
A COMPARATIVE STUDY OF THE EFFICIENCY OF JET SCHEMES

P. CHIDYAGWAI, J.-C. NAVE, R. R. ROSALES, AND B. SEIBOLD

Abstract. We present two versions of third order accurate jet schemes, which achieve high
order accuracy by tracking derivative information of the solution along characteristic curves.
For a benchmark linear advection problem, the efficiency of jet schemes is compared with
WENO and Discontinuous Galerkin methods of the same order. It is demonstrated that jet
schemes possess the simplicity and speed of WENO schemes, while showing several of the
advantages as well as the accuracy of DG methods.

1. Introduction

The advection of field quantities under a velocity field is an important sub-problem in many
computational projects. Examples are the passive transport of concentrations, or the movement
of interfaces using level set approaches [1]. We consider the linear advection equation

φt + ~v · ∇φ = 0 , (1)

which moves a scalar quantity φ(~x, t) by a given velocity field ~v(~x, t). Equation (1) is augmented
with initial conditions φ(~x, 0) = Φ(~x) and boundary conditions. All data is assumed smooth
in space and time. Furthermore, it is assumed that the problem at hand can be described by,
or embedded into, a rectangular computational domain, equipped with a regular grid.

High order accurate numerical approximations of (1) on a fixed grid are commonly based on
schemes that employ polynomials of sufficient degree to interpolate smooth solutions with the
required accuracy. One popular type of approach are finite difference ENO [2] or WENO [3]
methods. These store approximations to the solution values at the grid points, and achieve a
high order polynomial approximation by considering local neighborhoods that are several grid
points wide. Another type of approach are discontinuous Galerkin (DG) [4, 5, 6] methods.
These achieve high order accuracy by storing a high degree polynomial approximation in each
grid cell, and approximating the flux through cell boundaries based on a weak formulation of
(1). Both WENO and DG methods are based on a semi-discretization of (1), and achieve high
accuracy in time by using strong stability preserving (SSP) Runge-Kutta schemes [2, 7, 8].

Both types of approaches incur problems and difficulties. Due to the wide stencils of WENO
methods, it is challenging to preserve high order near boundaries. Furthermore, their non-
locality poses difficulties for an effective parallelization, and their use in conjunction with
adaptive grid approaches [9]. In contrast, in DG methods, communication is limited to neigh-
boring cells. However, DG approaches are characterized by costly quadratures over grid cells
and their edges, significant time step restrictions, and non-trivial implementation aspects.

A new class of approaches for (1), so called jet schemes, has been proposed recently [10, 11].
The goal of these methods is to provide an attractive compromise between WENO and DG
methods, possessing the optimal locality and good resolution properties of DG, while being
close to the computational efficiency and ease of implementation of WENO schemes. In this
paper we conduct a comparative study of the efficiency and accuracy of this new class of

2000 Mathematics Subject Classification. 65M25; 65M12; 35L04.
Key words and phrases. jet scheme, advection, high-order, WENO, DG, efficiency.

1

2 P. CHIDYAGWAI, J.-C. NAVE, R. R. ROSALES, AND B. SEIBOLD

methods. We consider two versions of third order accurate jet schemes, and compare them
with WENO and DG methods of the same order. The considered jet schemes are described
in Sect. 2. Then, in Sect. 3, DG methods are outlined, and in Sect. 4, information about the
WENO schemes that we employ is given. Sect. 5 shows the numerical results obtained when
applying the three types of approaches to a benchmark problem. In Sect. 6, a discussion of
the observations and theoretical estimates about the computational cost are given.

2. Jet Schemes

Jet schemes are based on an advect–and–project approach in function spaces. Given an
approximation to the solution of (1) at time tn, an approximate solution at time tn+1 = tn+∆t
is obtained by the time step

φn+1 = P ◦Atn+1,tnφ
n .

