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Abstract
In this paper, we introduce a rigorous computational approach to prove existence of rotation

invariant patterns for a nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing
to spherical coordinates, the problem becomes a singular second order boundary value problem (BVP)
on the interval (0, π

2 ] with a removable singularity at zero. The singularity is removed by solving the
equation with Taylor series on (0, δ] (with δ small) while a Chebyshev series expansion is used to
solve the problem on [δ, π

2 ]. The two setups are incorporated in a larger zero-finding problem of the
form F (a) = 0 with a containing the coefficients of the Taylor and Chebyshev series. The problem
F = 0 is solved rigorously using a Newton-Kantorovich argument.

Keywords
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1 Introduction
We consider the semi-linear elliptic partial differential equation (PDE)

∆u+ λu+ f(u) = 0 (1)

where ∆ is the Laplace-Beltrami operator on a given smooth manifold, f(u) is a nonlinearity and λ is
a positive parameter. This PDE describes a classical nonlinear elliptic problem [15, 5], which can be
studied for a wide range of nonlinearities. It has close connections to questions in differential geometry,
as the Yamabe problem is described by a special case of (1), see for example [4]. In this paper, we study
the quadratic case f(u) = u2 on the unit sphere S2 ⊂ R3 as considered for instance in [6, 26].

Using the spherical coordinates (x, y, z) = (cosφ sin θ, sinφ sin θ, cos θ) leads to

∆u = 1
sin θ

∂

∂θ

(
sin θ∂u

∂θ

)
+ 1

sin2 θ

∂2u

∂φ2 , (2)

where u = u(θ, φ). We look for a specific type of rotation invariant solutions, namely solutions of (1)
that are radially symmetric around the z-axis (u is constant in φ: u(θ, φ) = u(θ)) and symmetric in
the equator (hence ∂u

∂θ (π2 ) = 0). By restricting the PDE to this class of rotation invariant solutions, the
second term in the right-hand side of (2) vanishes and the problem is reduced to the following singular
second order non-autonomous boundary value problem{

u′′(θ) + cot(θ)u′(θ) + λu(θ) + u(θ)2 = 0, for θ ∈ (0, π2 ],
u′(0) = u′(π2 ) = 0.

(3)
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In [2], a few solutions of (3) were proven to exist using the tools of computer-assisted proofs using a single
Taylor series expansion in θ about zero. However, this approach has clear limitations: the number of
Taylor coefficients needed to represent the solutions on (0, π/2] quickly grows (as λ varies) and the radius
of convergence becomes smaller than π/2. In most cases, a single Taylor series is just not adequate to
represent the solutions. In the current paper, we address this issue and extend significantly the results
presented in [2]. The idea is still to use a Taylor series expansion of the solution, but now only on a short
interval (0, δ] (with δ < π

2 small). Simultaneously, the ODE in (3) is solved on [δ, π2 ] with Chebyshev
series expansions. The two setups are then incorporated in a larger zero-finding problem of the form
F (a) = 0 (see Section 2) with a containing the coefficients of the Taylor and Chebyshev series. The
problem F = 0 incorporates the boundary conditions u′(0) = u′(π2 ) = 0 and a continuity condition at
the interface θ = δ. A Newton-Kantorovich theorem (see Theorem 2.1) is then used to demonstrate that
exact solutions of F = 0 exist close to numerical approximations.

The advantage of this two-steps approach is twofold. First, as in [2], the Taylor series expansion of
the solution about θ = 0 combined with the boundary condition u′(0) = 0 leads to a set-up which gets
rid of the (removable) singularity in the term cot(θ)u′(θ). Second, for any δ > 0, the coefficients of the
Chebyshev series expansion of the solution of the differential equation (3) on [δ, π/2] has exponential
decay, and therefore always converges. That implies that theoretically, this approach is always going to
work, as long as the parameter δ is taken small enough so that the Taylor series expansion of the solution
converges on [0, δ]. Of course, there are always the standard computational limitations (e.g. the finite
dimensional projection size cannot be too large), but there are none theoretically.

Sample results of patterns proven to exist using the approach of the present paper can be found in
Figure 1.

Figure 1: (Left) Two rigorously computed solutions of (1) on the unit sphere S2 ⊂ R3. (Right) The
corresponding solution of the BVP (3) with Taylor expansion in blue and Chebyshev expansion in orange.

The results presented in the present paper fall in the domain of computer-assisted proofs (CAPs)
for PDEs. Before proceeding any further, it is worth mentioning that CAPs in nonlinear analysis began
appearing long before the applications to PDEs. To name a few, in the 1960s, functional analytic methods
of computer-assisted proof already existed exemplified by the work of Cesari on Galerkin projections for
periodic solutions [7, 8]. In the field of dynamical systems, important open problems were settled with
computer-assisted proofs, e.g. the universality of the Feigenbaum constant [12] and the existence of the
strange attractor in the Lorenz system [21] (i.e. Smale’s 14th problem). Other prominent examples outside
dynamics are the proofs of the four-colour theorem [19] and Kepler’s densest sphere packing problem [9].
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We refer the interested to reader to the expository works [11, 16, 17, 18, 20, 22, 25] and the references
therein, for a more complete overview of the field of rigorously verified numerics. Computer-assisted
proofs more closely related to the present work concerned existence of radially symmetric solutions to
the perturbed Gelfand problem [27], radially symmetric localized solution in a Ginzburg-Landau problem
[24] and non-radial solutions for some semilinear elliptic equations on the disk [1].

The paper is organized as follows. In Section 2, we introduce the zero finding problem F (a) = 0 whose
solutions correspond to solution to the BVP (3). Then, we introduce a Newton-Kantorovich theorem
(Theorem 2.1) which is used to prove existence of solutions of F = 0. In Section 3, we present the explicit
bounds required to apply Theorem 2.1. In Section 4, we introduce a bifurcation analysis to compute
branches of solutions (parameterized by λ) bifurcating from the trivial solution u = 0. Then we show
how to perform a continuation to numerically compute branches of solutions, which can then be validated
using Theorem 2.1 using the bounds presented in Section 3.

All the codes necessary to perform the computer-assisted proofs are available at [23].

2 Definition of the zero finding problem
In this section, we introduce a zero finding problem of the form F (a) = 0 whose solutions correspond
to solution to the BVP (3). As mentioned in Section 1, the second order ODE is solved on (0, δ] using
Taylor series and on [δ, π2 ] using Chebyshev series. In order to control numerical instabilities of the
coefficients of the Taylor series (whose growth or decay depend on the radius of convergence), we rescale
the interval (0, δ] to (0, 1] in order to obtain a geometric decay of the Taylor coefficients. This stabilizes
the numerical computations. Moreover, since Chebyshev series represent functions defined on [−1, 1], we
map the interval [δ, π2 ] to [−1, 1]. Hence, letting u0(t) def= u(δt) for t ∈ (0, 1] and u1(t) def= u

(
Kt+ π

4 + δ
2
)

for t ∈ [−1, 1] with K def= π
4 −

δ
2 , the BVP (3) becomes

u′′0(t) + δ cot(δt)u′0(t) + δ2(λu0(t) + u0(t)2) = 0, for t ∈ (0, 1],

u′′1(t) +K cot
(
Kt+ π

4 + δ
2
)
u′1(t) +K2(λu1(t) + u1(t)2) = 0, for t ∈ [−1, 1],

u′0(0) = 0, u′1(1) = 0,

(4)

together with matching conditions for u0 at t = 1 and u1 at t = −1. In order to use Chebyshev expansions
for the u1 equation in (4) for t ∈ [−1, 1], we convert the second order equation into a first order system
and we use the method introduced in [14]. Denote u2(t) def= u′1(t) and denote the non-autonomous term
in the u1 equation by

u3(t) def= cot
(
Kt+ π

4 + δ

2

)
.

