
MATH 579, Solutions to Assignment 2,
by Alexandra Tcheng

1. Linear Advection Equation

Consider the linear advection equation:

ut + ux = 0 x ∈ S1 t ∈ (0, T] (1)

u(x, 0) = u0(x) (2)

1) It is easy to verify that the solution to the PDE is: u(x, t) = u0(x− t), and therefore u(x, 1) = u0(x− 1).

2) We compute the GTE for each of the schemes, using the ideas presented in the solutions to Question 4) of
Assignment 1:

a) Lax-Friedrich: The discretization of the advection equation using L-F gives:

un+1
j − 1

2 (unj+1 + unj−1)

∆t
= −

unj+1 − unj−1

2∆x
(3)

We can verify:

τ(∆x,∆t) =
u(x, t+ ∆t)− 1

2 (u(x+ ∆x, t) + u(x−∆x, t))

∆t
+
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
(4)

= O(∆t+ (∆x)2) (5)

and the CFL (=stability) condition is

∆t

∆x
≤ 1 ⇐⇒ ∆t = C∆x (6)

Therefore (using the shortcut):

GTELF ≤ τ(∆x,∆x) = O(∆x+ (∆x)2) = O(∆x) (7)

b) Lax-Wendroff: The discretization of the advection equation using L-W gives:

un+1
j − unj

∆t
= −

unj+1 − unj−1

2∆x
+

(
∆t

2

)
unj+1 − 2unj + unj−1

(∆x)2
(8)

We can verify:

τ(∆x,∆t) =
u(x, t+ ∆t)− u(x, t)

∆t
+
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
−
(

∆t

2

)
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2

= O((∆t)2 + (∆x)2) (9)

and the CFL (=stability) condition is

∆t

∆x
≤ 1 ⇐⇒ ∆t = C∆x (10)

Therefore (using the shortcut):

GTELW ≤ τ(∆x,∆x) = O((∆x)2 + (∆x)2) = O((∆x)2) (11)

c) RK3-TVD + WENO5: The one-step error for this scheme is:

α(∆t,∆x) = O((∆t)4 + (∆x)6) (12)

and the CFL (=stability) condition is

∆t

∆x
≤ 1 ⇐⇒ ∆t = C∆x (13)

1

Therefore:

GTER3W5 ≤
1

∆x
α(∆x,∆x) =

1

∆x
O((∆x)4 + (∆x)6) = O((∆x)3) (14)

(See the appendices for details on how I implemented the schemes.)

Results for u0(x) = cosx:

a) Lax-Friedrich: The convergence results are shown on Figure (1). The grid resolution was varied from
dx = 2π/(25) to dx = 2π/(216). I chose not to go to lower resolutions to keep the computing time reasonable.
Moreover, the expected orders of convergence were already visible at those resolutions. Since for each norm, all
points seem to lie on the same line, they were all used in polyfit to compute the slope, which returned:

slope=0.9921 for the L∞ norm,
slope=0.9945 for the L1 norm,
slope=0.9930 for the L2 norm.
The norms of the error behave as expected.

b) Lax-Wendroff: The convergence results are shown on Figure (2). As above, for the same reasons, the grid
resolution was varied from dx = 2π/(25) to dx = 2π/(211). All points were used in polyfit to compute the slope,
which returned:

slope=2.0068 for the L∞ norm,
slope=2.0103 for the L1 norm,
slope=2.0087 for the L2 norm.
The norms of the error behave as expected.

c) RK3-TVD + WENO5: The convergence results are shown on Figure (3). As above, for the same reasons,
the grid resolution was varied from dx = 2π/(24) to dx = 2π/(211). This time, not all points seem aligned. I only
used the 4 left-most points to compute the slope in polyfit , which returned:

slope=3.0543 for the L∞ norm,
slope=3.0545 for the L1 norm,
slope=3.0541 for the L2 norm.
The norms of the error behave as expected in the asymptotic behaviour. This example underlines the importance

of letting the error go to εmachine whenever possible. Here, since the computer time became unreasonably long for
high grid resolutions, this was not possible. However, as suggested in class, one way to observe the order of the GTE
is to increase the final time (I picked T = 5) in order to let the error in ∆t accumulate and become more significant
than the error in ∆x.

