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Liquid films are important in many industrial applications, but also from a
fundamental point of view, they are important two-phase flow systems. In this
paper, we develop a sharp interface/level set method for the Direct Numerical
Simulation (DNS) of liquid films with large interfacial deformations, and large
density ratio between the liquid and the gas phase. We use the ghost fluid
method to capture the interface motion without smoothing properties across it,
and adopt a maximization scheme for the implicit treatment of the viscous
term in the Navier–Stokes equations. Because liquid films have very low
average depth compared to the distance between waves, several innovations are
required to handle solving the equations on grid structures of high aspect ratio.
Two-dimensional (2D) calculations for wavy films falling down a vertical wall
are presented, and good agreement is found when numerical solutions are
directly compared with the experiments of Nosoko et al. [1]. Some results are
also presented for falling liquid films transitioning naturally from 2D to 3D
surface wave structures demonstrating the potential of the method for 3D fully
coupled two-phase liquid films simulations.

1. Introduction

The overall focus of the present work is to develop a method for directly
simulating two-phase flows, that is capable of handling large interfacial
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Figure 1. Effect of smeared interface formulation for an elongated grid. This figure is colour
online.

deformations, and allows changes in interfacial topology, for example, wave
breaking and/or droplet detachment. Also, the approach must be able to treat
large surface tensions and large density ratios while maintaining a “sharp”
interface. Liquid films have in general a large aspect ratio, thus requiring long
computational domains. Consequently, we investigate whether simulating a
small number of wave lengths (allowing for higher resolution) using periodic
boundary conditions accurately predicts film statistics such as those presented
in [1]. To these ends, we chose to use the finite difference method on a Marker
And Cell (MAC) grid which allowed us to benefit substantially from the work
of previous investigators [2–5].

Specifically, the simulation of falling liquid films is a particularly demanding
problem; typically, falling liquid films have large aspect ratio. The ratio of
the wavelength to the average film thickness may be 100 or more. Aside
from the resolution requirements associated with simulations on high aspect
ratio domains, the waves may present relatively steep fronts (see Figure 1).
Consequently, any numerical method must be able to accurately capture the
interface in both the wall-normal direction as well as in the flow direction.
These requirements imply that traditional simulation techniques must use
square (or slightly elongated) meshes. This results in large problems that are
often too demanding for current computational capabilities. For a typical film
flow simulation with 100 grid points in the wall-normal direction, and a domain
size of four wave lengths, the simulation would require 100 × 20000 × 20000
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(roughly cubical) grid points, which is out of reach of common computer
systems. As a result, most simulation must be conducted on grids with
large aspect ratios, where �y ≈ �z ≈ 100�x for a 100:1 aspect ratio
film.

With a finite-difference approach, several methods used for the simulation
of two-phase flows assume a smeared interface representation. The smeared
interface approach [6], refers to approximating the discontinuous quantities
(fluid densities, viscosities) with their smooth analogs typically over a distance
�ε = 3 max(�x, �y, �z). While this approach is valid and accurate in most
physical situations for which grids with aspect ratios near unity are adequate,
using an elongated grid of aspect ratioγ = max(�x, �y, �z)/min(�x, �y, �z)
would translate into smearing the interface over up to �ε · γ grid points in at
least one direction. The interface smearing leads to problems when the film
surface is nearly vertical as is the case for the wave front in Figure 1; on the
front part of the wave, when the interface is nearly perpendicular to the wall,
the smearing is performed over a distance larger by γ compared to the other
direction. This effect introduces errors, and becomes problematic for the study
of processes where interface-local quantities are of interest such as heat transfer
and mass transfer.