Note that u3(−1) = cot(δ). Rather than computing directly the Chebyshev coefficients of the expansion
of the analytic function u3 : [−1, 1] → R, we append a simple polynomial differential equation whose
solution is given by u3, namely u′3(t) + K(1 + u2

3(t)) = 0. Thus the coupled system of equations (4) is
transformed in the polynomial (in fact quadratic) system

u′′0(t) + δu′0(t) cot(δt) + δ2(λu0(t) + u2
0(t)) = 0, for t ∈ (0, 1],

u′1(t)− u2(t) = 0, for t ∈ [−1, 1],
u′2(t) +Ku2(t)u3(t) +K2(λu1(t) + u2

1(t)) = 0, for t ∈ [−1, 1],
u′3(t) +K(1 + u2

3(t)) = 0, for t ∈ [−1, 1],
u′0(0) = 0, u0(1) = u1(−1), u′1(1) = 0, δu2(−1) = Ku′0(1), u3(−1) = cot(δ).

(5)

We remark that the above technique of enlarging a system (with non-polynomial nonlinearities) to make
it polynomial is standard (e.g. see [10, 13]).

As mentioned earlier, the idea is to solve the u0 equation with a Taylor series about 0 while solving
the other three differential equations with Chebyshev series. Hence, let

u0(t) def=
∞∑
n=0

(a0)ntn and uj(t)
def= (aj)0 + 2

∞∑
n=1

(aj)nTn(t) (j = 1, 2, 3), (6)

where T0(t) = 1, T1(t) = t and Tk+1(t) = 2tTk(t)− Tk−1(t) (for k ≥ 1) are the Chebyshev polynomials.
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To handle the singular term cot(δt) in the u0 equation, we proceed exactly as in [2]. Note first that

cot(δt) = 1
δt
− 2

∑
n≥1

(δt)2n−1

π2n ζ(2n), ζ(2n) def=
∑
k≥1

1
k2n

where ζ is the Riemann zeta function. Hence, denote

δt cot(δt) = 1− 2
∑
n≥1

(
δt

π

)2n
ζ(2n) =

∑
n≥0

bnt
n,

with

bn
def=


1 if n = 0,

−2
(
δ
π

)n
ζ(n) if n ≥ 1 is even,

0 if n is odd,

where the values ζ(n) can be rigorously estimated using finite sums computations with interval arithmetic
and tail estimation using integral estimates (see [2]).

Given j ∈ {0, 1, 2, 3}, denote aj = {(aj)n}n∈N and let a def= (a0, a1, a2, a3). Denote b = {bn}n∈N
and define the sequence Ja0

def= {n(a0)n}n∈N. Plugging the Taylor series for u0 in the first ODE of (5),
equating powers and assuming that u′0(0) = 0 leads to

n(n− 1)(a0)n + (b ∗ Ja0)n + δ2(λ(a0)n−2 + (a0 ∗ a0)n−2) = 0, n ≥ 2, (7)

where the symbol ∗ denotes the Cauchy product. For example, (b ∗ Ja0)n
def=
∑
k≥0 bk(Ja0)n−k. The

conditions u′0(0) = 0 and u0(1) = u1(−1) are imposed by requiring that

(a0)1 = 0 and
∞∑
j=0

(a0)j = (a1)0 + 2
∞∑
j=1

(−1)j(a1)j , (8)

respectively, where we used the standard property Tj(−1) = (−1)j of the Chebyshev polynomials. Com-
bining the conditions (7) and (8) leads to a zero finding problem F0 = 0, where F0 is defined component-
wise by

(F0(a))n
def=


(a0)1 n = 0,
∞∑
j=0

(a0)j − (a1)0 − 2
∞∑
j=1

(−1)j(a1)j , n = 1,

n(n− 1)(a0)n + (b ∗ Ja0)n + δ2(λ(a0)n−2 + (a0 ∗ a0)n−2) n ≥ 2.

(9)

Next we obtain similar zero finding problems F1 = F2 = F3 = 0 resulting from solving the remaining
three ODEs of (5) with Chebyshev series. In order to do so, define the tridiagonal operator T acting on
a sequence c = {cn}n≥0 by

(T c)n =
{

0, n = 0,
−cn−1 + cn+1, n ≥ 1

(10)

and let

(φ1(a))n
def= (a2)n,

(φ2(a))n
def= −K(a2 ∗ a3)n −K2(λ(a1)n + (a1 ∗ a1)n),

(φ3(a))n
def= −K(δn,0 + (a3 ∗ a3)n),

where δi,j denotes the Kronecker delta and where ∗ denotes the discrete convolution. For example
(a2 ∗ a3)n

def=
∑

n1+n2=n
n1,n2∈Z

(a2)|n1|(a3)|n2|. For the sake of simplicity of the presentation, we use the same
symbol ∗ to denote both the Cauchy product and the discrete convolution, and it should be clear from
the context which one is which, depending of the type of sequence (Taylor or Chebyshev) the product
involves.
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Plugging the Chebyshev series expansions of u1, u2 and u3 (see (6)) in the remaining three ODEs of
(5) and in the conditions u′1(1) = 0, δu2(−1) = Ku′0(1) and u3(−1) = cot(δ), leads to (e.g. see [14]) the
zero finding problems F1 = F2 = F3 = 0, where

(F1(a))n
def=


∑∞
j=1 j

2(a1)j n = 0,

2n(a1)n + (T φ1(a))n n ≥ 1,
(11)

(F2(a))n
def=

 δ
(

(a2)0 + 2
∑∞
j=1(−1)j(a2)j

)
−K

∑∞
j=0 j(a0)j n = 0,

2n(a2)n + (T φ2(a))n n ≥ 1,
(12)

(F3(a))n
def=

 (a3)0 + 2
∑∞
j=1(−1)j(a3)j − cot(δ) n = 0,

2n(a3)n + (T φ3(a))n n ≥ 1.
(13)

By combining (9), (11), (12) and (13), we obtain the zero finding problem F (a) = 0, where F def=
(F0, F1, F2, F3). We solve this problem using the following Newton-Kantorovich type theorem, whose
standard proof is omitted.

Theorem 2.1. Let X,Y be Banach spaces and assume that F : X → Y is Fréchet differentiable. Let
ā ∈ X. Consider bounded linear operators A† ∈ B(X,Y ) and A ∈ B(Y,X). Observe that

AF : X → X. (14)

Assume that A is injective. Let Y0, Z0, Z1, Z2 ≥ 0 be bounds satisfying

‖AF (ā)‖X ≤ Y0, (15)
‖I −AA†‖B(X) ≤ Z0, (16)

‖A[DF (ā)−A†]‖B(X) ≤ Z1, (17)
‖A[DF (c)−DF (ā)]‖B(X) ≤ Z2r, ∀ c ∈ Br(ā), (18)

where Br(ā) denotes the open ball in X of radius r > 0 and centered at ā. Define the radii polynomial by

p(r) def= Z2r
2 + (Z1 + Z0 − 1)r + Y0. (19)

If there exists r0 > 0 such that
p(r0) < 0, (20)

then there exists a unique ã ∈ Br0(ā) such that F (ã) = 0.

Typically the choices made to apply Theorem 2.1 are as follows. The Banach space X corresponds to
the cartesian product of weighed `1 sequence spaces of coefficients (in our case of Taylor and Chebyshev
coefficients) decaying geometrically to 0. The Banach space Y is similar to X, but incorporates the loss
of regularity coming from applying the differential operators in the ODEs to the solutions. The point ā
(the center of the ball) is a numerical approximation of F = 0 obtained via applying Newton’s method
to a finite dimensional reduction. The operator A† is an approximation of the Fréchet derivative DF (ā)
while the operator A is an approximate inverse of DF (ā).