Here Atn+1,tn is an approximate advection operator, defined by evolving the solution along
characteristics using a numerical ODE solver, and P is a projection operator, given by a piece-
wise Hermite interpolation based on parts of the jet of the solution at the points of a cartesian
grid. The fact that the projection requires data only at grid points allows to use this ap-
proach as a numerical scheme: when evaluating the advection operator, only the characteristic
curves that go through grid points at tn+1 need to be considered. In addition, the evolution
of derivatives of the solution along these characteristic must be found. As outlined below, the
required spacial derivatives of the advection operator can be found by analytical differentiation
(Sect. 2.3) or by approximations based on tracking multiple nearby characteristics (Sect. 2.5).

Jet schemes can be constructed in any space dimension, and for any order of accuracy [11].
For simplicity, here we only describe third order schemes in two space dimensions. We consider
a rectangular computational domain Ω ⊂ R2, equipped with a regular cartesian grid of grid
size h.

2.1. Projection. In a grid cell [a, a + h] × [b, b + h] ⊂ Ω, let the vertices be indexed by a
vector ~q ∈ {0, 1}2, such that the vertex of index ~q is at position ~x~q = (a + h q1, b + h q2). On
each of the four vertices, let a vector of data be given by φ~q~α ∀ ~α ∈ {0, 1}

2. The data represents
partial derivatives of orders up to 1 in each variable, as follows: ~α = (0, 0) represents function
values φ; ~α = (1, 0) and ~α = (0, 1) represent first derivatives ∂xφ and ∂yφ, respectively; and
~α = (1, 1) represents ∂xyφ. This data is interpolated by the bi-cubic polynomial

H(~x) =
∑

~q,~α∈{0,1}p
φ~q~α W

~q
~α(~x) , (2)

where the W ~q
~α(~x) are bi-cubic basis functions, given by the tensor product formulas

W ~q
~α(~x) = hα1+α2 wq1α1

(
x−a
h

)
wq2α2

(y−b
h

)
,

and the wqα are the univariate basis functions

w0
0(x) = 1− 3x2 + 2x3, w1

0(x) = 3x2 − 2x3, w0
1(x) = x− 2x2 + x3, w1

1(x) = −x2 + x3.

The bi-cubic interpolant (2) is an O(h4) accurate approximation to any sufficiently smooth
function φ that it interpolates on a cell of size h [11].

On the computational domain Ω ⊂ R2, let the grid points be labeled ~x~m, where ~m ∈ Z2. For
any (sufficiently smooth) function φ : Ω→ R, we define a global interpolant Hφ as follows: at
each grid point ~x~m, evaluate the derivatives of φ, ∂xφ, ∂yφ, and ∂xyφ, to produce a data vector

A COMPARATIVE STUDY OF THE EFFICIENCY OF JET SCHEMES 3

φ~m~α ∀ ~α ∈ {0, 1}
2. Then, on each grid cell, use this data to define the bi-cubic interpolant (2).

In the function space

S2,+ = {ψ ∈ C1 : ψ twice differentiable a.e. with D2ψ ∈ L∞} ,

this procedure can be applied using the following convention: whenever ∂xyψ must be evaluated
at a point at which D2ψ is not defined in the classical sense, we define it as

∂xyψ(~x~m) = 1
2

(
ess lim sup

~x→~x~m
∂xyψ(~x) + ess lim inf

~x→~x~m
∂xyψ(~x)

)
.

The view on the general order of approximation case [11] reveals the rationale for the notation
S2,+. Clearly, the re-application of the interpolation procedure does not change the result:
HHφ = Hφ. Hence, in the space S2,+ it can be formulated as a projection operator

Pφ = Hφ . (3)

2.2. Advection. The characteristic form of equation (1) is

dφ

dt
= 0 along

d~x

dt
= ~v(~x, t) . (4)

Let ~X(~x, τ, t) denote the solution of the ODE for the characteristic curves at time t, when
starting with initial conditions ~x at time τ , i.e. it is defined by

∂

∂t
~X(~x, τ, t) = ~v(~X(~x, τ, t), t) with ~X(~x, τ, τ) = ~x .