3) Results for u0(x) = box:

a) Lax-Friedrich: The convergence results are shown on Figure (4). The grid resolution was varied from
dx = 2π/(24) to dx = 2π/(216). I chose not to go to lower resolutions to keep the computing time reasonable.
Moreover, the orders of convergence were already visible at those resolutions. Since not all points seem to lie on the
same line, the 10 left-most points were used in polyfit to compute the slope of the L1 and L∞ norm of the error,
and the 8 left-most points for the L2 norm. This returned:

slope=0.0239 for the L∞ norm,
slope=0.4949 for the L1 norm,
slope=0.2528 for the L2 norm.
Those norms do not agree with the ones expected from Part 2) a). However, this is not surprising, since in

deriving the LTE and GTE, we used the Taylor series of the function u(x, t). But the box function being only C0,
we cannot expect u(x, t) to equal its Taylor series pointwise, and therefore the above reasoning does not apply.
Although this was not asked, it is interesting to watch the box evolve when advected with a Lax-Friedrich scheme.
This is presented in a series of snapshots put together in Figure (5). Clearly, the scheme fails to capture the dis-
continuities of the function, and its diffusive nature eventually leads to large errors near the discontinuities. This
explains why the L∞ norm of the error cannot converge. This also explains why the L1 norm, which is simply the
area between the true solution and the numerical solution, improves with the grid resolution.

2

b) Lax-Wendroff: The convergence results are shown on Figure (6). As above, for the same reasons, the grid
resolution was varied from dx = 2π/(25) to dx = 2π/(216). All points were used in polyfit to compute the slope
of the L1 and L2 norms of the errors. I did not compute the slope for the L∞, since there clearly isn’t convergence.
This returned:

slope=0.5934 for the L1 norm,
slope=0.3144 for the L2 norm.
Again, this does not agree with the findings of Part 2) a), for the same reason as for Lax-Friedrich.

Again, it is interesting to watch the box evolve when advected by a Lax-Wendroff scheme. This is presented in a
series of snapshots put together in Figure (7). This scheme also fails to capture the discontinuities of the function,
and its dispersive nature eventually leads to large errors near the discontinuities, where wild oscillations appear.
However, the overall shape of the box is (at least visually) better preserved than when advected with LF, which
provides a simple explanation as to why the rate of convergence of the L1 norm is slightly better.

c) RK3-TVD + WENO5: The convergence results are shown on Figure (8). As above, for the same reasons,
the grid resolution was varied from dx = 2π/(25) to dx = 2π/(212). The final time was increased to T = 4. Not all
points seem aligned. I only used the 4 left-most points to compute the slope in polyfit, which returned:

slope=0.8345 for the L1 norm,
slope=0.4291 for the L2 norm.
We almost get first order convergence in the L1 norm, which is much better than with the previous two schemes.

However, convergence is slower in the L2 norm, and absent in the L∞ norm.
Again, it is interesting to watch the box evolve when advected by an RK3-TVD - WENO5 scheme. This is presented
in a series of snapshots put together in Figure (9). Although this scheme also fails to capture the discontinuities
of the function, the overall shape of the box is much better preserved than when advected with the previous two
linear schemes. Although the L∞ norm cannot converge because of the large errors near the discontinuities, those er-
rors do not spread out and pollute the solution, which explains why the rate of convergence of the L1 norm is almost 1.

3

2. Linear Advection Equation - Semi-Lagragian approach

1) Referring to Figure, the idea is to use various values of u0
j to build an interpolant L(x), and then get u1

2 from

u1
2 = L(x2 − c∆t). I’m going to use the formula for Lagrange interpolation in each case. I leave r unspecified until

the end, where I then set r = 0.5 and c = 1.