Let us make these choices explicit. To define the Banach space X, we begin by defining weighted
`1 spaces of Taylor and Chebyshev coefficients. For a sequence of weights ω def= (ωn)n≥0 with positive
entries, and a sequence c = (cn)n≥0, denote

‖c‖1,ω
def=
∑
n≥0
|cn|ωn

and
`1ω

def= {c = (cn)n≥0 : ‖c‖1,ω <∞}.

Given a number µ > 0, define the Taylor sequence of weights ωT = ωT(µ) component-wise by (ωT)n
def= µn.

Using these weights, `1ωT
is a Banach algebra under the Cauchy product, that is for all c1, c2 ∈ `1ωT

,
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‖c1 ∗ c2‖1,ωT
≤ ‖c1‖1,ωT

‖c2‖1,ωT
. Given a number ν ≥ 1, define the Chebyshev sequence of weights

ωC = ωC(ν) component-wise by

(ωC)n =
{

1, n = 0
2νn, n ≥ 1.

Using these weights, `1ωC
is a Banach algebra under the discrete convolution, that is for all c1, c2 ∈ `1ωC

,
‖c1 ∗ c2‖1,ωC

≤ ‖c1‖1,ωC
‖c2‖1,ωC

. Letting X0
def= `1ωT

and Xj
def= `1ωC

for j = 1, 2, 3, set

X
def= X0 ⊕X1 ⊕X2 ⊕X3

so that a = (a0, a1, a2, a3) ∈ X. Given αj > 0, j = 0, 1, 2, 3 (to be chosen later), the norm in X is given
by

‖a‖X = max{α0‖a0‖1,ωT
, α1‖a1‖1,ωC

, α2‖a2‖1,ωC
, α3‖a3‖1,ωC

}.

Define the new weights ω̃T and ω̃C component-wise by (ω̃T)0 = (ω̃C)0 = 1 and for n ≥ 1, (ω̃T)n
def= ωT/n

2

and ω̃C
def= ωC/n. Set Y

def= `1ω̃T
⊕ `1ω̃C

⊕ `1ω̃C
⊕ `1ω̃C

. Using the fact that `1ωT
and `1ωC

are Banach algebras
under the Cauchy product and discrete convolution, respectively, it is a simple to verify that F : X → Y .
Having defined the Banach spaces X and Y , we now turn to the question of computing a numerical
approximation ā of F = 0. This requires first considering a finite dimensional projection.

Given a number m ∈ N, and given a vector c = (cn)n≥0 ∈ `1ω, consider the projection

πm : `1ω → Rm+1

c 7→ πmc
def= (cn)mn=0 ∈ Rm+1.

Given c ∈ `1ω, we sometimes will use the notation c(m) def= πmc. Given a Taylor projection M and a
Chebyshev projection N , we generalize that projection to get Π(M,N) : X → RM+1×RN+1×RN+1×RN+1

defined by

Π(M,N)(a) = Π(M,N)(a0, a1, a2, a3) def= (πMa0, π
Na1, π

Na2, π
Na3) ∈ R(M+1)+3(N+1).

Often, given a ∈ X, we denote
a(M,N) def= Π(M,N)a ∈ RM+3N+4.

For any weights ω, we define the natural inclusion ιm : Rm+1 ↪−→ `1ω as follows. For c = (cn)mn=0 ∈ Rm+1,
we define ιmc ∈ `1ω component-wise by

(ιmc)n =
{
cn, n = 0, . . . ,m
0, n ≥ m.

Similarly, let ι(M,N) : RM+3N+4 ↪−→ X be the natural inclusion defined as follows. Given a = (a0, a1, a2, a3) ∈
RM+3N+4, we define

ι(M,N)a
def=
(
ιMa0, ι

Na1, ι
Na2, ι

Na3
)
∈ X.

Let the finite dimensional projection F (M,N) : RM+3N+4 → RM+3N+4 of the map F be defined, for
a ∈ RM+3N+4, as

F (M,N)(a) = Π(M,N)F (ι(M,N)a). (21)

Similarly, we define F (M)
0 (a) = πMF0(ι(M,N)a), and F (N)

j by F (N)
j (a) = πNFj(ι(M,N)a), for j = 1, 2, 3.

Using that notation, we may write F (M,N)(a) =
(
F

(M)
0 (a), F (N)

1 (a), F (N)
2 (a), F (N)

3 (a)
)
.

Having defined the finite dimensional reduction, we can apply Newton’s method to compute ā =
(ā0, ā1, ā2, ā3) ∈ RM+3N+4 such that F (M,N)(ā) ≈ 0. For Newton’s method to converge, we however
need a good initial guess, which in our case is provided via a bifurcation analysis and a continuation
method (see Section 4.1).

The next step towards applying Theorem 2.1 is to define the operators A† and A. Denote by
DF (M,N)(ā) the Jacobian of F (M,N) at ā, and let us write it as

DF (M,N)(ā) =


Da0F

(M)
0 (ā) Da1F

(M)
0 (ā) Da2F

(M)
0 (ā) Da3F

(M)
0 (ā)

Da0F
(N)
1 (ā) Da1F

(N)
1 (ā) Da2F

(N)
1 (ā) Da3F

(N)
1 (ā)

Da0F
(N)
2 (ā) Da1F

(N)
2 (ā) Da2F

(N)
2 (ā) Da3F

(N)
2 (ā)

Da0F
(N)
3 (ā) Da1F

(N)
3 (ā) Da2F

(N)
3 (ā) Da3F

(N)
3 (ā)

 ∈MM+3N+4(R).
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Using the above notation, let

A†
def=


A†00 A†01 A†02 A†03

A†10 A†11 A†12 A†13

A†20 A†21 A†22 A†23

A†30 A†31 A†32 A†33

 (22)

where A†00 : `1ωT
→ `1ω̃T

, A†0j : `1ωC
→ `1ωT

, A†i0 : `1ωT
→ `1ωC

, A†ij : `1ωC
→ `1ω̃C

for i, j = 1, 2, 3, are defined
by

(A†00h0)n =
{(
Da0F

(M)
0 (ā)h(M)

0
)
n

for 0 ≤ n ≤M,

n(n− 1)(h0)n for n > M,

(A†0jhj)n =
{(
Daj

F
(M)
0 (ā)h(N)

j

)
n

for 0 ≤ n ≤M,

0 for n > M,
(for j = 1, 2, 3),

(A†i0h0)n =
{(
Da0F

(N)
i (ā)h(M)

0
)
n

for 0 ≤ n ≤ N,
0 for n > N,

(for i = 1, 2, 3),

(A†ijhj)n =
{(
Daj

F
(N)
i (ā)h(N)

j

)
n

for 0 ≤ n ≤ N,
δi,j2n(hj)n for n > N,

(for i, j = 1, 2, 3).

The action of A† on an element h = (h0, h1, h2, h3) ∈ X is defined by (A†h)i =
∑3
j=0A

†
i,jhj , for

i = 0, 1, 2, 3.
Consider now a matrix A(M,N) ∈ MM+3N+4(R) computed so that A(M,N) ≈ DF (M,N)(ā)−1. We

decompose it block-wise as

A(M,N) =


A

(M,M)
00 A

(M,N)
01 A

(M,N)
02 A

(M,N)
03

A
(N,M)
10 A

(N,N)
11 A

(N,N)
12 A

(N,N)
13

A
(N,M)
20 A

(N,N)
21 A

(N,N)
22 A

(N,N)
23

A
(N,M)
30 A

(N,N)
31 A

(N,N)
32 A

(N,N)
33

 .