Then due to (4), the solution of (1) satisfies φ(~x, τ) = φ(~X(~x, τ, t), t). In practice, the char-
acteristic ODE (4) must be approximated. Let ~X (~x, τ, t) represent an approximate solution
of the ODE for the characteristic curves at time t, when starting with initial conditions ~x at
time τ . It typically arises from a numerical ODE solver, e.g. a high order Runge-Kutta step.
Furthermore, introduce the associated approximate advection operator Aτ,t, which maps the
solution at time t to an approximate solution at time τ . It acts on a function g(~x) as follows

(Aτ,t g)(~x) = g(~X (~x, τ, t)) .

As shown in [10], the use of a locally kth order Runge-Kutta scheme results in a kth order
accurate approximation to the solution

At+∆t,t φ(~x, t)− φ(~X(~x, t+ ∆t, t), t) = O(|∆t|k) .

This means that through the characteristic equations (4), any ODE solver induces an approx-
imate advection operator of the same order of accuracy. However, this idea alone cannot be
used as a numerical time stepping scheme, since the step from t to t+ ∆t in general generates
a function At+∆t,t g that cannot be represented with a finite amount of data. Therefore, at the
end of every time step, we apply the projection operator (3), which generates a function that
can be stored on a computer. The function space S2,+ is invariant under diffeomorphisms, thus
both P and At+∆t,t map from S2,+ into itself. Consequently, one full approximate solution
step is given by applying P ◦At+∆t,t to the approximate solution at time t.

2.3. Derivative Updates by Analytical Differentiation. The application of the projec-
tion (3) requires the knowledge of ψ, ∂xψ, ∂yψ, ∂xyψ at grid points, with ψ = At+∆t,t φ

n. These
spacial derivatives of At+∆t,t φ

n can be found by analytically differentiating the ODE solver,
as demonstrated below for the Shu-Osher scheme [2]. One step with this scheme is O((∆t)4)
accurate, which for the scaling ∆t ∝ h matches the O(h4) accuracy of the projection operator

4 P. CHIDYAGWAI, J.-C. NAVE, R. R. ROSALES, AND B. SEIBOLD

(3). Using the notation tn = t, tn+1 = t+ ∆t, and tn+ 1
2

= t+ 1
2∆t, we obtain the updates for

the required parts of the jet φ, ∇φ = (∂xφ, ∂yφ), and ∂xyφ at a grid point ~x as:

~x1 = ~x−∆t~v(~x, tn+1)

∇~x1 = I −∆t∇~v(~x, tn+1)

∂xy~x1 = −∆t ∂xy~v(~x, tn+1)

~x2 = 3
4~x+ 1

4~x1 − 1
4∆t~v(~x1, tn)

∇~x2 = 3
4I + 1

4∇~x1 − 1
4∆t∇~x1 · ∇~v(~x1, tn)

∂xy~x2 = 1
4∂xy~x1 − 1

4∆t(∂xy~x1 · ∇~v(~x1, tn) + ((∂x~x1)T · (∂y~x1)) : D2 ~v(~x1, tn))

~xfoot = 1
3~x+ 2

3~x2 − 2
3∆t~v(~x2, tn+ 1

2
)

∇~xfoot = 1
3I + 2

3∇~x2 − 2
3∆t∇~x2 · ∇~v(~x2, tn+ 1

2
)

∂xy~xfoot = 2
3∂xy~x2 − 2

3∆t(∂xy~x2 · ∇~v(~x2, tn+ 1
2
) + ((∂x~x2)T · (∂y~x2)) : D2 ~v(~x2, tn+ 1

2
))

φ(~x, tn+1) = H(~xfoot, tn)

(∇φ)(~x, tn+1) = ∇~xfoot · ∇H(~xfoot, tn)

(∂xyφ)(~x, tn+1) = ∂xy~xfoot · ∇H(~xfoot, t) + ((∂x~xfoot)T · (∂y~xfoot)) : D2H(~xfoot, tn)

(5)

In this approach, the characteristic curve is tracked from ~x at time t + ∆t back to ~xfoot at
time t. The data at this position is given by the Hermite interpolation, defined by the data
(at time t) at the four vertices of the cell that ~xfoot is contained in. The update rules for the
derivatives are systematically inherited from the update rule for the function value, and they
match exactly what one would obtain when evolving the solution using At+∆t,t everywhere,
and then applying the spacial derivatives.