Another approach [7] is to treat the interface as a contact surface,
maintaining a “sharp” interface. This approach assumes piece-wise constant
properties (viscosity, density) on each domain and matches the two sides using
appropriate boundary conditions and locally 1D interpolation. This method
eliminates the issues associated with the smeared interface representation. As
a result, the need for resolution dictated by the interface region is reduced
at the expense of a more complicated formulation. Additionally, solving for
pressure through the variable coefficient Poisson equation, an elliptic problem
with jumps discontinuous interface conditions, becomes more involved as
surface tension forces must be included as a pressure jumps rather than a
smooth transition across the interface.

The problem associated with discretizing the equation for the pressure with
interfacial jump conditions was addressed in [8]. The approach for solving
the Navier–Stokes equations in rectangular coordinates with two phases and
including surface tension, was developed by Kang et al. [2] and was named
the Ghost Fluid Method (GFM) in [7]. The method described in [2] is fully
explicit, and did not consider accuracy for large aspect ratio grids, semi-implicit
treatment of the viscous term, or turbulence. In the present work we address
the first two issues, and motivate the appropriateness of the method for the
future study of two-phase turbulence.

This paper is organized in the following way: in Section 2 we review the
background on liquid films and previous numerical work, Section 3 presents
the governing equations, and describes in detail the present scheme, in
Section 4 we validate our approach by directly comparing our numerical results
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with experiments, finally in Section 5 we summarize our main contribution,
and provide an outlook toward possible future research.

2. Objectives and background

As mentioned earlier, the objective of this study is to develop a numerical
method suitable for the study of a wide range of two-phase flows and validate
it for liquid films that are either gravity, or gas driven. The numerical scheme
also should be efficient, accurate, and able to handle arbitrarily large surface
tension forces, density ratios, and deformations of the interface. We will now
briefly discuss previous work with somewhat similar goals that have been used
for the simulation of free surface, or two-phase systems, in the context of the
objectives stated earlier.

The objectives outlined earlier are most closely met by [2]. Improvements
and validation to this approach are, however, necessary:

(1) Implicit treatment of the viscous term allowing us to remove the strong
stability restriction on step size associated with the fully explicit schemes
presented in [2]. This is especially important because wall-normal
mesh spacing is typically one order of magnitude smaller than the
stream-wise mesh spacing due to the nature of the problem.

(2) Validation of simulating liquid films systems using periodic boundary
conditions. The periodic treatment is necessary for the simulation of
turbulence, and to replace the spatially elongated systems that are
required for inflow/outflow boundary conditions to obtain stationary
flow statistics.

One of the first numerical schemes developed for the simulation of free
surface flows is due to Harlow and Welch [9]. In their work, they used a MAC
grid approach and a fractional step method later formalized by Chorin [10].
With the increase in computational power, and the efficiency of the Fast Fourier
Transform (FFT), a number of schemes were developed to be able to simulate
larger problems, including turbulence. Many such schemes, referred to as
“pseudo spectral methods” are referenced in [11]. For example, the problem of
flat free surface turbulence has been extensively studied in [12], and [13].

For general two-phase flow computations, only a few methods can handle
surface tension forces and large density ratios. In the Volume of Fluid
(VoF) method, Hirt and Nichols [14] use piecewise functions (often linear)
to reconstruct the interface locally and determine the fraction of one phase,
that is within a cell. This method has recently been applied to the simulation
of 2D wavy falling liquid films with a free surface [15]. However, it only
calculates the volume fraction occupied by each phase in an interfacial cell so
the shape of the interface has to be reconstructed. Another method uses a level
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set function φ, to implicitly determine the position of the interface as its zero
contour. As a result, fluid properties such as viscosity and density are defined
as a function of φ

μ(φ) =μ− + (μ+ − μ−)H (φ),

ρ(φ) = ρ− + (ρ+ − ρ−)H (φ), (1)

where H (φ) is a Heaviside function, and the “+” and “−” superscripts define
the two different phases, liquid and gas, respectively.