This allows defining the linear operator A as

A =


A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

 , (23)

where A00 : `1ωT
→ `1ωT

, for i, j > 0, A0j : `1ωC
→ `1ωT

, Ai0 : `1ωT
→ `1ωC

, Aij : `1ωC
→ `1ωC

are defined by

(A00h0)n =
{(
A

(M,M)
00 h

(M)
0
)
n

for 0 ≤ n ≤M,
1

n(n−1) (h0)n for n > M,

(A0jhj)n =
{(
A

(M,N)
0j h

(N)
j

)
n

for 0 ≤ n ≤M,

0 for n > M,
(for j = 1, 2, 3),

(Ai0h0)n =
{(
A

(N,M)
i0 h

(M)
0
)
n

for 0 ≤ n ≤ N,
0 for n > N,

(for i = 1, 2, 3),

(Aijhj)n =
{(
A

(N,N)
ij h

(N)
j

)
n

for 0 ≤ n ≤ N,
δi,j

1
2n (hj)n for n > N,

(for i, j = 1, 2, 3).

The action of A on an element h = (h0, h1, h2, h3) ∈ X is defined by (Ah)i =
∑3
j=0Ai,jhj , for i = 0, 1, 2, 3.

Having obtained an approximate solution ā and the linear operators A† and A, the next step is to
construct the bounds Y0, Z0, Z1 and Z2 satisfying (15), (16), (17) and (18), respectively.
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3 Bounds for the Newton-Kantorovich theorem
In this section, we introduce the formulas for the bounds Y0, Z0, Z1, Z2 ≥ 0 satisfying (15), (16), (17) and
(18), respectively.

3.1 The bound Y0

Recalling (15), note that Y0 satisfies

‖AF (ā)‖X = max
0≤i≤3

αi

3∑
j=0
‖AijFj(ā)‖Xi

≤ Y0

For i, j ≥ 1,

‖AijFj(ā)‖1,ωC
= |(AijFj(ā))0|+ 2

∞∑
n=1
|(AijFj(ā))n|νn

= |(AijFj(ā))0|+ 2
N∑
n=1
|(AijFj(ā))n|νn + 2

∞∑
n=N+1

|(AijFj(ā))n|νn

= ‖ιNA(N,N)
ij F

(N)
j (ā)‖1,ωC

+ 2
∞∑

n=N+1

δi,j
2n |(Fi(ā))n|νn

≤ ‖ιNA(N,N)
ij F

(N)
j (ā)‖1,ωC

+ δi,j

2N+1∑
n=N+1

1
n
|(Fi(ā))n|νn

def= Y
(0)
i,j .

The last inequality follows from the fact that for j = 1, 2, 3, the Chebyshev coefficients satisfy (āj)n = 0
for n > N , and then (Fi(ā))n = 0 for all n > 2N + 1 since the problem (5) is quadratic and because of
the action of T (being tridiagonal).

Using the same idea, we define for i = 0 and j = 1, 2, 3,

‖A0jFj(ā)‖1,ωT
= ‖ιMA(M,N)

0j F
(N)
j (ā)‖1,ωT

def= Y
(0)
0,j

and for i = 1, 2, 3 and j = 0,

‖Ai0F0(ā)‖1,ωC
= ‖ιNA(N,M)

i0 F
(M)
0 (ā)‖1,ωC

def= Y
(0)
i,0 .

For the case i = j = 0, since we analytically defined the Taylor coefficients {bn}n∈N of δt cot(δt) in F0,
we have

‖A00F0(ā)‖1,ωT
=
∞∑
n=0
|(A00F0(ā))n|µn

= ‖ιMA(M,M)
00 F

(M)
0 (ā)‖1,ωT

+
2M+2∑
n=M+1

|(F0(ā))n|
n(n− 1) µ

n +
∞∑

n=2M+3

|(b ∗ Jā0)n|
n(n− 1) µn.

To bound the tail, we use the estimate

|bn| =
∣∣∣∣2( δπ

)n
ζ(k)

∣∣∣∣ = 2
(
δ

π

)n∑
j≥1

1
jn
≤ 2

(
δ

π

)n∑
j≥1

1
j2 =

(
δ

π

)n
π2

3 , for n ≥ 2.
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From there, we have

∞∑
n=2M+3

|(b ∗ Jā0)n|
n(n− 1) µn ≤ 1

(2M + 3)(2M + 2)

∞∑
n=2M+3

∣∣∣∣∣∣
M∑
j=0

j(ā0)jbn−j

∣∣∣∣∣∣µn
≤ 1

(2M + 3)(2M + 2)

M∑
j=0
|j(ā0)j |µj

∞∑
n=2M+3

|bn−j |µn−j

≤
‖ιMJā0‖1,ωT

(2M + 3)(2M + 2)

∞∑
n=M+3

|bn|µn

≤
π2‖ιMJā0‖1,ωT

3(2M + 3)(2M + 2)

∞∑
n=M+3

(
δµ

π

)n

≤

(
δπ2‖ιMJā0‖1,ωT

3(2M + 3)(2M + 2)

)(
1

1− δµ
π

)(
δµ

π

)M+3
def= Y

(0)
tail.

The last inequality comes from the fact that δ ∈ (0, π2 ) and the fact that we choose µ < π
δ .

We define

Y
(0)
0,0

def= ‖ιMA(M,M)
00 F

(M)
0 (ā)‖1,ωT

+
2M+2∑
n=M+1

1
n(n− 1) |(F0(ā))n|µn + Y

(0)
tail.

Finally, using the above results, set

Y0
def= max

i∈{0,1,2,3}

αi 3∑
j=0

Y
(0)
i,j

. (24)

3.2 The bound Z0

Recall from (16) that the bound Z0 satisfies

‖I −AA†‖B(X,X) ≤ Z0.

We set

E def= I −AA† =


E00 E01 E02 E03

E10 E11 E12 E13

E20 E21 E22 E23

E30 E31 E32 E33

 ,

then E00 : `1ωT
→ `1ωT

, and for i, j > 0, E0j : `1ωC
→ `1ωT

, Ei0 : `1ωT
→ `1ωC

, Eij : `1ωC
→ `1ωC

, with

(E00h0)n =
{(
E(M,M)

00 h
(M)
0
)
n

for 0 ≤ n ≤M,

0 for n > M,

(E0jhj)n =
{(
E(M,N)

0j h
(N)
j

)
n

for 0 ≤ n ≤M,

0 for n > M,
(for j = 1, 2, 3),

(Ei0h0)n =
{(
E(N,M)
i0 h

(M)
0
)
n

for 0 ≤ n ≤ N,
0 for n > N,

(for i = 1, 2, 3),

(Eijhj)n =
{(
E(N,N)
ij h

(N)
j

)
n

for 0 ≤ n ≤ N,
0 for n > N,

(for i, j = 1, 2, 3).
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where for instance, the matrix E(M,M)
00

def= I−A(M,M)Daj
F

(M)
0 (ā) ∈MM+1(R). Denoting the components

of Eij by (Ei,j)m,n, using standard operator norms computations, one can show that

‖I −AA†‖B(X,X) ≤ max
0≤i≤3

 1
αi

3∑
j=0

αjKi,j

 def= Z0, (25)

where

Ki,j
def=



max
0≤n≤M

1
(ωT)n

M∑
m=0
|(E0,0)m,n|(ωT)m, i = j = 0,

max
0≤n≤N

1
(ωT)n

M∑
m=0
|(E0,j)m,n|(ωC)m, i = 0, j ≥ 1,

max
0≤n≤M

1
(ωC)n

N∑
m=0
|(Ei,0)m,n|(ωT)m, i ≥ 1, j = 0,

max
0≤n≤N

1
(ωC)n

N∑
m=0
|(Ei,j)m,n|(ωC)m, i, j ≥ 1.

