
, n =∞

(33)
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and let
ρ

def= max{ρ0, ρ1, . . . , ρN+1, ρ∞}. (34)

If ρ < 1, then letting

C2
def=

max{‖BN‖B(`1ω), 1}
1− ρ (35)

yields (recall that M1 is the operator representation of Id−D1T (c, c))∥∥∥(Id−D1T (c, c))−1
∥∥∥
B(`1ω)

=
∥∥∥M−1

1

∥∥∥
B(`1ω)

≤ C2.

Proof. The idea of the proof is to obtain a bound on
∥∥∥M−1

1

∥∥∥
B(`1ω)

by considering the (com-
putable and explicitly representable) approximate inverse B ofM1, and apply a Neumann series
argument to obtain that bound. Let

Λ def= Id−BM1.

Denote Λ = {Λm,n}m,n≥0 where each Λm,n is a d× d matrix. Recalling (27),

‖Λ‖B(`1ω) ≤ KΛ
def= sup

n≥0

1
ωn

∑
m≥0
‖Λm,n‖dωm

 .
For any n ≥ 0, denote Λn = (Λm,n)m≥0 the nth column of Λ. For n = 0, . . . , N − 1, Λn = 0.

For n = N ,

ΛN =



>

0

⊥
τK1

4(N+1)

0

0
...



,

and in this case
1
ωn

∑
m≥0
‖Λm,N‖dωm = τ‖K1‖d

4(N + 1)
ωN+1
ωN

= ρN .

For n = N + 1,

ΛN+1 =



>

− τ(−1)N+1

(N+1)2−1

(
BN
m,0K1

)N
m=0
− τ

4N

(
BN
m,NK1

)N
m=0

⊥

0
τK1

4(N+2)

0

0
...



,
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and in this case

1
ωn

∑
m≥0
‖Λm,N+1‖dωm ≤

1
ωN+1

N∑
m=0

∥∥∥∥∥ τ(−1)N+1

(N + 1)2 − 1B
N
m,0K1 + τ

4NBN
m,NK1

∥∥∥∥∥
d

ωm

+ τ‖K1‖d
4(N + 2)

ωN+2
ωN+1

= ρN+1.

For n ≥ N + 2,

Λn =



>

− τ(−1)n
n2−1

(
BN
m,0K1

)N
m=0

⊥

0
...

0

− τK1
4(n−1)

0
τK1

4(n+1)

0

0
...



,

and

1
ωn

∑
m≥0
‖Λm,n‖dωm ≤

1
ωn

τ

n2 − 1

(
N∑
m=0
‖BN

m,0K1‖dωm

)
+ ωn−1

ωn

τ‖K1‖d
4(n− 1) + ωn+1

ωn

τ‖K1‖d
4(n+ 1)

and therefore

sup
n≥N+2

1
ωn

∑
m≥0
‖Λm,n‖dωm ≤

1
ωN+2

τ

(N + 2)2 − 1

(
N∑
m=0
‖BN

m,0K1‖dωm

)

+ ω̌
τ‖K1‖d

4(N + 1) + ω̂
τ‖K1‖d

4(N + 3) = ρ∞.

Recalling (34), combining formulas from (33) and applying Proposition 4.2 yields

‖Id−BM1‖B(`1ω) = ‖Λ‖B(`1ω) ≤ KΛ = sup
n≥0

1
ωn

∑
m≥0
‖Λm,n‖dωm ≤ max{ρN , ρN+1, ρ∞} = ρ.

Applying a Neumann series argument yields that

∥∥∥(Id−D1T (c, c))−1
∥∥∥
B(`1ω)

= ‖M−1
1 ‖B(`1ω) ≤

‖B‖B(`1ω)
1− ρ ≤

max{‖BN‖B(`1ω), 1}
1− ρ = C2.
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Lemma 4.6. Let

ρn
def=



τ‖K1M
N
N,n‖dωN+1

4(N + 1)ωn
, n = 0, . . . , N − 1

τ‖K1M
N
N,N +K2‖dωN+1

4(N + 1)ωN
, n = N

1
ωN

(
2 + τ‖K2‖d

(N + 1)2 − 1

)
+ τ‖K2‖dω̌

4(N − 1) + τ‖K2‖dω̂
4(N + 1) , n =∞,

and let
C3

def= max{ρ0, ρ1, . . . , ρN , ρ∞}. (36)

Then
‖(Id−D1T (c, c))M −D2T (c, c)‖B(`1ω) = ‖M1M −M2‖B(`1ω) ≤ C3.