Surface tension forces are included using the Continuum Surface Force
(CSF) model [16]. In this formulation, surface tension enters as a source term
in the momentum equation and is located at the interface through the use of a
delta function in φ,

δ(φ) ≡ d H

dφ
. (2)

Because in the Eulerian framework, equations are discretized on a grid, the
delta function (2), and the Heaviside functions in (1) must be regularized to
avoid O(0) discrete effects. Consequently, most studies suggest smearing (1),
and (2) over a distance ε. As a result, and taking into account that the delta
function should integrate to 1, we define

δε(φ) =

⎧⎪⎨
⎪⎩

1

2ε

[
1 + cos

(
πφ

ε

)]
, |φ| ≤ ε,

0, |φ| > ε,

(3)

Hε(φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, φ < −ε,

1

2

[
1 + φ

ε
+ 1

π
sin

(
πφ

ε

)]
, |φ| ≤ ε,

1, φ > ε.

(4)

We can verify directly that,

∫ +∞

−∞
δε(φ)dφ = 1. (5)

The method of using smeared quantities is appropriate in most situations
where the aspect ratio of the physical problem is nearly one. However, as
noted earlier, this method is not adequate for the simulation of large aspect
ratio problems such as falling liquid films.



158 J.-C. Nave et al.

3. The level set/ghost fluid method approach

We now turn our attention to the sharp interface method for the simulation of
falling liquid films, the Ghost Fluid Method (GFM) of Kang et al. [2] and Liu
et al. [8].

Problems associated with the simulation of falling liquid films are demanding
and constitute a good test of any proposed method. Specifically, the following
issues will be addressed in this section for the development of the numerical
scheme.

First, falling liquid films have typically elongated aspect ratios; the
wavelengths may be one hundred times the thickness of the film. This forces the
use of elongated meshes in the direction of the flow to make for a practically
tractable problem size. Typically, this translates into having an aspect ratio of
10:1 for the mesh, which in turn gives roughly 10 times more grid points in
the streamwise direction compared to the wall normal direction. As an aside,
such meshes elongated in the streamwise direction are also desirable for wall
turbulence simulations as streamwise structures, such as quasi-streamwise
vortices, are much longer than their extent in wall normal or spanwise
directions. Therefore, such elongated meshes are also necessary for the study
of turbulent liquid films—a subject of great practical interest. These two
adjustments can account for a wave length to film thickness ratio of ∼ 100 : 1
which is observed in experimental studies [1]. Also, falling liquid films may
exhibit large curvatures and nearly vertical wave fronts we use the GFM for its
capacity to treat sharp interfaces, and to accurately model surface tension forces
at the sub-grid level. The GFM allows the interface to be defined to first-order
accuracy independently of its local orientation with respect to the grid.

Second, for a film to reach statistically steady state conditions requires long
simulation domains if inflow/outflow boundary conditions are used [17]. As a
result, accurate simulations of large wavelength problems using inflow/outflow
boundary condition are prohibitively expensive. To circumvent this problem we
propose to use periodic boundary conditions with an initial, spatial wavelength
disturbance. In effect, the film develops as a transient problem in the periodic
domain, rather than over a long spatial domain with inflow/outflow boundaries.
This is of course a very common procedure for turbulence simulations. We
will verify the validity of this assumption in Section 4 in the context of falling
liquid films simulations.

Third, many problems of interest exhibit a wide range of scales in liquid
films flows. For instance, the amplitude of capillary waves can be an order of
magnitude smaller than that of a solitary wave. This observation requires using
small grid spacing to correctly capture the physics present at the capillary
wave scale. As a result, the explicit treatment of viscosity in the GFM [2]
imposes stability conditions on time step sizes that are too restrictive even
for laminar problems of this nature. Note that this restriction occurs because
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the scales present in the problem are small in the wall normal direction
(capillary waves). In contrast to single phase homogeneous turbulence, for
which in general an explicit treatment of the viscous term suffices, the need in
two-phase flows of resolving small interfacial features requires an implicit
scheme for the viscous term. We propose an implicit treatment of viscosity
through a maximization approach similar to that of Badalassi et al. [18]. This
approach relaxes the restriction on the time step and allows us to perform
simulations with higher spatial resolution at the same computational cost.