3.3 The bound Z1

Recall from (17) that the bound Z1 satisfies

‖A[DF (ā)−A†]‖B(X,X) = sup
‖h‖X=1

‖A[DF (ā)−A†]h‖X ≤ Z1.

Before going further in the computation of the bound, we need the identity

(b ∗ Jh0)n = n(b ∗ h0)n − (Jb ∗ h0)n,

where Jb = {nbn}n∈N, which we will apply to the Taylor coefficients bn of δt cot(δt). We set

‖b‖1,ωT
=
∞∑
n=0
|bn|µn ≤ 1 + π2

3

∞∑
n=1

(
δµ

π

)2n
= 1 + (δµ)2

3(1− ( δµπ )2)
def= C1,

‖Jb‖1,ωT
=
∞∑
n=0
|nbn|µn ≤

2π2

3

∞∑
n=1

n

(
δµ

π

)2n
= 2(δµ)2

3(1− ( δµπ )2)2
def= C2.

We define
(yij)n

def= ([DajFi(ā)−A†ij ]hj)n for i, j ∈ {0, 1, 2, 3} and n ≥ 0.

For i, j, n all nonzero we will often rewrite (yij)n with the help of (zij)N+1
n=1 and (z̃ij)∞n=N , which are

defined (explicitly below) such that

(T zij)n = (yij)n, for 1 ≤ n ≤ N (26)
(T z̃ij)n = (yij)n, for n ≥ N + 1. (27)

We choose this notation (T zij)n and (T z̃ij)n since it will be, at times, easier to derive the bounds if we
are working with Aii′T zi′j instead of Aii′yi′j . The distinction between z and z̃ is necessary since the
projection πN and the tridiagonal operator T do not commute.

Given c ∈ `1ωT
, we use the notation cIM

def= (I − πM )c. Similarly, given c ∈ `1ωC
, we use the notation
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cIN
def= (I − πN )c. For i = 0 we find

(y00)k =



0 for k = 0,∑∞
j=M+1(h0)j for k = 1,

0 for 2 ≤ k ≤M,

k(b ∗ h0)k − (Jb ∗ h0)k + δ2(λ(h0)k−2 + 2(ā0 ∗ h0)k−2) for k ≥M + 1,

(y01)k =


0 for k = 0,

2
∑∞
j=N+1(−1)j+1(h1)j for k = 1,

0 for k ≥ 2,

(y02)k = (y03)k = 0, for all k,

where we have used that (y00)k = 2δ2(ā0 ∗ hIM
0 )k−2 = 0 for k = 2, . . . ,M .

For i = 1, we find (y10)k = 0 for all k ≥ 0 and

(y11)0 =
∞∑

j=N+1
j2(h1)j ,

and (y12)0 = (y13)0 = 0. For i = 2, we have

(y20)k =

 −K
∑∞
j=M+1 j(h0)j for k = 0,

0 for k ≥ 1,

and

(y22)0 = 2δ
∞∑

j=N+1
(−1)j(h2)j ,

and (y21)0 = (y23)0 = 0. And finally for i = 3, we have (y30)k = 0 for all k ≥ 0 and

(y33)0 = 2
∞∑

j=N+1
(−1)j(h3)j ,

and (y31)0 = (y32)0 = 0.
We now turn to (yij)k for i, j, k all nonzero, which we describe in terms of z and z̃ as expressed in (26)

and (27). Since φ1 does not depend on a1 and a3, we define z11, and z13 as well as z̃11 and z̃13 to vanish.
Moreover, we set

(z12)k
def= (hI2)k for 1 ≤ k ≤ N + 1.

(z̃12)k
def= (h2)k for k ≥ N.

Similary, defining λ̄ def= (λ, 0, 0, ...) ∈ `1ωC
we set

(z21)k
def= −K2((λ̄+ 2ā1) ∗ hIN

1 )k for 1 ≤ k ≤ N + 1,
(z̃21)k

def= −K2((λ̄+ 2ā1) ∗ h1)k for k ≥ N,
(z22)k

def= −K(ā3 ∗ hIN
2 )k for 1 ≤ k ≤ N + 1,

(z̃22)k
def= −K(ā3 ∗ h2)k for k ≥ N,

(z23)k
def= −K(ā2 ∗ hIN

3 )k for 1 ≤ k ≤ N + 1,
(z̃23)k

def= −K(ā2 ∗ h3)k for k ≥ N.

Furtermore, we define z31, and z32 as well as z̃31 and z̃32 to vanish, while setting

(z33)k
def= −2K(ā3 ∗ hIN

3 )k for 1 ≤ k ≤ N + 1,
(z̃33)k

def= −2K(ā3 ∗ h3)k for k ≥ N.

To take advantage of the notation with z and z̃ we will need the following two results
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Lemma 3.1. Let T : `1ωC
→ `1ωC

be the operator defined in (10), then

‖T ‖B(`1
ωC

) ≤ 2ν.

Proof. Let h ∈ `1ωC
with ‖h‖1,ωC

= 1. Since ν ≥ 1, note that 1/ν ≤ ν. Hence,

‖T h‖1,ωC
= 2

∞∑
k=1
|(T h)k|νk

= 2
∞∑
k=1
| − hk−1 + hk+1|νk

≤ 2ν
∞∑
k=0
|hk|νk + 2

ν

∞∑
k=2
|hk|νk

≤ ν
(
|h0|+ ‖h‖1,ωC

)
+ 2ν

∞∑
k=2
|hk|νk

= ν‖h‖1,ωC
+ ν

(
|h0|+ 2

∞∑
k=2
|hk|νk

)
≤ ν‖h‖1,ωC

+ ν‖h‖1,ωC

≤ 2ν.

Lemma 3.2. Let ā ∈ `1ωC
be such that ān = 0 for n > N . Let h = {hn} ∈ `1ωC

with ‖h‖1,ωC
≤ 1. Let

hIN = (0, ..., 0, hN+1, hN+2, ...). We define l̂kā : `1ωC
→ R by

l̂kā (h) def= (ā ∗ hIN )k.

Let
Ψk(ā) def= max

N+1≤j≤k+N

|ā|k−j||
2νj , (28)

then, ∣∣∣̂lkā (h)
∣∣∣ ≤ Ψk(ā). (29)

Proof. This follows from the identity l̂kā (h) =
∑
j>N (ā|k−j| + ā|k+j|)hj . The details are left to the

reader.

The bound Z1 will be assembled, using the triangle inequality, from bounds

Z
(1)
ij ≥

3∑
i′=0
‖Aii′ [DajFi′(ā)−A†i′j ]hj‖Xi with i, j = 0, 1, 2, 3,

uniformly for ‖hj‖Xj ≤ 1. In what follows we will estimate each term separately:

‖Aii′ [Daj
Fi′(ā)−A†i′j ]hj‖Xi

= ‖Aii′yi′j‖Xi
≤ Aii′j for all ‖hj‖Xj

≤ 1. (30)

It is immediate from the vanishing of the corresponding partial derivatives Daj
Fi′ that

Ai02 = Ai03 = Ai10 = Ai13 = Ai30 = Ai31 = Ai32 = 0 for i = 0, 1, 2, 3.