2.4. Order of Accuracy and Stability. One step of the jet scheme described above is fourth
order accurate, since the advection operator is O((∆t)4) accurate, and the projection operator
is O(h4) accurate. As usual, when going from this local error to the global error, one order is
lost, since O(1

∆t) time steps are required to reach the final time. Hence, the presented scheme
is globally third order, given that it is stable.

Like in many other numerical approaches, stability is not automatically guaranteed. As
shown in [11], jet schemes can be constructed (by using a different projection than (3)) that
are unstable. However, the jet scheme based on the projection (3) is stable. A key factor in
the stability argument is that among all (sufficiently smooth) functions that match given data
on a cartesian grid, the Hermite interpolant (2) minimizes the stability functional

F [φ] =
∫

Ω
(∂xxyyφ(~x))2 d~x .

Hence F [Pφ] ≤ F [φ] for all sufficiently smooth φ, which yields bounds on the amounts of
oscillations that the numerical scheme can create [11].

2.5. A Simpler and More Efficient Derivative Tracking. The analytical differentiation
procedure, outlined with example (5), is the most general approach to derive the update rules
for derivatives. However, it is not always the simplest to implement. An alternative approach,
which is solely based on tracking function values, is provided by ε-finite differences. For the
here considered third order jet scheme in 2D, the following procedure can be employed. As
shall be seen in Sect. 5, it leads to a very simple and efficient numerical scheme.

A COMPARATIVE STUDY OF THE EFFICIENCY OF JET SCHEMES 5

At a grid point ~x = (x, y), instead of tracking one characteristic curve from time tn+1

back to time tn, we track four characteristic curves, starting at ~x~q = (x + q1ε, y + q2ε) where
~q ∈ {−1, 1}2, and ε is a small number, see below. Let the corresponding characteristic foot-
points be denoted ~x~qfoot. The updates for the required derivatives are obtained as follows:

(1) The “center of mass” 1
4

(
~x

(1,1)
foot + ~x

(−1,1)
foot + ~x

(1,−1)
foot + ~x

(−1,−1)
foot

)
determines to which cell all

four foot-points are associated to.
(2) The Hermite interpolant (2) that corresponds to that cell is evaluated at each foot-point

to yield the values φ(~x~q, tn+1) = H(~x~qfoot, tn).
(3) The required parts of the jet are defined as

φ(~x, tn+1) = 1
4 (φ(~x(1,1), tn+1) + φ(~x(−1,1), tn+1) + φ(~x(1,−1), tn+1) + φ(~x(−1,−1), tn+1))

∂xφ(~x, tn+1) = 1
4ε (φ(~x(1,1), tn+1)− φ(~x(−1,1), tn+1) + φ(~x(1,−1), tn+1)− φ(~x(−1,−1), tn+1))

∂yφ(~x, tn+1) = 1
4ε (φ(~x(1,1), tn+1) + φ(~x(−1,1), tn+1)− φ(~x(1,−1), tn+1)− φ(~x(−1,−1), tn+1))

∂xyφ(~x, tn+1) = 1
4ε2

(φ(~x(1,1), tn+1)− φ(~x(−1,1), tn+1)− φ(~x(1,−1), tn+1) + φ(~x(−1,−1), tn+1))

All approximations are O(ε2) accurate. In addition, round-off errors of up to O(δ/ε2) arise,
where δ is the accuracy of the floating point operations. With the optimal choice ε = O(δ1/4),
the errors incurred by the ε-finite differences are of magnitude O(δ1/2). Thus, with double
precision arithmetics, the presented approach can be used up to a desired accuracy of 10−7.