Proof. Denote
Λ def= M1M −M2,

and note that the finite dimensional block ΛN of Λ satisfies ΛN = MN
1 M

N −MN
2 = 0. The

proof follows by observing that

Λn =



>

0

⊥
−τK1MN

N,n

4(N+1)

0

0
...



for n = 0, . . . , N − 1, ΛN =



>

0

⊥
−τ(K1MN

N,N+K2)
4(N+1)

0

0
...


and

Λn =



−2Idd + τ(−1)nK2
n2−1

0
...

0
τK2

4(n−1)

0

− τK2
4(n+1)

0

0
...



for n ≥ N + 1,

and by using Proposition 4.2.
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4.3 Applications of the Chebyshev series discretization

In this section, we present applications of the Chebyshev series discretization approach to rig-
orously compute the number of eigenvalues outside circles of prescribed radii centered at 0 in
the complex place. We apply our approach to Mackey-Glass (13), cubic Ikeda-Matsumoto (16),
delayed van der Pol (17) and the predator-prey equation (20). Let us now present a rigorous
computational procedure.

After choosing a smooth function f : Rd × Rd → Rd and a delay τ > 0, assume that u0 ≡
c ∈ Rd is an equilibrium solution to y′(t) = f(y(t), y(t− τ)), that is f(c, c) = 0. Define the real-
valued d× d matrices K1 and K2 as in (7), that is K1

def= ∂1f(c, c) and K2
def= ∂2f(c, c). Given

a finite dimensional Chebyshev projection number N , define the finite dimensional real-valued
matrices MN

1 and MN
2 given respectively by (30) and (31). Define the real-valued matrices

BN and MN as in (32), that is BN def= (MN
1 )−1 and MN def= (MN

1 )−1MN
2 . Choose a sequence

of weights ω = (ωn)n≥0. In all our computations, we fix a number ν > 1 and set ωn = νn

(see Remark 4.1). Hence, the Banach space we work with is `1ω = `1ν and represents analytic
functions. Use interval arithmetic to compute the constant C2 satisfying (35) and the constant
C3 satisfying (36). Next, we compute the constant C1 satisfying (28). Note that since the matrix
MN is a real-valued matrix, its eigenvalues come in complex conjugate pairs. From Remark 4.4,
it is enough to perform the computation of C1 in (37) over the interval [0, π] instead of [0, 2π]
as in (28). Fix a mesh size m and consider a partition

0 = t1 < t2 < · · · < tm−1 < tm = π

of the interval [0, π]. For a fixed radius value r > 0, use interval arithmetic to compute C1
satisfying

max
(

max
j=1,...,m−1

sup
θ∈[tj ,tj+1]

∥∥∥∥(MN − reiθId
)−1

∥∥∥∥
B(`1ω)

,
1
r

)
≤ C1. (37)

Let M : `1ω → `1ω the compact linear operator

(Mh)n =
{

[MNhN ]n 0 ≤ n ≤ N
0 n ≥ N + 1.

Let
C

def= C1C2C3. (38)

If C < 1 then by Theorem 4.3, M and DF (u0) have the same number of eigenvalues in the
complement of the closed disk of radius r. If C > 1, then either increase the Chebyshev
dimension N , increase the mesh size m to compute C1 or change the decay rate parameter ν,
recompute the constants C1, C2 and C3, define C as in (38), and try to verify that C < 1. The
final step is to enclose the eigenvalues of the matrix MN (which we do using the approach of
[8]) and use that information to obtain a rigorous count for the number of eigenvalues of MN

outside the circle of radius r. This count provides the generalized Morse index µr(u0), that is
the number of eigenvalues of DF (u0) outside the disk Br(0) ⊂ C. Note that µ1 is the standard
Morse index, that is the dimension of the unstable manifold of the fixed point u0. Using the
procedure described above, we proved the following result.