3.1. Problem setup and governing equations

The physical setup that must be addressed by the numerical scheme is shown in
Figure 2. We use periodic boundary conditions in the y-direction, no slip walls in
the x-direction, and slip walls in the z-direction in all three-dimensional cases.
The basic equations for an incompressible viscous fluid are the Navier–Stokes
equations. In rectangular coordinates,

ρt + ∇ · (ρV ) = 0, (6)

ρ(Vt + (V · ∇)V ) = −∇ p + (∇ · τ )T + F, (7)

where “.T ” represents the transpose, F the body forces, τ = 1
2μ[∇V + (∇V )T ]

is the viscous stress tensor for incompressible viscous Newtonian fluid, and
V = 〈u, v, w〉. The density ρ and the viscosity μ are both functions of φ, the
signed distance from the interface, and are defined in the following “sharp”
manner,

ρ(φ) =
{

ρliquid, φ > 0,

ρgas, φ ≤ 0,
(8)

μ(φ) =
{

μliquid, φ > 0,

μgas, φ ≤ 0.
(9)

The level set function φ is obtained by solving the following equation

φt + V · ∇φ = 0. (10)

From φ, we can compute the normal and curvature

N = ∇φ

|∇φ| , (11)

κ = −∇ · N . (12)

Following the GFM formulation, we include surface tension forces as an
internal jump condition for the pressure.
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Figure 2. Physical setup.

3.2. Numerical method

A staggered grid formulation is used to discretize the basic equations. Velocity
components are defined on cell faces, while the pressure, and level set function
are defined at the center of the control volume. The solver for the Navier–Stokes
equation is an evolution of the scheme in [2]. We used a semi-implicit
time marching method with a second-order Adams–Bashforth method for the



Direct Numerical Simulation of Liquid Films with Large Interfacial Deformation 161

explicit terms and a maximization scheme for the implicit terms. A fractional
step method, projection method [10] is used to solve the Navier–Stokes
equation. The variable density and viscosity are treated “sharply” and jump
conditions are computed using sub-grid linear interpolation based on the level
set function φ. The discretized equations for conservation of momentum are

V n+1 − V n

�t
=−∇ pn+1

ρ
+ 3

2

[
−(V · ∇)V + F

ρ
− νmax

2
M

]n

− 1

2

[
−(V · ∇)V + F

ρ
− νmax

2
M

]n−1

+
[

(∇ · τ )T

ρ

]n

+ νmax

2
Mn+1, (13)

∇ · V n+1 = 0, (14)

where, M = �V and νmax = max(μgas

ρgas
,

μliquid

ρliquid
).

Using the projection method, we define the following fractional steps,

V � − V n

�t
= 3

2

[
−(V · ∇)V + F

ρ
− νmax

2
M

]n

− 1

2

[
−(V · ∇)V + F

ρ
− νmax

2
M

]n−1

+
[

(∇ · τ )T

ρ

]n

+ νmax

2
M�, (15)

V n+1 − V �

�t
+ ∇ pn+1

ρ
= 0. (16)

Assuming that the velocity field at time level n + 1 is divergence-free (14),
we derive the variable density pressure Poisson equation

∇ ·
(∇ pn+1

ρ

)
= ∇ · V �

�t
. (17)

We assume no flow-through and no-slip conditions at solid wall boundaries,
V · N = 0, and V × N = 0 respectively. The pressure boundary conditions at
solid wall boundaries are Neumann, ∇ p · N = 0.