To determine the nonzero terms, let us start with

‖A00y00‖1,ωT
=
∞∑
k=0
|(A00y00)k|µk =

M∑
k=0
|(A00y00)k|µk +

∞∑
k=M+1

1
k(k − 1) |(y00)k|µk.
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We estimate each term separately. First, recalling that (y00)j = 0 for j = 0, 2, . . . ,M ,

M∑
k=0
|(A00y00)k|µk =

M∑
k=0
|(A00y00)k|µk =

M∑
k=0

∣∣∣∣∣
M∑
n=1

(A00)k,n(y00)n

∣∣∣∣∣µk =
M∑
k=0
|(A00)k,1(y00)1|µk

≤

∣∣∣∣∣∣
∑

n′≥M+1
(h0)n′

∣∣∣∣∣∣ · ‖(A00):,1‖1,ωT
≤
‖(A00):,1‖1,ωT

µM+1 ,

where (Aij):,k represents the vector composed of the elements of the (k + 1)th column of Aij . Second,
recall that λ̄ = (λ, 0, 0, ...) which we now interpret as an element of `1ωT

. Then

∞∑
k=M+1

1
k(k − 1) |(y00)k|µk ≤

∑
k≥M+1

|k(b ∗ h0)k − (Jb ∗ h0)k + δ2(λ(h0)k−2 + 2(ā0 ∗ h0)k−2|
k(k − 1) µk

≤
‖b ∗ h0‖1,ωT

M
+
‖Jb ∗ h0‖1,ωT

M(M + 1) +
δ2‖(λ̄+ 2ā0) ∗ h0‖1,ωT

µ−2

M(M + 1)

≤ C1

M
+ C2

M(M + 1) +
δ2‖λ̄+ 2ā0‖1,ωT

µ2M(M + 1) .

We set

A000
def=
‖(A00):,1‖1,ωT

µM+1 + C1

M
+ C2

M(M + 1) +
δ2‖λ̄+ 2ā0‖1,ωT

µ2M(M + 1) .

Using the same method, but simpler since there are no tail terms, we find

‖A00y01‖1,ωT
≤
∞∑
k=0

∞∑
n=0
|(A00)k,n||(y01)n|µk ≤ 2

M∑
k=0

∞∑
n′=N+1

|(A00)k,1||(h1)n′ |µk ≤
‖(A00):,0‖1,ωT

νN+1
def= A001.

Next we consider

‖A02y20‖1,ωT
≤

M∑
k=0

N∑
n=0
|(A02)k,n||(y20)n|µk ≤ K

M∑
k=0

∞∑
n′=M+1

|(A02)k,0|n′|(h0)n′ |µk

≤
K(M + 1)‖(A02):,0‖1,ωT

µM+1
def= A020.

Here we have assumed that M + 1 ≥ (logµ)−1. Analogously, we find, for i = 1, 2, 3

Ai20
def=

K(M + 1)‖(Ai2):,0‖1,ωC

µM+1 Ai00
def=
‖(Ai0):,1‖1,ωC

µM+1 Ai01
def=
‖(Ai0):,1‖1,ωC

νN+1 .

We now turn attention to the terms i′, j = 1, 2, 3. As a representative case, we consider i = i′ = j = 2:

‖A22y22‖1,ωC
=
∑
k≥0

(
|(A22)k,0(y22)0|+

N∑
n=1
|(A22)k,n(T z22)n|+

∞∑
n=N+1

|(A22)k,n(T z̃22)n|
)

(ωC)k.

Here we have used that A22 is block-diagonal with a finite part A(N,N)
22 and a diagonal operator in the

tail, as well as that T is tridiagonal. Let us look at each of the three terms individually. The first term
is bounded by

|(y22)0|
N∑
k=0
|(A22)k,0|(ωC)k = 2δ

∣∣∣∣∣∣
∑

j≥N+1
(−1)j(h2)j

∣∣∣∣∣∣ · ‖(A22):,0‖1,ωC

≤ 2δ
∑

j≥N+1
|(h2)j |

2νj

2νN+1 · ‖(A22):,0‖1,ωC

≤
2δ‖h2‖1,ωC

2νN+1 ‖(A22):,0‖1,ωC
≤ δ

νN+1 ‖(A22):,0‖1,ωC
.
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The third term is bounded by

2
∑

k≥N+1

 ∑
n≥N+1

|(A22)k,n(T z̃22)n|

 νk = 2
∑

k≥N+1

(
|(z̃22)k+1 − (z̃22)k−1|

2k

)
νk

≤ 2K
2(N + 1)

∑
k≥N+1

(|(ā3 ∗ h2)k+1|+ |(ā3 ∗ h2)k−1|) νk

≤ K

N + 1

 1
2ν

∑
k≥N+1

|(ā3 ∗ h2)k+1|2νk+1 + ν

2
∑

k≥N+1
|(ā3 ∗ h2)k−1|2νk−1


≤
K
(

1
ν ‖ā3 ∗ h2‖1,ωC

+ ν‖ā3 ∗ h2‖1,ωC

)
2(N + 1)

≤
K
(
ν + 1

ν

)
‖ā3‖1,ωC

2(N + 1) .

The second term is bounded by

N∑
k=0

∣∣∣∣∣
N∑

n′=1

N+1∑
n=0

(A22)k,n′Tn′,n(z22)n

∣∣∣∣∣ (ωC)k ≤
N∑
k=0

N+1∑
n=0

∣∣∣∣∣
N∑

n′=0
(A22)k,n′Tn′,n

∣∣∣∣∣ |(z22)n| (ωC)k

≤
∥∥∥∣∣∣A(N,N)

22 T (N,N+1)
∣∣∣ ∣∣∣z(N+1)

22

∣∣∣∥∥∥
1,ωC

,

where we have used that the first row of T vanishes, absolute values are to be interpreted component-
wise, and we have somewhat abused the notation of restricting operators on and elements of `1ωC

to
finite dimensional projections, e.g. T (N,N+1) ∈ MN+1,N+2(R). We then use Lemma 29 to estimate
(z22)n = K(ā3 ∗ hIN

3 )n and we obtain∥∥∥∣∣∣A(N,N)
22 T (N,N+1)

∣∣∣ ∣∣∣z(N+1)
22

∣∣∣∥∥∥
1,ωC

≤ K‖|A22T |N+1
N Ψ(ā3)‖1,ωC

,

where |A22T |N+1
N Ψ(ā3) should be read as an abbreviation for |A(N,N)

22 T (N,N+1)|Ψ(ā3)(N+1). Combining
these three parts, we set

A222
def= δ

νN+1 ‖(A22):,0‖1,ωC
+K‖|A22T |N+1

N Ψ(ā3)‖1,ωC
+
K
(
ν + 1

ν

)
‖ā3‖1,ωC

2(N + 1)

All other terms can be estimated similarly. We find

A022
def= δ

νN+1 ‖(A02):,0‖1,ωT
+K‖|A02T |N+1

N Ψ(ā3)‖1,ωC

Ai22
def= δ

νN+1 ‖(Ai2):,0‖1,ωC
+K‖|Ai2T |N+1

N Ψ(ā3)‖1,ωC
for i = 1, 3.

