MATH 579 - ASSIGNMENT 4

PostedSunday March 31^{st} 2012DueWednesday April 12^{th} 2012

- Clarity of the figures and conciseness of explanations will be part of the grade.
- Download the supporting codes on the course webpage.

1. Level Set Method

you can download the code for the initial conditions of both problems: *ic* phi.m.

1.1. Interface propagation. in the domain $[0, 1]^2$, let

$$\phi_0(x,y) = \sqrt{\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2} - \frac{1}{8}.$$

The zero-contour of ϕ corresponds to a circle of radius $\frac{1}{8}$, centered at $(\frac{1}{2}, \frac{1}{2})$. Solve the level set equation (using the method presented in class)

$$\phi_t + F \left| \nabla \phi \right| = 0$$

from t = 0 to t = 1 with initial condition $\phi(x, y, 0) = \phi_0(x, y)$, and $F = \sin(2\pi t)$. Present a convergence plot in the L_{∞} norm and a plot of the zero contour of the solution at t = 1 on a 100×100 grid.

1.2. Mean curvature flow. in the domain $[0,1]^2$, let

$$\phi_0(x,y) = \sqrt{\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 - \left(\frac{1}{4} + \frac{1}{6}\sin\left(\arctan\left(\frac{x - \frac{1}{2}}{y - \frac{1}{2}}\right)\right)\right)}.$$

Solve the level set equation (using the method presented in class)

$$\phi_t + F \left| \nabla \phi \right| = 0$$

from t = 0 to t = 1 with initial condition $\phi(x, y, 0) = \phi_0(x, y)$, and $F = -\kappa$, where $\kappa = \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|}\right)$ is the mean curvature (note that $\kappa = \kappa(x, y, t)$). Plot the zero contour of the solution at t = 1 on a 100×100 grid.

At t = 1 switch the sign of F, i.e. now $F = +\kappa$, and evolve the solution until t = 2. Plot the zero contour of the solution at t = 2 along with the initial conditions on a 100 × 100 grid. Described and explain your observations. Is the system hyperbolic, explain? If it is not hyperbolic, then how would you classify it?

Note: pay special attention to the computation of κ . Recall that in the discrete setting, $|\kappa| < 1/h$, where h is the mesh size (e.g. a circle of radius smaller than h cannot be represented by a level set function as defined above on a grid with mesh size h).

2. NAVIER-STOKES EQUATIONS

Solve one of the following two problems. You may solve both for extra credits.

2.1. Finite-Difference approach - lid-driven cavity problem. Download the code: *mit18086 navierstokes.m.*

Devise a way to determine the global accuracy of the method. For instance, one way to achieve this may be to compute the solution at some fixed time using a *very fine* grid and declare that the exact solution. Explain your method clearly, and produce two convergence plots, one in the L_2 norm and one in the L_{∞} norm. Explain your results.

Note: there are a lot of choices to be made here. e.g. T_{final} , finest resolution to be used, sequence of resolutions for the convergence,... Be clear and concise about these choices.

2.2. Pseudo-spectral approach - homogeneous flow. Download the code: mit18336 spectral ns2d.m.

Devise a way to determine the global accuracy of the method. For instance, one way to achieve this may be to compute the solution at some fixed time using a *very fine* grid and declare that the exact solution. Explain your method clearly, and produce two convergence plots, one in the L_2 norm and one in the L_{∞} norm. Explain your results.

Note: there are a lot of choices to be made here. e.g. T_{final} , finest resolution to be used, sequence of resolutions for the convergence,... Be clear and concise about these choices.