In the GFM, the treatment of property discontinuities (density, viscosity) at
the interface requires jump conditions for the viscous term in the momentum
equation (15), and in the Poisson equation (17). Following the notation in [2]
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we denote the jump across the interface by [·], and we compute the matrix of
derivative jumps due to the discontinuity in viscosity,

⎛
⎜⎝

[μux ] [μuy] [μuz]

[μvx ] [μvy] [μvz]

[μwx ] [μwy] [μwz]

⎞
⎟⎠= [μ]

⎛
⎜⎝

∇u

∇v

∇w

⎞
⎟⎠

⎛
⎜⎝

0

T1

T2

⎞
⎟⎠

T ⎛
⎜⎝

0

T1

T2

⎞
⎟⎠

+ [μ]N T N

⎛
⎜⎝

∇u

∇v

∇w

⎞
⎟⎠ N T N

− [μ]

⎛
⎜⎝

0

T1

T2

⎞
⎟⎠

T ⎛
⎜⎝

0

T1

T2

⎞
⎟⎠

⎛
⎜⎝

∇u

∇v

∇w

⎞
⎟⎠

T

N T N , (18)

where T1 and T2 are the orthogonal and bi-orthogonal directions to the normal
vector N . By knowing the values of the jumps across the interface, we can
evaluate smoothly the individual derivatives on each side of the interface. More
details on the derivation and discretization of the explicit part of the viscous
term are available in [2].

The momentum equation can then be solved using an approximate
factorization technique. We use standard central differences for the Laplacian
terms in (15), WENO fifth order for the convection term, and the technique
developed in [2] and [19] for the discretization of the divergence of the rate
of strain tensor, τ . For the solution of V �, we solve three tri-diagonal linear
systems, one per dimension. Additionally, the implicit treatment of the viscous
term by the maximization technique is intended to remove the O(�x2) stability
restriction on the time step �t .

Surface tension effects are incorporated into the equations as a jump in
pressure across the interface. Thus, the jump condition for the pressure is

[p] − 2[μ](∇u · N , ∇v · N , ∇w · N ) · N = σκ, (19)

where σ is the surface tension, and is assumed to be constant in the present study.
The interface is evolved using the level set equation (10) which is discretized

as

φn+1 − φn

�t
+ V · ∇φn = 0, (20)

where WENO fifth order is used to approximate ∇φ.
To preserve the level set function as a proper signed distance from the

interface (|∇φ| = 1), we use the reinitialization procedure with constraint from
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Sussman and Fatermi [20]

φτ = sign(φ0)(1 − |∇φ|) + λ f (φ)

≡ L(φ0, φ) + λ f (φ), (21)

where φ0 is the level set function at pseudo-time τ = 0, and λ is given by

λ =

∫
�

H ′(φ0)L(φ0, φ)∫
�

H ′(φ0) f (φ0)
, (22)

and where, H (φ) is the Heaviside function, H ′(φ) = d H (φ)/dφ, and
f (φ) = H ′(φ)|∇φ|.

Equation (21) with λ = 0 is the original reinitialization equation. We note
that the steady state of (21) with λ = 0 is |∇φ| = 1, the property we seek for
the level set function. However, numerical errors cause the zero-contour of
the level set function to be displaced during this procedure, leading to the
loss (gain) of mass. As a result, Sussman and Fatermi [20] introduced the
integrating factor λ, defined by (22) which represents a mass constraint for
equation (21), thus guaranteeing that each cell domain � conserves the same
mass throughout the procedure.

The integrations in (22) is performed using a second-order accurate Simpson’s
rule [21], over each individual grid cell � of the domain. Spatial derivatives in
(21) are discretized using WENO fifth order, and the function is advanced in
time using a third-order Runge–Kutta TVD scheme. Characteristics of (21) are
normal outward to the contour φ = 0, thus the integration is performed for a
few steps in pseudo time, guaranteeing accuracy of the solution on a strip
around the interface. Additional details about the solution of the level set and
reinitialization equations are available in [20].