Furthermore

A011
def= (N + 1)2

2νN+1 ‖(A01):,0‖1,ωT
, Ai11

def= (N + 1)2

2νN+1 ‖(Ai1):,0‖1,ωC
, for i = 1, 2, 3.

where we have assumed that N + 1 ≥ 2(log ν)−1. The remaining constants are

A033
def= 1

νN+1 ‖(A03):,0‖1,ωT
+ 2K‖|A03T |N+1

N Ψ(ā3)‖1,ωT

A333
def= 1

νN+1 ‖(A33):,0‖1,ωC
+ 2K‖|A33T |N+1

N Ψ(ā3)‖1,ωC
+
K
(
ν + 1

ν

)
‖ā3‖1,ωC

N + 1

Ai33
def= 1

νN+1 ‖(Ai3):,0‖1,ωC
+ 2K‖|Ai3T |N+1

N Ψ(ā3)‖1,ωC
for i = 1, 2,
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and

A021
def= K2‖|A02T |N+1

N Ψ(λ̄+ 2ā1)‖1,ωT

A221
def= K2‖|A22T |N+1

N Ψ(λ̄+ 2ā1)‖1,ωC
+
K2 (ν + 1

ν

)
‖λ̄+ 2ā1‖1,ωC

2(N + 1)
Ai21

def= K2‖|Ai2T |N+1
N Ψ(λ̄+ 2ā1)‖1,ωC

for i = 1, 3,

and

A023
def= K‖|A02T |N+1

N Ψ(ā2)‖1,ωT

A223
def= K‖|A22T |N+1

N Ψ(ā2)‖1,ωC
+
K
(
ν + 1

ν

)
‖ā2‖1,ωC

2(N + 1)
Ai23

def= K‖|Ai2T |N+1
N Ψ(ā2)‖1,ωC

for i = 1, 3,

and

A012
def= 1

2νN+1 ‖(A01):,N‖1,ωT

A112
def= 1

2νN+1 ‖(A11):,N‖1,ωC
+
(
ν + 1

ν

)
2(N + 1)

Ai12
def= 1

2νN+1 ‖(Ai1):,N‖1,ωC
for i = 2, 3.

Having constructed the bounds Aii′j satisfying (30) we define

Z
(1)
ij

def=
3∑

i′=0
Aii′j for i, j = 0, 1, 2, 3.

Finally, we have

Z1
def= max

i∈{0,1,2,3}

αi 3∑
j=0

1
αj
Z

(1)
ij

. (31)

Following the approach proposed in [3], let us briefly describe the choice of the weights α0, . . . , α3 in order
to minimize the bound Z1. This is done by using a result from the Perron–Frobenius theorem. We see
that the matrix

MZ1
def=


Z

(1)
00 Z

(1)
01 Z

(1)
02 Z

(1)
03

Z
(1)
10 Z

(1)
11 Z

(1)
12 Z

(1)
13

Z
(1)
20 Z

(1)
21 Z

(1)
22 Z

(1)
23

Z
(1)
30 Z

(1)
31 Z

(1)
32 Z

(1)
33

 (32)

is non-negative. Thus, according to the Perron–Frobenius theorem, MZ1 has a largest real eigenvalue ρ
with the corresponding eigenvector vρ and by the Collatz–Wielandt formula, if vρ is positive, then it is
the solution of

max
v

(
min

i∈{0,1,2,3}

(MZ1v)i
vi

)
over all positive vector v ∈ R4. For our problem this means that we simply need to compute the dominant
eigenvalue ρ and corresponding eigenvector vρ of MZ1 and setting αj = 1/(vρ)j .

Note that the above choice of α allows us to minimize the bound on Z1, but it will also have a negative
impact on the other bounds. Y0 will be the one that loses the most in the process. So at that point it is
a case by case problem where we have to experiment with the αj to find the perfect balance.

3.4 The bound Z2

We recall from (18) that Z2 satisfies

‖A[DF (c)−DF (ā)]‖B(X,X) = sup
‖h‖X=1

‖A[DF (c)−DF (ā)]h‖X ≤ Z2r
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for all c = (c0, c1, c2, c3) ∈ Br(ā) and all r > 0. We define d = (d0, d1, d2, d3) ∈ X such that di
def= ci − āi

and thus ‖di‖Xi
≤ r

αi
. Also, since the derivative is linear, we have DF (d) = DF (c)−DF (ā).

We have

‖(ADF (d)h)i‖Xi
≤

3∑
j=0
‖Aij(DF (d)h)j‖Xi

≤
3∑
j=0
‖Aij‖B(Xj ,Xi)‖(DF (d)h)j‖Xj

where we can bound ‖Aij‖B(Xj ,Xi) using similar bounds as the Ki,j presented in Section 3.2.
We set

DF (d) =


B00 B01 B02 B03

T B10 T B11 T B12 T B13

T B20 T B21 T B22 T B23

T B30 T B31 T B32 T B33

 ,

with T defined at (10) and where

(B00h0)k
def=

 0 for k = 0, 1

2δ2(d0 ∗ h0)k−2 for k ≥ 2,

(B01h1)k
def= (B02h2)k

def= (B03h3)k
def= 0,

(B10h0)k
def= (B11h1)k

def= (B12h2)k
def= (B13h3)k

def= 0,

(B21h1)k
def=

 0 for k = 0,

−2K2(d1 ∗ h1)k for k ≥ 1,

(B22h2)k
def=

 0 for k = 0,

−K(d3 ∗ h2)k for k ≥ 1,

(B23h3)k
def=

 0 for k = 0,

−K(d2 ∗ h3)k for k ≥ 1,

(B30h0)k
def= (B31h1)k

def= (B32h2)k
def= 0,

(B33h3)k
def=

 0 for k = 0,

−2K(d3 ∗ h3)k for k ≥ 1.

Thus, we have

‖(DF (d)h)i‖Xi
≤

3∑
j=0

∣∣∣∣Daj
Fi(d)hj

∣∣∣∣
Xi
≤ ‖T‖(1−δi,0)

B(`1
ωC

)

3∑
j=0
‖Bi,jhj‖Xj

,

where ‖T‖B(`1
ωC

) ≤ 2ν by Lemma 3.1.
First, we start by bounding

‖B00h0‖1,ωT
=
∞∑
k=2
|2δ2(d0 ∗ h0)k−2|µk

= 2δ2µ2
∞∑
k=2
|(d0 ∗ h0)k−2|µk−2

= 2δ2µ2‖d0 ∗ h0‖1,ωT

≤ 2δ2µ2‖d0‖1,ωT
‖h0‖1,ωT

≤ 2δ2µ2
(
r

α0

)(
1
α0

)
.
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Using the same ideas, we compute the remaining bounds

‖B21h1‖1,ωC
≤ 2K2

(
r

α1

)(
1
α1

)
,

‖B22h2‖1,ωC
≤ K

(
r

α3

)(
1
α2

)
,

‖B23h3‖1,ωC
≤ K

(
r

α2

)(
1
α3

)
,

‖B33h3‖1,ωC
≤ 2K

(
r

α3

)(
1
α3

)
.

Then, if we set

Z
(2)
00 = 2δ2µ2

α0
‖A00‖B(`1

ωT
),

Z
(2)
01 = Z

(2)
02 = Z

(2)
03 = 0,

Z
(2)
10 = Z

(2)
11 = Z

(2)
12 = Z

(2)
13 = 0,

Z
(2)
20 = 0,

Z
(2)
21 = 2K2

α1

(
1
ν

+ 2ν
)
‖A21‖B(`1

ωC
),

Z
(2)
22 = K

α3

(
1
ν

+ 2ν
)
‖A22‖B(`1

ωC
),

Z
(2)
23 = K

α2

(
1
ν

+ 2ν
)
‖A23‖B(`1

ωC
),

Z
(2)
30 = Z

(2)
31 = Z

(2)
32 = 0,

Z
(2)
33 = 2K

α3

(
1
ν

+ 2ν
)
‖A33‖B(`1

ωC
),

the bound Z2 is given by

Z2
def= max

i∈{0,1,2,3}

αi 3∑
j=0

Z
(2)
ij

1
αj

. (33)

4 Presentation of the results
In this section, we first introduce in Section 4.1 a bifurcation analysis to compute branches of solutions
(parameterized by λ) bifurcating from the trivial solution u = 0. Then in Section 4.2, we show how
to perform a continuation to numerically compute branches of solutions, which are then validated using
Theorem 2.1 using the bounds presented in Section 3.