Theorem 4.7. Consider the Mackey-Glass equation (13) at the parameter values τ = 2, γ = 1,
β = 2 and ρ = 10. Denote by u0 ≡ 0 and u1 ≡ 1 the two steady states. Then µ1(u0) = 1,
µ0.6(u0) = 3, µ0.29(u0) = 5, µ0.2(u0) = 7 and µ1(u1) = 2, µ0.85(u1) = 4, µ0.46(u1) = 6,
µ0.341(u1) = 8. In particular, u0 has a one-dimensional unstable manifold and u1 has a two-
dimensional unstable manifold.
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Figure 3: On the left, the spectrum computations for DF (u0) and on the right, the spectrum
computations for DF (u1). The circles of radii r used in the computation of the generalized
Morse indices in the Mackey-Glass equation (13) at the parameter values τ = 2, γ = 1, β = 2
and ρ = 10 are plotted. On each plot, the unit circle is the largest one and is portrayed in red.

u0 r N ν m µr(u0)

0 1 32 1.3 10 1

0 0.6 70 1.2 10 3

0 0.29 200 1.15 40 5

0 0.2 600 1.05 60 7

1 1 310 1.1 100 2

1 0.85 130 1.2 30 4

1 0.46 250 1.1 30 6

1 0.341 500 1.05 90 8

Table 1: Parameters used in the proof of Theorem 4.7 to obtain the generalized Morse indices
in the Mackey-Glass equation (13) at the parameter values τ = 2, γ = 1, β = 2 and ρ = 10.

Proof. The proof follows by running the program int_script_compute_spectrum_cheb.m avail-
able at [21]. This MATLAB program requires the use of the interval arithmetic package INTLAB.
The data for each proof is available in Table 1. The spectra can be visualized in Figure 3.

Similarly, we obtain the following results.

Theorem 4.8. Consider the Ikeda-Matsumoto equation (16) at the parameter value τ = 1.59.
Denote by u0 ≡ 0 and u1 ≡ 1 two steady states. Then µ1(u0) = 1, µ0.25(u0) = 3 and µ1(u1) = 2,
µ0.31(u1) = 4. In particular, u0 has a one-dimensional unstable manifold and u1 has a two-
dimensional unstable manifold.

Theorem 4.9. Consider the delayed van der Pol equation (17) with parameter values τ = 2,
κ = −1 and ε = 0.15. Denote by u0 ≡ (0, 0)T a steady state. Then µ1(u0) = 2, that is u0 has a
two-dimensional unstable manifold.

Theorem 4.10. Consider the delayed predator-prey model (20) with parameter values r1 = 2,
r2 = 1, a = 1 and b = 1/2. Denote by u0 ≡ (y2, y2)T the nontrivial equilibrium given in (21).
Then µ1(u0) = 0, that is u0 is an asymptotically stable steady state.
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d τ N ν m C1 C2 C3 C µ1(u0) Elapsed time (in secs)

3 1 5 2.4 15 4.1174 4.0101 0.013124 0.21669 2 1.27

6 1 5 2.4 15 4.3696 4.2823 0.014524 0.27176 2 1.41

12 1 5 2.4 15 4.8091 4.9555 4.9555 0.4729 2 1.63

24 1 5 2.4 15 5.3788 5.9556 0.029061 0.9309 2 2.67

Table 2: Parameters used in the proofs of the higher dimensional examples.

4.4 Higher dimensional examples

In the previous section, we applied our approach to problems with d = 1 (the Mackey-Glass and
Ikeda-Matsumoto equations) and d = 2 (the van der Pol and predator-prey equations). We now
show that our approach applies to higher dimensional examples.

Given d ≥ 3, consider the d× d matrix

K1 =



ln 3 0 0 · · · 0

0 ln 2 0 · · · 0

0 0 ln 1
2 0

...

0 0 . . . . . . 0

0 0 0 0 ln 1
d−1


and K2 ∈ Md(R) a matrix with random positive entries of size at most 10−2. This choice
of K1 and K2 does not directly come from a specific DDE, but serves instead as a test case
to demonstrate the applicability of our approach to higher dimensional examples. Moreover,
choosing K2 with small entries and K1 as above implies that the first three leading eigenvalues
(i.e. the ones with the largest magnitude) of MN are roughly given by 3, 2 and 1/2, which does
not depend on d. We present the results in Table 2, where we consider systems with dimensions
3, 6, 12 and 24.