The variable coefficient Poisson equation (17) is solved with the interface
jump condition defined by (19). The discretization closely follows that described
in [8]. To compute curvature around the interface, we use sub-grid linear
interpolation

κI nt = θκRight + (1 − θ )κLeft, (23)

where θ is the cut cell defined by

θ = |φLeft|
|φLeft| + |φRight| . (24)

This discretization produces a linear system Ap = b to be solved. Because
the matrix A is poorly conditioned, solving for pressure requires roughly 80%
of the computational time. As a result, the solution method needs to be
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Table 1
Solution Scheme for 1 Time Step. (1 Euler Step, E(V ), is 1–4 Only)

1. Solve (15) for V �

2. Solve (17) for pn+1

3. Solve (16) for V n+1

4. Solve (20) for φn+1 (Advection)
5. Solve (21) for φn+1 (Reinitialization)

complemented by a preconditioner in order to limit the number of iterations
required.

After investigating several iterative methods and preconditioners, we settled
on the combination yielding the best robustness and efficiency for the simulation
of liquid films. We use the BiCG-Stab iterative method from Van der Vorst
[22] along with an Incomplete Upper-Lower (ILU) preconditioner. Note that
the matrix A, produced from the discretization of the Poisson equation for
the pressure is symmetric; however, we chose BiCG-Stab, an iterative method
capable of solving non-symmetric systems, foreseeing evolving the method
toward the solution of problems with irregular wall boundaries possibly
resulting in nonsymmetric stencils.

Boundary conditions for most problems of interest in the present study have
solid walls in x and z directions and are periodic in the y direction. This results
in a nonempty null space for A. We can therefore specify as an additional
constraint that the sum of the residual be zero every time it is computed by
subtracting a constant cs

rnew = r − cs,

cs ≡ 1

n

n∑
i=1

ri . (25)

This guarantees convergence of the iterative solution for the Poisson
equation. The entire solution scheme (Table 1), corresponding to an Euler step,
with the exception of the reinitialization is then embedded in the third-order
Runge–Kutta TVD scheme [23]

V n+1 = 1

3
V n + 2

3
E

{
3

4
V n + 1

4
E[E(V n)]

}
. (26)
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3.3. Stability

The original Ghost Fluid Method used an explicit discretization for the viscous
term. We use a maximization scheme to relax the severe limitation imposed on
the time step �t when the mesh size is reduced. Kang et al. [2] showed the
limitation on the time step in the GFM to be

�t ≤
(

Ccf l + Vcf l +
√

(Ccf l + Vcf l)2 + 4G2
c f l + 4S2

c f l

)−1

, (27)

with

Ccf l = max(|u|)
�x

+ max(|v|)
�y

+ max(|w|)
�z

,

V E
cf l = max(v−, v+)

(
2

�x2
+ 2

�y2
+ 2

�z2

)
,

Gcf l =
√

|g|
�y

,

Scf l =
√

σ

min(ρ−, ρ+) min(�x, �y, �z)3
. (28)

For the maximization scheme, Badalassi et al. [18] showed

V M
cf l =

[
C

(
max(μ−, μ+)

min(μ−, μ+)
− 1

)−1

min(�x, �y, �z)

]−1

, (29)

where C is a constant.
To demonstrate stability of the new scheme, we used a 2D laminar falling

liquid film problem at Re = 30 where surface tension has been chosen to
be low to remove the restriction imposed by Scf l in (28). We integrated the
equations with different values of �x (mesh size), and chose for simplicity the
same grid spacing in the y-direction. The solution was computed until steady
state of the film or until numerical blowup due to violation of the stability
constraint was observed. For each �x , Figure 3 reports �tmax for both the
explicit scheme and the maximization scheme. The lines fitting the computed
points are extrapolated to show the advantage of the maximization scheme
for fine grid spacing. The extrapolation is based on the theoretical slopes for
the maximization and explicit schemes with the constant being determined
empirically from the data.

