MATH 579-ASSIGNMENT 4

Posted Sunday March $31^{\text {st }} 2012$
Due Wednesday April $12^{\text {th }} 2012$

- Write the following assignment using $L^{A} T_{E} X$ or the (very easy to use) $L^{A} T_{E} X$ editor: $L_{Y} X$ available for free at http://www.lyx.org/.
- Clarity of the figures and conciseness of explanations will be part of the grade.
- Download the supporting codes on the course webpage.

1. Level Set Method

you can download the code for the initial conditions of both problems: ic_phi.m.
1.1. Interface propagation. in the domain $[0,1]^{2}$, let

$$
\phi_{0}(x, y)=\sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}}-\frac{1}{8}
$$

The zero-contour of ϕ corresponds to a circle of radius $\frac{1}{8}$, centered at $\left(\frac{1}{2}, \frac{1}{2}\right)$. Solve the level set equation (using the method presented in class)

$$
\phi_{t}+F|\nabla \phi|=0
$$

from $t=0$ to $t=1$ with initial condition $\phi(x, y, 0)=\phi_{0}(x, y)$, and $F=\sin (2 \pi t)$. Present a convergence plot in the L_{∞} norm and a plot of the zero contour of the solution at $t=1$ on a 100×100 grid.
1.2. Mean curvature flow. in the domain $[0,1]^{2}$, let

$$
\phi_{0}(x, y)=\sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}}-\left(\frac{1}{4}+\frac{1}{6} \sin \left(\arctan \left(\frac{x-\frac{1}{2}}{y-\frac{1}{2}}\right)\right)\right)
$$

Solve the level set equation (using the method presented in class)

$$
\phi_{t}+F|\nabla \phi|=0
$$

from $t=0$ to $t=1$ with initial condition $\phi(x, y, 0)=\phi_{0}(x, y)$, and $F=-\kappa$, where $\kappa=\nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right)$ is the mean curvature (note that $\kappa=\kappa(x, y, t)$). Plot the zero contour of the solution at $t=1$ on a 100×100 grid.

At $t=1$ switch the sign of F, i.e. now $F=+\kappa$, and evolve the solution until $t=2$. Plot the zero contour of the solution at $t=2$ along with the initial conditions on a 100×100 grid. Described and explain your observations. Is the system hyperbolic, explain? If it is not hyperbolic, then how would you classify it?

Note: pay special attention to the computation of κ. Recall that in the discrete setting, $|\kappa|<1 / h$, where h is the mesh size (e.g. a circle of radius smaller than h cannot be represented by a level set function as defined above on a grid with mesh size h).

2. Navier-Stokes equations

Solve one of the following two problems. You may solve both for extra credits.
2.1. Finite-Difference approach - lid-driven cavity problem. Download the code: mit18086_navierstokes.m.

Devise a way to determine the global accuracy of the method. For instance, one way to achieve this may be to compute the solution at some fixed time using a very fine grid and declare that the exact solution. Explain your method clearly, and produce two convergence plots, one in the L_{2} norm and one in the L_{∞} norm. Explain your results.

Note: there are a lot of choices to be made here. e.g. $T_{\text {final }}$, finest resolution to be used, sequence of resolutions for the convergence,... Be clear and concise about these choices.
2.2. Pseudo-spectral approach - homogeneous flow. Download the code: mit18336_spectral_ns2d.m.

Devise a way to determine the global accuracy of the method. For instance, one way to achieve this may be to compute the solution at some fixed time using a very fine grid and declare that the exact solution. Explain your method clearly, and produce two convergence plots, one in the L_{2} norm and one in the L_{∞} norm. Explain your results.

Note: there are a lot of choices to be made here. e.g. $T_{\text {final }}$, finest resolution to be used, sequence of resolutions for the convergence,... Be clear and concise about these choices.