3. Discontinuous Galerkin Method

DG methods [4, 5] have a wide area of application. They can successfully approximate non-
linear problems on unstructured geometries, and thus are much more general than the problems
considered in this paper. However, since the task at hand is the numerical approximation of
the linear advection equation (1) on a regular grid, it is natural to investigate the accuracy
and efficiency of DG methods for it. The DG methodology that we use here is in line with
the ideas presented in [12, 6]. For convenience, we restrict to incompressible velocity fields
∇ · ~v = 0. In this case, the advection equation (1) can be written in conservative form as

φt +∇ · (~vφ) = 0 . (6)

Equation (6) is discretized in space as follows. Let Th be a regular triangulation of the com-
putational domain Ω. At each instance in time, we seek an approximation φh of φ, such that
φh(t) belongs to the finite dimensional space

Skh = {ψ ∈ L1(Ω) : ψ|K ∈ P kh (K) ∀K ∈ Th} ,

where P kh (K) denotes the space of polynomials of degree ≤ k that live on the element K. Here,
we choose k = 2 to obtained a third order scheme. As in the standard DG formulation [12],
we replace φ by φh in (6), multiply by a test function ψh ∈ Skh(K), and integrate over K ∈ Th
to obtain the semi-discrete formulation

d

dt

∫
K
φhψh dx =

∫
K
~v · ∇ψhφh dx−

∫
e∈∂K

φ̂h ~v · ~ne,Kψh dΓ ∀ψh ∈ Skh(K) . (7)

Here ~ne,K is the outward unit normal on edge e, and φ̂h is an expression that comprises the
values of φh on each side of the edge. Here we use an upwind flux, which is defined as

φ̂h =

{
φ+
h if ~v · ~ne,K ≥ 0
φ−h otherwise ,

6 P. CHIDYAGWAI, J.-C. NAVE, R. R. ROSALES, AND B. SEIBOLD

where φ±h = limε→0± φh(~x + ε~ne,K , t), and the velocity field is evaluated in the edge center.
The integrals over edges and elements in (7) are approximated by Gaussian quadrature rules
that are exact for polynomials of degree 2k over the elements, and exact over polynomials of
degree 2k + 1 over the edges. This results in an ODE system of the form

d

dt
φh = Lh(φh) with φh(~x, 0) = Φh(~x) , (8)

where Lh(φh) is the spacial discretization of the operator −∇ · (~vφ), and Φh(~x) ∈ Skh approxi-
mates Φ(~x). The time integration of (8) is done using the third order SSP Shu-Osher scheme
[2]. Stability is ensured if the specific CFL condition

∆t < 1
c(2k+1) h

with c > 1 is guaranteed [6]. For the examples considered in this paper, the choice c = 2 turns
out to yield the lowest cost vs. accuracy ratio. Since for the numerical tests conducted here
the solutions are very smooth, no slope limiters are implemented.

The DG code used here is based on triangular elements. In order to have a fair comparison
with the cartesian grids that WENO and jet schemes use, we design meshes as follows. For a
desired resolution h, first a cartesian grid of resolution

√
2h is constructed. Then each cell is

divided along its diagonal into two triangles. Like a cartesian grid of resolution h, the resulting
triangular mesh consists of 1/h2 elements, and the shortest distance in an element is h.

4. WENO Scheme

Like DG, WENO schemes [3] are based on a semi-discretization of (1) in space, and SSP
schemes [2, 7] to advance in time. Unlike DG, WENO schemes are specific to regular grids. We
employ the third order WENO finite difference approach described in [13], using the Shu-Osher
scheme [2] with ∆t = h in time. For the spacial approximation, equation (1) is rewritten as

φt = −u ∂xφ− v ∂yφ .

At each grid point, both derivatives ∂xφ and ∂yφ are approximated in a univariate fashion
by using values on four grid points in each coordinate direction: two in the upwind direction,
and one in the downwind direction. WENO schemes have limiters built into the derivative
approximations: smoothness indicators yield a nonlinear weighted average of different polyno-
mial approximations of the derivatives. We consider two versions of limiting: one as described
in [13], and another one without limiting (which yields a linear finite difference scheme).