Linear interpolation: Using the two neighbouring points (x1, u
0
1) and (x2, u

0
2):

L(x) = u0
1 l1(x) + u0

2 l2(x) = u0
1

x− x2

x1 − x2
+ u0

2

x− x1

x2 − x1
= u0

1

x− x2

−∆x
+ u0

2

x− x1

∆x
(15)

=⇒ u1
2 ≈ L(x2 − c∆t) = u0

1

−c∆t
−∆x

+ u0
2

x2 − x1 − c∆t
∆x

= u0
1

c∆t

∆x
+ u0

2

(
1− c∆t

∆x

)
(16)

=⇒ u1
2 − u0

2

∆t
= c

u0
1 − u0

2

∆x
Upwind method (17)

Or if we let r = 0.5 and c = 1: u1
2 − u0

2 = −u0
2−u

0
1

2 .

Quadratic interpolation - Left: Using (x0, u
0
0), (x1, u

0
1) and (x2, u

0
2):

L(x) = u0
0 l0(x) + u0

1 l1(x) + u0
2 l2(x) (18)

= u0
0

(x− x1)(x− x2)

2(∆x)2
+ u0

1

(x− x0)(x− x2)

−(∆x)2
+ u0

2

(x− x0)(x− x1)

2(∆x)2
(19)

=⇒ u1
2 ≈ L(x2 − c∆t) = u0

2 +
1

2(∆x)2

[
c∆x∆t

(
−u0

0 + 4u0
1 − 3u0

2

)
+ c2(∆t)2

(
u0

0 − 2u0
1 + u0

2

)]
(20)

=⇒ u1
2 − u0

2

∆t
= − c

2∆x

(
u0

0 − 4u0
1 + 3u0

2

)
+

c2∆t

2(∆x)2

(
u0

0 − 2u0
1 + u0

2

)
Beam−Warming method (21)

Or if we let r = 0.5 and c = 1: u1
2 − u0

2 = − 1
4

(
u0

0 − 4u0
1 + 3u0

2

)
+ 1

8

(
u0

0 − 2u0
1 + u0

2

)
.

Quadratic interpolation - Right: Using (x1, u
0
1), (x2, u

0
2) and (x3, u

0
3):

L(x) = u0
1 l1(x) + u0

2 l2(x) + u0
3 l3(x) (22)

= u0
1

(x− x2)(x− x3)

2(∆x)2
+ u0

2

(x− x1)(x− x3)

−(∆x)2
+ u0

3

(x− x1)(x− x2)

2(∆x)2
(23)

=⇒ u1
2 ≈ L(x2 − c∆t) = u0

2 +
c∆t

2∆x
(u0

1 − u0
3) +

c2(∆t)2

2(∆x)2
(u0

3 − 2u0
2 + u0

1) (24)

=⇒ u1
2 − u0

2

∆t
=

c

2∆x
(u0

1 − u0
3) +

c2∆t

2(∆x)2
(u0

3 − 2u0
2 + u0

1) Lax−Wendroff method (25)

Or if we let r = 0.5 and c = 1: u1
2 − u0

2 = − 1
4 (u0

3 − u0
1) + 1

8 (u0
3 − 2u0

2 + u0
1).

2) I proceeded in the same way as in Part 1) using 4 points, in order to get a cubic interpolant. Using (x0, u
0
0),

(x1, u
0
1), (x2, u

0
2) and (x3, u

0
3):

L(x) = u0
0 l0(x) + u0

1 l1(x) + u0
2 l2(x) + u0

3 l3(x) (26)

= u0
0

(x− x1)(x− x2)(x− x3)

−6(∆x)3
+ u0

1

(x− x0)(x− x2)(x− x3)

2(∆x)3
(27)

+u0
2

(x− x0)(x− x1)(x− x3)

−2(∆x)3
+ u0

3

(x− x0)(x− x1)(x− x2)

6(∆x)3
(28)

4

=⇒ u1
2 ≈ L(x2 − c∆t) = u0

2 +
c∆t

6∆x
(−u0

0 + 6u0
1 − 3u0

2 − 2u0
3) +

c2(∆t)2

6(∆x)2
(3u0

1 − 6u0
2 + 3u0

3) (29)

+
c3(∆t)3

6(∆x)3
(u0

0 − 3u0
1 + 3u0

2 − u0
3) (30)

=⇒ u1
2 − u0

2

∆t
=

c

6∆x
(−u0

0 + 6u0
1 − 3u0

2 − 2u0
3) +

c2∆t

6(∆x)2
(3u0

1 − 6u0
2 + 3u0

3) +
c3(∆t)2

6(∆x)3
(u0

0 − 3u0
1 + 3u0

2 − u0
3) (31)