For the maximization approach used here, we observe proportionality to �x
and not �x2, which is used for the explicit scheme data. We additionally
checked that the solution for critical time steps in both cases reach the same
statistically steady state wave profile and flow rates, that is, give essentially the
same results.
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Figure 3. Critical stability comparison between the explicit GFM (black) and the maximization
scheme (blue). Note that a mesh size of 5e-6 corresponds to a 100 × 100 × 100 grid for
typical falling liquid film problems. This figure is colour online.

4. Validation

In this section, we focus on the simulation of vertically falling liquid films in
the wavy-laminar regime in two-dimensions. First, definitions and the cases
studied will be presented. Second, a quantitative study of the flow statistics
will be compared with experiments to serve as validation of our approach.

4.1. Numerical simulation and definitions

As stated earlier, the aspect ratio for these films is very large. As a result, we
performed our computation on a 2D grid of 50 × 250 mesh points for the
range of Reynolds numbers from 30 to 100. The 50 × 250 grid was chosen to
guarantee convergence of the results. Similar computations were performed
using inflow/outflow boundary conditions where inlet pressure is varied at a
given frequency [17]. In the present study, we use periodic boundary conditions
without temporal forcing. To set the scale of the problem, we define λs as the
initial conditions for the wavelength of the solitary wave and Ns the number of
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Table 2
Computation Case Matrix

I II III IV V VI

Re 103 103 69 50 40 30
N f · 10−12 0.41 0.052 0.2785 0.2018 0.1614 0.1614
Nλ 994.9 994.9 826.8 742.6 689.4 689.4

Figure 4. Typical wave profile corresponding to statistically steady state for case II.

waves per computational domain of length L y . Here, λs is chosen so that it
corresponds to the steady-state solitary wave length observed in experiments.
Also, the Reynolds number is defined based on the undisturbed film thickness
h0. We define the initial film thickness as

h(y) = h0 + ε sin

(
2π Ns y

L y

)
, (30)
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Figure 5. Typical wave profile corresponding to statistically steady state for case III.

where the initial disturbance ε � h0/100. The length of the periodic domain,
Ly may have an influence on the accuracy of the solution if only one or two
waves were simulated in the domain, (Ns = 1, or Ns = 2) because the box size
acts as a filter. As a result, choosing Ns = 4 for all of our two-dimensional
simulations shows it eliminated this effect. The nondimensional groups for this
problem are defined assuming the following scales for length 〈L〉 and velocity
〈V 〉. The nomenclature is chosen here to allow for a direct comparison with
the results presented by Nosoko et al. [1]. Using their notation,

〈L〉 ≡
(

v2

g

) 1
3

,

〈V 〉 ≡ (vg)
1
3 ,

(31)

we define a fluid property nondimensional group as

N f = ρ3v4g

σ 3
, (32)



Direct Numerical Simulation of Liquid Films with Large Interfacial Deformation 169

Figure 6. Typical wave profile corresponding to statistically steady state for case V.

nondimensional peak height as

Nhp = h peak

(
v2

g

)− 1
3

, (33)

nondimensional wavelength as

Nλ = λs

(
v2

g

)− 1
3

, (34)

and, nondimensional wave velocity as

Nuw = uw(vg)−
1
3 . (35)

We performed a set of six numerical experiments shown in Table 2, spanning
a range of Re, N f , and Nλ similar to the experiments performed in [1].

In the regime under study in this section, the flow statistics become steady,
and analysis is possible with good accuracy. For comparing with data, Nosoko
et al. [1] have performed a comprehensive set of experiments in this regime,
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Figure 7. Comparison between nondimensional peak height experimental scaling (dashed
line) and numerical experimental cases I through VI. This figure is colour online.

and were able to extract many scaling characteristics of the flow. This section
will serve as a validation of our approach.