5 Conclusions
We have presented a functional analytic approach for validated computation of eigenvalues for
DDEs. In addition we have given a numerical implementation of the scheme which applies to any
DDE with the form in Equation (4). The problem comes from an infinite dimensional setting
but many questions reduce to finite dimensional equations. Our approach moves fluidly between
the finite and infinite dimensional settings, exploiting the best strengths of each.

Validated error bounds for eigenvalues follow from a Newton-Kantorovich theorem applied to
the scalar characteristic equation. Yet studying truncations of the infinite dimensional operators
provides excellent numerical approximation of the eigenvalues. These approximations can be
further refined via Newton’s method if necessary. Returning to the infinite dimensional setting
provides the proper framework for the eigenvalue exclusion problem, giving the best results for
generalized Morse indices.

One natural extension of the present work would be to study repeated eigenvalues and
generalized eigenvectors. This could be done by looking for λ having that

d

dλ
det

(
K1 + 1

λ
K2 −

ln(λ)
τ

Id
)

= 0,
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while simultaneously solving Equation (11) in the case of an eigenvalue with multiplicity two.
For higher multiplicities we would append higher derivatives. The generalized eigenfunctions
of an eigenvalue with multiplicity n have the form eλt, . . . , tneλt, each times an appropriate
generalized eigenvectors of the matrix

M = K1 + 1
λ
K2.

The methods of the present work extend naturally to this problem. Another more ambitious ex-
tension would be to develop analogous methods for systems with multiple constant or distributed
delays.

In Section 3 we discussed an approach to computing the r-generalized Morse index of an
equilibrium solution via the argument principle of complex analysis, and outlined an implemen-
tation. An interesting project would be to complete this outline and compare the results to those
of the present work. We hasten to mention that preliminary results in this direction are not
encouraging. We have implemented a validated line integrator in the case of the Mackey-Glass
equation and while the program works and produces correct results it is no faster, and in most
cases slower than the approach proposed in the present work.

Indeed a naive implementation based on a zero-th order approximation of the integrand yields
fat interval enclosures which contain two or more integer values, hence are useless for determining
the Morse index. Our second attempt at implementing the line integrals exploited high order
Taylor expansions of the integrand and adaptively subdivided the interval of integration. This
scheme produces a validated enclosure of only a single integer, but still runs slower than the
programs discussed above. We have not implemented the contour integrals for any systems
of DDEs, thanks to the difficulties in choosing an appropriate contour already discussed in
Section 3. Indeed, our implementation of the functional analytic approach usually runs in
several seconds or less, and this alone would seem to discourage the approach based on contour
integrals.

Another comment is that, while in the present work we have validated eigenvalue bounds
using a Newton-Kantorovich argument, it is not clear that this approach is appropriate for higher
dimensional problems. To see this consider once again the equation

g(z) = det
(
K1 + 1

z
K2 −

ln(z)
τ

Id
)

= 0,

when K1,K2 are d × d matrices. If d is much greater than 3, expanding the determinant
symbolically, symbolically computing g′ and managing the resulting formulas are cumbersome
tasks.

An alternative is to compute the determinant using validated numerics. While this can be
done it is somewhat delicate and has been avoided in the past by many authors. Moreover all
validated Newton schemes require rigorous enclosure of the derivative. Using Jacobi’s formula
we have that

d

dz
det(M(z)) = tr

(
adj(M(z))M ′(z)

)
,

where
M(z) = K1 + 1

z
K2 −

ln(z)
τ

Id,

so that
M ′(z) = − 1

z2K2 −
1
τz

Id.

If second derivatives are desired these can be worked out as well.
While these high level formulas appear to be straight forward, note that computing the

adjugate matrix adj(M(z)) requires further validated computation of the d2 determinants of the
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d− 1× d− 1 cofactors of M(z). This provides a stand out example of a case where developing
efficient validated numerical schemes for a single scalar equation presents challenges.

While the problems just describe can certainly be overcome, there is another option which
appears to be preferable when d is large. Begining with the equation

G1(ξ, λ) = M2ξ − λM1ξ = 0

appending the scalar phase condition

G2(ξ) = ‖ξ‖2 − 1,

isolates a single solution. Defining the operator G : `1ν × C→ `1ν × C by

G(ξ, λ) =

 G1(ξ, λ)

G2(ξ)

 ,
we have an infinite dimensional zero finding problem whose solutions isolate non-degenerate
eigenvalue/eigenvector pair for the DDE.