4.1 Bifurcating from the trivial solution
Recall that (3) describes rotationally invariant symmetric solutions of the elliptic problem ∆u+λu+u2 = 0
on the sphere. It is well-known that the eigenfunctions of the Laplacian on the sphere are given by
spherical harmonics. To compute asymptotic approximations of the bifurcating solutions, we can perform
the following explicit computations. First we note that the substitution x = cos θ and v(x) = v(cos θ) =
u(θ) transforms (3) into{

(1− x2)v′′(x)− 2xv′(x) + λv(x) + v(x)2 = 0 for x ∈ [0, 1],
v′(0) = 0.

(34)

We solve the linearized problem

(1− x2)v′′(x)− 2xv′(x) + λv(x) = 0 (35)
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by plugging in a power series

v(x) =
∞∑
k=0

akx
k,

with a1 = 0 due to the boundary condition in (34). This leads to a recurrence relation

ak+2 = ak
k(k + 1)− λ

(k + 2)(k + 1) , (36)

where one may set a0 = 1 in view of linearity of (35). The power series breaks off after k = 2n when

λ = λn
def= 2n(2n+ 1), for any n ∈ N,

in which case one finds a polynomial solution

vn(x) def=
n∑

m=0
a2mx

2m. (37)

To determine the (asymptotic) amplitude of the solution near the bifurcation point, we set

λ = λn + ε,

and expand v(x) in terms of ε as

v(x) = εAnvn(x) + ε2w(x) +O(ε3),

where An ∈ R is unknown at this stage, and so is w(x). By substituting the expressions above into (34)
and using that (vn, λn) solves (35) we find at order ε2 the following equation for w:

(1− x2)w′′(x)− 2xw′(x) + λnw(x) = −A2
nvn(x)2 −Anvn(x). (38)

The linear operator in the left-hand side has a nontrivial kernel. To find the solvability condition we
multiply Equation (38) by vn(x) and integrate over [0, 1]:∫ 1

0

[
(1− x2)w′′(x)− 2xw′(x) + λnw(x)

]
vn(x)dx = −

∫ 1

0

[
A2
nv

3
n(x) +Anvn(x)2]dx. (39)

Integrating by parts in the left-hand side of (39) we find after some manipulation that∫ 1

0

[
(1− x2)w′′(x)− 2xw′(x) + λnw(x)

]
vn(x)dx

=
∫ 1

0

[
(1− x2)v′′n(x)− 2xv′n(x) + λnvn(x)

]
w(x)dx = 0, (40)

since (vn, λn) solves (35). This is not accidental: the linear operator involved is self-adjoint. By combin-
ing (39) and (40) we find

An
def= −

∫ 1
0 vn(x)2dx∫ 1
0 vn(x)3dx

, (41)

so that for small ε the bifurcating solution of (3) at λ = λn + ε is well approximated by

u(n)(θ) def= εAnvn(cos θ). (42)

4.2 Computational details
Using the bifurcation analysis of the previous section, we produce an initial point on a branch of solutions
as follows. We fix an integer n ≥ 1, ε > 0 and let λ = λn + ε = 2n(2n + 1) + ε. Using the explicit
recursion formula (36), we compute the sequence (a2m)nm=0. Then, using vn(x) defined in (37), we
compute An in (41). Based on this, Equation (42) provides a function u(n)(θ) which approximately
solves the BVP (3). We extract the Taylor coefficients a(0)

0 of u(n)(δt) for t ∈ (0, 1], the Chebyshev
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Figure 2: Bifurcation diagram of all proven solutions in this paper.

coefficients a(0)
1 of u(n) (Kt+ π

4 + δ
2
)
and the Chebyshev coefficients a(0)

2 of d
dtu

(n) (Kt+ π
4 + δ

2
)
. Also,

denote by a(0)
3 and the Chebyshev coefficients of cot

(
Kt+ π

4 + δ
2
)
. Finally, set

â(0) def=
(
a

(0)
0 , a

(0)
1 , a

(0)
2 , a

(0)
3

)
,

which is used as an input for Newton’s method at λ(0) = 2n(2n+ 1) + ε to produce a point ā(0) such that
F
(
ā(0), λ(0)) ≈ 0.
From there, we compute branches of solutions with a standard predictor-corrector continuation al-

gorithm. We computed numerically 16 branches (n = 1, . . . , 16) of solutions (see Figure 4.2). For each
of these numerically produced solutions, we applied Theorem 2.1 to verify that close to the numerical
solution, there exists an exact solution with rigorous error bound.

Since we computed more than 200 solutions, we will only present the details for the two proofs at
both ends of the two branches n = 1 and n = 16. These results have all been obtained using the weights
µ = 1.1 and ν = 1.2. Other computational parameters can be found in Table 1 for the four particular
solutions, and in the code available at [23] for all other solutions. Both solutions on the n = 1 branch
are depicted in Figure 3, while the ones on the n = 16 branch are shown in Figure 4.

We note that we were able to prove the existence and local uniqueness of solutions on 16 branches,
whereas [2] was only able to prove results on 2 branches. In addition, the total numbers of Taylor and
Chebyshev coefficients needed for our results is significantly lower than the number of Taylor coefficients
in [2] for results with the same parameters. We also mention that choosing the weight αj as described
at the end of Section 3.3 allowed us to have a better control over the the bound Z1, which needs to be
less than one for Theorem 2.1 to be successful. Indeed, choosing the αj in a way that minimize Z1 is
essential to prove some of the results. However, using the optimal αj that minimizes Z1 is not without
sacrifice, as it can have detrimental effects on the size of the Y0 and Z2 bounds.

Finally, looking at the bifurcation diagram of our solutions (see Figure 4.2), we can see that, for most
branches, computing the solutions for λ < λn are harder to prove than those for λ > λn. Using a pseudo
arc-lenght branch following technique in future studies could be a good idea to prove more solutions for
these kinds of problems.
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n 1 16

λ 5.6172 451.0710 1055.3153 1057

δ 0.3 0.3 0.1 0.1

M 80 80 90 90

N 80 110 180 180

Y0 7.6854× 10−11 5.5146× 10−8 8.1020× 10−5 3.1482× 10−4

Z0 1.0868× 10−8 1.5306× 10−10 2.1409× 10−4 4.4249× 10−5

Z1 0.1154 0.21536 0.1597 0.1851

Z2 66.4698 1.1704 165.8340 108.2655

α [2.2299, 2.1083, 1.32, 103] [103, 9.6736, 1.0054, 103] [103, 17.376, 1.0017, 103] [103, 17.3724, 1.0017, 103]

rmin 8.6883× 10−11 7.028310−8 9.8353× 10−5 4.0855× 10−4

rmax 1.3308× 10−2 0.67040 4.9674× 10−3 7.1175× 10−3

Table 1: Parameter values, computational constants and bounds for the solutions depicted in Figures 3
and 4.

Figure 3: Solutions on the branch bifurcating at λ1 = 6. (Left) The solution of (1) on the unit sphere
S2 ⊂ R3. (Right) The corresponding numerical solution of the BVP (3) with Taylor expansion in blue
and Chebyshev expansion in orange.
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Figure 4: Solutions on the branch bifurcating at λ16 = 1056. (Left) The solution of (1) on the unit sphere
S2 ⊂ R3. (Right) The corresponding numerical solution of the BVP (3) with Taylor expansion in blue
and Chebyshev expansion in orange.
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