5. Numerical Results

We test both the accuracy and the relative efficiency of jet schemes, DG methods, and
WENO approaches using the classical vortex in a box flow test [14, 15], adapted as follows. On
the computational domain (x, y) ∈ [0, 1]2, and for t ∈ [0, 1], we consider the linear advection
equation (1) with the velocity field

~v(x, y, t) = cos(πt)
(

sin2(πx) sin(2πy)
− sin(2πx) sin2(πy)

)
,

which is a model for the passive swirling and successive un-swirling of a concentration field.
This test is a mathematical analog of well-known “unmixing” experiments [16]. We con-
sider smooth initial conditions φ(x, y, 0) = cos(2πx) cos(4πy), which is also the final solution
φ(x, y, 1) = φ(x, y, 0). For the numerical schemes, periodic boundary conditions are used.

A COMPARATIVE STUDY OF THE EFFICIENCY OF JET SCHEMES 7

1/256 1/128 1/64 1/32 1/16 1/8

10
−5

10
−4

10
−3

10
−2

10
−1

slo
pe

 3

slo
pe

 3

h

L∞
 e

rr
or

WENO3
WENO3 no limiters
DG
both jet schemes

Figure 1. Error convergence
for third order jet schemes, DG,
and WENO.

1/256 1/128 1/64 1/32 1/16 1/8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

slope 3

slope 3

h

C
P

U
 ti

m
e

/ s
ec

WENO3
WENO3 no limiters
DG
jet scheme full
jet scheme ε−FD

Figure 2. Scaling of the com-
putational cost for jet schemes,
DG, and WENO.

10
−4

10
−2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

slope 1

slope 1

C
P

U
 ti

m
e

/ s
ec

.
L∞ error

WENO3
WENO3 no limiters
DG
jet scheme full
jet scheme ε−FD

Figure 3. Efficiency of jet
schemes, DG, and WENO, mea-
sured as cost over accuracy.

For various mesh resolutions h, we apply five different numerical schemes to the test problem.
The results are shown in Figs. 1–3. Specifically, we consider:

(1) A classical third order WENO scheme (see Sect. 4), denoted by large squares;
(2) A third order WENO scheme without limiting (see Sect. 4), denoted by small squares;
(3) A third order DG method (see Sect. 3), denoted by triangles;
(4) A third order jet scheme with a full derivative update (see Sect. 2.3), denoted by circles;
(5) A third order jet scheme based on ε-finite differences (see Sect. 2.5), denoted by stars.

For all methods, we measure the error at t = 1 in the L∞ norm, and the CPU time. Fig. 1
shows the error as a function of the resolution h. One can observe that jet schemes and
DG have roughly the same accuracy. In contrast, for the same resolution, WENO schemes
yield significantly larger errors. It is also visible that the WENO3 with limiters does not
achieve the full third order accuracy (see [13]). It is apparent that for the considered smooth
solution, limiters are not beneficial. Fig. 2 shows the CPU time as a function of the resolution
h. One can see a clear ranking in computational costs: WENO schemes are very fast, jet
schemes are more costly, and DG is even more costly. It is visible that ε-finite differences are
not only simpler to implement, but are also much faster than the jet scheme based on the
full derivative update. Finally, Fig. 3 shows the CPU time as a function of the error. This
cost vs. accuracy ratio measures the true efficiency of the numerical schemes. The results show
that the low computational cost of WENO schemes renders them preferable over DG. However,
WENO does not possess the optimal locality that DG has. Jet schemes provide an interesting
alternative. While the full update version is slightly less efficient than the non-limited WENO,
the ε-finite differences version is even more efficient.

6. Discussion

The two types of methods, WENO and DG, achieve high order accuracy in very differ-
ent ways: WENO considers function values in a wide neighborhood. In contrast, DG uses
high order polynomials in each element. This gives DG a certain level of sub-grid resolution,
and restricts communication to neighboring elements only. While based on a very different
methodology, the recently proposed jet schemes share these advantages with DG.