In practice G2 is replaced with an equivalent, but differentiable, phase condition. Moreover,
if the coefficients of ξ are complex then G2 can be modified to isolate complex eigenvectors.
Given an approximation eigenpair (ξ, λ) an infinite dimensional analog of Theorem 2.2 leads to
validated a-posteriori error bounds. See for example Theorem 2.1 in [4] or Theorem 1 in [13].
Implementing these ideas leads to an efficient computer-assisted proof strategy for the eigenvalue
problem which goes around the characteristic equation. Similar problems are solved in other
infinite dimensional settings in [10, 14, 24]. See also the works mentioned in the Introduction,
and the references discussed therein. Extending the arguments of the works just cited for
generalized eigenvalue problems leads to validated solutions of eigenvalue problems for DDEs in
any dimension without having to work with the complicated formulas discussed above. This is
a straight forward exercise but it appears to be the right way forward for higher dimensional
problems. In this case the methods of the present work would still provide the initial data
needed for numerical zeros of G, and would still be needed for eigenvalue exclusion.

This is a theme of the present work: that it can be helpful to look at the eigenvalue problem
for DDEs through the lens of numerical linear algebra and scientific computing rather than to
study very complicated – albeit scalar – nonlinear equations. Sophisticated tools from validated
numerics/computer-assisted proofs in analysis are readily applied to the infinite dimensional
problem and the resulting numerical implementation is fast, flexible, and reliable.
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A Proof of Theorem 2.2
Define T : Br∗ (z̄)→ C by

T (z) = z − ag(z),
and observe that z is a zero of g if and only if z is a fixed point of T . Note also that

T ′(z) = 1− ag′(z).

From 0 < r0 ≤ r∗ and p(r0) < 0 it follows that

Zr2
0 + Y < r0, (39)
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and dividing by r0 gives
Zr0 + Y

r0
< 1.

Since Y , r0 are positive it follows that
Zr0 < 1. (40)

For z ∈ Br0 (z̄) we obtain the estimate

|T ′(z)| = |1− ag′(z)|
≤ |1− ag′(z̄)|+ |a||g′(z̄)− g′(z)|

≤
∣∣∣∣1− 1

g′(z̄)g
′(z̄)
∣∣∣∣+ |a| sup

z∈Br0 (x̄)
|g′′(z)||z − z̄|

≤ |1− 1|+ |a| sup
z∈Br∗ (x̄)

|g′′(z)||z − z̄|

≤ Zr0. (41)

Now for z ∈ Br0 (z̄), consider

|T (z)− z̄| ≤ |T (z)− T (z̄)|+ |T (z̄)− z̄|
≤ sup
w∈Br0 (z̄)

|T ′(w)||z − z̄|+ |z̄ − ag(z̄)− z̄|

≤ (Zr0)|z − z̄|+ |ag(z̄)|
≤ Zr2

0 + Y

< r0,

by the inequality of Equation (39), and the bound of Equation (41). Then T maps Br0 (z̄) into Br0 (z̄) ⊂ Br0 (z̄).
Now for z1, z2 ∈ Br0 (z̄) consider

|T (z1)− T (z2)| ≤ sup
w∈Br0 (z̄)

|T ′(w)||z1 − z2|

≤ Zr0|z1 − z2|.

Recalling the inequality of Equation (40), we have that T is a contraction on Br0 (x̄), and since Br0 (x̄) is a
complete metric space, if follows from the contraction mapping theorem that there is a unique z̃ ∈ Br0 (z̄) so that
T (z̃) = z̃. In fact, since T maps Br0 (x̄) into Br0 (z̄) we have that z̃ ∈ Br0 (z̄). Finally, we observe that

ag′(z̃) = 1−
(
(1− ag′(z̄)) + ag′(z̄)− ag′(z̃)

)
where ∣∣(1− ag′(z̄)) + ag′(z̄)− ag′(z̃)

∣∣ ≤ |1− ag′(z̄)|+ |a||g′(z̄)− g′(z̃)| ≤ Zr0

as above, thanks to z̃ ∈ Br0 (z̄). Since Zr0 < 1, it follows that

|ag′(z̃)| ≥ |1− Zr0| > 0,

hence ag′(z̃) is bounded away from zero. Since a 6= 0 it follows that g′(z̃) 6= 0.
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