Stability: Performing (quick) Von Neumann analysis gives the following:

G(k) = 1 +
r

6
(−e−2k∆x + 6e−k∆x − 3− 2ek∆x) +

r2

6
(3e−k∆x − 6 + 3ek∆x) +

r3

6
(e−2k∆x − 3e−k∆x + 3− ek∆x) (32)

In order to find out for which values of r the scheme is stable, I plotted |G(k)| for various values of r, ranging from
r = 0 to r = 1 (since the CFL condition for the other schemes was r ≤ 1, why not try this again!). The results shown
on Figure (11) indicate that r ≤ 1 ensures stability, since |G(k)| ≤ 1 for all k ∈ [0, 2π/(∆x)]. (Note that there may
be other possible intervals for r which ensure stability. . . However, I did not investigate this very much. All I know
is that for r slightly greater than 1, the scheme is no longer stable, since |G(k)| > 1 for some values of k.)

Accuracy: We compute the LTE of the scheme:

τ(∆x,∆t) =
1

∆t
(u(x, t+ ∆t)− u(x, t))

−
[c

6∆x
(−u(x− 2∆x, t) + 6u(x−∆x, t)− 3u(x, t)− 2u(x+ ∆x, t))

+
c2∆t

6(∆x)2
(3u(x−∆x, t)− 6u(x, t) + 3u(x+ ∆x, t))

+
c3(∆t)2

6(∆x)3
(u(x− 2∆x, t)− 3u(x−∆x, t) + 3u(x, t)− u(x+ ∆x, t))

]
(33)

=
1

∆t

(
(∆t)ut +

(∆t)2

2
utt +

(∆t)3

6
uttt +

(∆t)4

24
utttt

)
−
[

c

6∆x

(
−6(∆x)ux −

1

2
(∆x)4uxxxx +

1

5
(∆x)5uxxxxx −

1

12
(∆x)6uxxxxxx

)
+

c2∆t

6(∆x)2

(
3(∆x)2uxx +

1

4
(∆x)4uxxxx +

1

120
(∆x)6uxxxxxx

)
+
c3(∆t)2

6(∆x)3

(
−(∆x)3uxxx +

1

2
(∆x)4uxxxx −

1

40
(∆x)5uxxxxx +

1

12
(∆x)6uxxxxxx

)]
(34)

=

ut + cux︸ ︷︷ ︸
=0

+
∆t

2

utt − c2uxx︸ ︷︷ ︸
=0

+
(∆t)2

6

uttt + c3uxxx︸ ︷︷ ︸
=0

 (35)

+
(∆t)3

24
utttt +

c(∆x)3

12

(
uxxxx −

c2

6
uxxxxxx

)
(36)

= O((∆t)3 + (∆x)3) (37)

Therefore, if we use the CFL condition r ≤ 1, we expect the GTE to be O((∆x)3).

3) Results for u0(x) = cosx: The convergence results are shown on Figure (12). The grid resolution was varied

from dx = 2π/(25) to dx = 2π/(212). Since for each norm, all points seem to lie on the same line, they were all used
in polyfit to compute the slope, which returned:

slope=3.0064 for the L∞ norm,
slope=3.0113 for the L1 norm,
slope=3.0083 for the L2 norm.
The norms of the errors behave as expected.

5

Results for u0(x) =box(x− t): The convergence results are shown on Figure (13). The grid resolution was varied

from dx = 2π/(24) to dx = 2π/(216). For the L1 and L2 norms, all points were used in polyfit to compute the
slope. I didn’t compute the slope for L∞, since there clearly isn’t convergence. This returned:

slope=0.7428 for the L1 norm,
slope=0.3942 for the L2 norm.
As for Lax-Friedrich and Lax-Wendroff, those results should not be surprising: we cannot expect a method based

on the Taylor series of a function to work for a C0 function.
Again, it is interesting to watch the box evolve when advected by a 3rd order scheme. This is presented in a series
of snapshots put together in Figure (14). Although this scheme fails to capture the discontinuities of the function,
just like the previous schemes, the oscillations created near the discontinuities don’t seem to grow very fast. More-
over, the overall shape of the box is (at least visually) better preserved than when advected with LF or LW, which
provides a simple explanation as to why the rate of convergence of the L1 norm is better than with those two schemes.