8 P. CHIDYAGWAI, J.-C. NAVE, R. R. ROSALES, AND B. SEIBOLD

The results presented here show that the advantages of DG come at the expense of efficiency.
This observation can be explained by the following theoretical estimates. On a mesh of N ele-
ments, even a fully optimized and problem-specific DG code requires at least 11.5N evaluations
of the velocity field per right hand side evaluation (7 quadrature points on each of N elements,
and 3 quadrature points on each of 3

2N edges). In comparison, WENO required N evaluations,
and a jet scheme (using ε-finite differences) requires 4N evaluations (4 characteristics per grid
point). In addition, DG requires 5–10 times more time steps than WENO or jet schemes due
to its more restrictive CFL condition. While jet schemes and DG yield similar accuracies, the
low cost of WENO is outweighed by its lower accuracy. In terms of true efficiency, jet schemes
and WENO are in the same range, while DG methods are significantly more costly.

This leads to the conclusion that jet schemes indeed fill a need as computational approaches
for advection problems on regular grids, namely: they are simpler to implement, and less costly
than DG. However, in contrast to WENO, they are optimally local and thus are preferable for
the purpose of parallelization, adaptive mesh refinement, and the implementation of compli-
cated boundary conditions. In addition, jet schemes impose no restrictions on the ODE solvers
that are needed. In contrast, DG and WENO methods require SSP ODE solvers to ensure
TVD stability [8].

References

[1] Osher, S. and Sethian, J. A. J. Comput. Phys. 79, 12–49 (1988).
[2] Shu, C.-W. and Osher, S. J. Comput. Phys. 77, 439–471 (1988).
[3] Liu, X.-D., Osher, S., and Chan, T. J. Comput. Phys. 115, 200–212 (1994).
[4] Reed, W. H. and Hill, T. R. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, (1973).
[5] Cockburn, B. and Shu, C.-W. SIAM J. Numer. Anal. 35(6), 2440–2463 (1988).
[6] Cockburn, B. and Shu, C.-W. J. Sci. Comput. 16(3), 173–261 (2001).
[7] Gottlieb, S. and Shu, C.-W. Math. Comp. 67(221), 73–85 (1998).
[8] Gottlieb, S., Shu, C.-W., and Tadmor, E. SIAM Review 43(1), 89–112 (2001).
[9] Berger, M. J. and Oliger, J. J. Comput. Phys. 53, 484–512 (1984).

[10] Nave, J.-C., Rosales, R. R., and Seibold, B. J. Comput. Phys. 229, 3802–3827 (2010).
[11] Seibold, B., Rosales, R. R., and Nave, J.-C. submitted (2011). http://arxiv.org/abs/1101.5374.
[12] Cockburn, B. C.I.M.E. Lecture notes, (1997).
[13] Jiang, G.-S. and Shu, C.-W. J. Comput. Phys. 126(1), 202–228 (1996).
[14] Bell, J. B., Colella, P., and Glaz, H. J. Comput. Phys. 85, 257–283 (1989).
[15] LeVeque, R. SIAM J. Numer. Anal. 33, 627–665 (1996).
[16] Heller, J. P. Am. J. Phys. 28, 348–353 (1960).

(Prince Chidyagwai) Department of Mathematics, Temple University,
1805 North Broad Street, Philadelphia, PA 19122

E-mail address: chidyagp@temple.edu

(Jean-Christophe Nave) Department of Mathematics and Statistics, McGill University,
805 Sherbrooke W., Montreal, QC, H3A 2K6, Canada

E-mail address: jcnave@math.mcgill.ca

(Rodolfo Ruben Rosales) Department of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139

E-mail address: rrr@math.mit.edu

(Benjamin Seibold) Department of Mathematics, Temple University,
1805 North Broad Street, Philadelphia, PA 19122

E-mail address: seibold@temple.edu