4.2. Results

In their work, Nosoko et al. [1] found from experiments the following
relationships for wave peak height and wave velocity:

Nhp = 0.49N 0.044
f N 0.39

λ Re0.46, (36)

Nuw = 1.13N 0.02
f N 0.31

λ Re0.37, (37)

and

Nhp = 0.425N 0.019
f N 1.25

uw . (38)

In Figures 4–6 we present wave shapes at statistically steady state for
cases II, III, and V detailed in Table 2. Although the wave profiles may match
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Figure 8. Comparison between nondimensional wave velocity experimental scaling (dashed
line) and numerical experimental cases I through VI. This figure is colour online.

visually what is observed in experiments [8] and other numerical studies
[17,15], we proceed to quantify our results by comparing with empirical
relationships in Equations (36)–(38).

In Figure 7, we present the scaling corresponding to (36) versus our
calculations. There is good agreement of values from the simulations with
the empirical relationship derived from experiment. Note at larger values of
the abscissa, numerical results are more scattered. The larger scattering may
be explained by the fact that for larger values of the abscissa, the film is
not as statistically steady as for lower values, resulting in some difficulty in
computing statistically steady film heights.

The second empirical relationship described by (37) is tested against the
simulations in Figure 8. Good agreement between the relationship in [1] and
the numerical simulations is again evident.

Finally, Figure 9 shows the comparison between (38) and results of
the simulations. It is again evident that there is good agreement between
experiments and the numerical solutions.
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Figure 9. Comparison between nondimensional peak height experimental scaling (dashed
line) and numerical experimental cases I through VI. This figure is colour online.

5. Conclusion and outlook

We have presented a numerical method for the Direct Numerical Simulation
(DNS) of liquid films. Several issues needed to be addressed to solve the
problem of liquid films with large deformation:

• The need for an elongated grid aspect ratio arising from the geometrical
configuration of liquid films has warranted development of a sharp interface
method based on the ghost fluid formulation [7].

• In contrast with homogeneous turbulence, liquid film turbulence is a high
aspect ratio phenomenon, and again warrants using elongated grids. To
perform simulations, as required for example in the DNS of high Reynolds
number problems, we have developed an implicit treatment of the viscous
term present in the Navier–Stokes equations thus removing the stability
restriction imposed by the small grid spacing in the wall-normal direction.

• Because falling liquid films need a large domain to capture their growth
to statistically steady state, we have developed a solution technique with
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Figure 10. Transition from 2D to 3D on a vertically falling liquid film at RE = 400. (flow to
the right). This figure is colour online.
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Figure 11. Structures in the liquid—No gravity/gas driven system. This figure is colour online.

periodic boundary conditions. This is also necessary for studying high
Reynolds and turbulence problems, as DNS is often performed for canonical
conditions using periodic boundary conditions. Figure 10 shows a sequence
in time of interface profiles for a vertically falling liquid film in 3D. The
flow was initialized with a 2D disturbance and we observed the transition
to a fully 3D profile. Similar computations at much greater computational
cost (the results presented in Figure 10 required a few hours on a single
CPU machine) are performed in [17] using inflow/outflow conditions, thus
requiring unnecessarily long domains.

• We have validated our approach by comparing our numerical simulations
with the experiment of Nosoko et al. [1] for vertical falling liquid films
at Reynolds number up to 100. The empirical relationships derived from
experiment were compared with our numerical calculations with good
agreement. In conclusion, it is important to recognize that the numerical
method developed here is very general.

As future work, we plan to study the effect of gravity on gas driven flows.
As an example, Figures 11 and 12 show a case with no gravity. In Figure 11,
we observe large deformation of the interface along with vortical structures in



Direct Numerical Simulation of Liquid Films with Large Interfacial Deformation 175

Figure 12. Vortical structures in the gas—No gravity/gas driven system. This figure is colour
online.

the liquid. In Figure 12, we show vortical structures in the gas phase for the
same case, and here, streamwise streaky structures are present and “wave-shape
effects” on these structures is observed.

Finally, we hope the method presented here will serve as a tool to study
liquid films systems whether they are gravity-driven such as falling liquid
films, or gas-driven. In the latter case, a large area is now open for investigation
through DNS including such systems as micro-breaking and breaking waves.
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