6

Appendix

Question 1

For all schemes, I do the following:

• I build my spatial grid by letting dx = 2π/(2k) for some integer k, and define the vector

X = {0 , dx , 2 · dx , . . . , (N − 2) · dx , (N − 1) · dx = 2π} (38)

= {X(1), X(2), X(3), . . . , X(N − 1), X(N)} (39)

which has N points. Since the boundary conditions are periodic, I will have to make the following identifications
when necessary:

... X(1) = X(N)

X(−2) = X(N − 3) X(N + 1) = X(2)

X(−1) = X(N − 2) X(N + 2) = X(3)

X(0) = X(N − 1) X(N + 3) = X(4)

...

• To build my grid in time, I first fix dt = r · dx for some r satisfying the CFL condition. Then I define
M =ceil(TF/dt) where TF is the final time. This way, I’m going to iterate until I reach the time T̃ = M ∗ dt. In
general, T̃ 6= TF , but at least, I am certain that all my time steps are of the same size dt. And when computing the
GTE, the only important thing is to always compute it at the same time T̃ for all grid resolutions.

• Then, the scheme (LF, LW, or RK3-WENO5) is applied until T̃ is reached. The output is unum. I record
the grid resolution dx, calculate what the true solution is at time T̃ , and compute the norm of the errors using the
following formulae:

||Error||∞ = max
i=1...N

|unum(i)− utrue(i)| (40)

||Error||1 = dx ·
N∑
i=1

|unum(i)− utrue(i)| (41)

||Error||2 =

(
dx ·

N∑
i=1

|unum(i)− utrue(i)|2
)1/2

(42)

• I iterate over the resolution by varying k, in order to get a convergence plot of the various norms of the errors
vs. the grid size.

a) Lax-Friedrich This scheme can be coded very efficiently using matrices. Notice that the scheme can be
rewritten as:

un+1
j =

1

2

((
1− ∆t

∆x

)
unj+1 +

(
1 +

∆t

∆x

)
unj−1

)
=

1

2

(
(1− r)unj+1 + (1 + r)unj−1

)
(43)

So that taking into account the periodic B.C.:

u1

u2

u3

u4

...
uN−3

uN−2

uN−1

uN



n+1

=
1

2



0 1 + r 0 0 0 . . . 0 0 0 1− r 0
1− r 0 1 + r 0 0 . . . 0 0 0 0 0

0 1− r 0 1 + r 0 . . . 0 0 0 0 0
0 0 1− r 0 1 + r . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1− r 0 1 + r 0 0
0 0 0 0 0 . . . 0 1− r 0 1 + r 0
0 0 0 0 0 . . . 0 0 1− r 0 1 + r
0 1 + r 0 0 0 . . . 0 0 0 1− r 0





u1

u2

u3

u4

...
uN−3

uN−2

uN−1

uN



n

7

b) Lax-Wendroff Similarly, this can be implemented using:



u1

u2

u3

...
uN−2

uN−1

uN



n+1

=



1− r2 − r
2
(1− r) 0 0 0 . . . 0 0 r

2
(1 + r) 0

r
2
(1 + r) 1− r2 − r

2
(1− r) 0 . . . 0 0 0 0

0 r
2
(1 + r) 1− r2 − r

2
(1− r) . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . r

2
(1 + r) 1− r2 − r

2
(1− r) 0

0 0 0 0 . . . 0 r
2
(1 + r) 1− r2 − r

2
(1− r)

0 − r
2
(1− r) 0 0 . . . 0 0 r

2
(1 + r) 1− r2





u1

u2

u3

...
uN−2

uN−1

uN



n

Note that a similar technique can be used for the 3rd order scheme presented in Question 2.

c) RK3-TVD - WENO 5 Let us first consider how RK3-TVD works. For each point on the grid, we need to
compute two intermediate values as follows:

ψ∗i = FE(ψn
i) = ψn

i −∆t · weno(ψn
i) (44)

ψ∗∗i =
3

4
ψn
i +

1

4
FE(FE(ψn

i)) =
3

4
ψn
i +

1

4
(ψ∗i −∆t · weno(ψ∗i)) (45)

ψn+1
i =

1

3
ψn
i +

2

3
FE(ψ∗∗i) =

1

3
ψn
i +

2

3
(ψ∗∗i −∆t · weno(ψ∗∗i)) (46)

Now here is the pseudo-code for WENO 5, when solving a conservative equation of the form:

ut + (f(u))x = 0 ⇐⇒ ut + f ′(u)ux = 0 (47)

provided u and f are C1. Then c(u(x, t)) := f ′(u)(x, t) acts as the speed function. Then at an interior point xi:

• If c(uni) > 0, define

(v1, v2, v3, v4, v5) =
1

∆x
(ui−2 − ui−3, ui−1 − ui−2, ui − ui−1, ui+1 − ui, ui+2 − ui+1) (48)

• If c(uni) ≤ 0, define

(v1, v2, v3, v4, v5) =
1

∆x
(ui+3 − ui+2, ui+2 − ui+1, ui+1 − ui, ui − ui−1, ui−1 − ui−2) (49)

Let ε = 10−6 (with no max taken!). Then, as given in class:

s1 =
13

12
(v1 − 2v2 + v3)2 +

1

4
(v1 − 4v2 + 3v3)2 (50)

s2 =
13

12
(v2 − 2v3 + v4)2 +

1

4
(v2 − v4)2 (51)

s3 =
13

12
(v3 − 2v4 + v5)2 +

1

4
(3v3 − 4v4 + v5)2) (52)

(a1, a2, a3) =
1

10

(
1

(ε+ s1)2
,

6

(ε+ s2)2
,

3

(ε+ s3)2

)
(53)

sa = a1 + a2 + a3 (54)

(w1, w2, w3) =
1

sa
(a1, a2, a3) (55)

And finally:

weno(uni) =
1

6
(w1(2v1 − 7v2 + 11v3) + w2(−v2 + 5v3 + 2v4) + w3(2v3 + 5v4 − v5)) (56)

Note that since in this assignment, c = 1 > 0, you could avoid checking the sign of the speed, and directly code
the vector v as given by Equation (48). (That’s what I did.)

8

Figure 1: Convergence plot for u(x, t) = cos(x − t) in log-log scale, advected using Lax-Friedrich
scheme. log(GTE) at T ≈ 1 is plotted against log(h). For each norm, all points were used in the linear fit.

Figure 2: Convergence plot for u(x, t) = cos(x − t) in log-log scale, advected using Lax-Wendroff
scheme. log(GTE) at T ≈ 1 is plotted against log(h). For each norm, all points were used in the linear fit.

9

Figure 3: Convergence plot for u(x, t) = cos(x − t) in log-log scale, advected using RK3-TVD -
WENO5 scheme. log(GTE) at T ≈ 5 is plotted against log(h). For each norm, only the 4 left-most points were
used in the linear fit.

Figure 4: Convergence plot for u(x, t) =box(x − t) in log-log scale, advected using Lax-Friedrich
scheme. log(GTE) at T ≈ 1 is plotted against log(h). The 10 left-most points were used in the fits of the L1 and
L∞ norm of the error, and the 8 left-most points for the L2 norm.

10

Figure 5: Snapshots of the box advected by a Lax-Friedrich scheme. The true solution is plotted in red,
and the numerical solution is plotted in blue, at 3 different times (the box moves to the right). The grid resolution
is dx = 2π/(28).

Figure 6: Convergence plot for u(x, t) =box(x − t) in log-log scale, advected using Lax-Wendroff
scheme. log(GTE) at T ≈ 1 is plotted against log(h). For each norm, all points were used in the linear fit.

11

Figure 7: Snapshots of the box advected by a Lax-Wendroff scheme. The true solution is plotted in red,
and the numerical solution is plotted in blue, at 3 different times (the box moves to the right). The grid resolution
is dx = 2π/(28).

Figure 8: Convergence plot for u(x, t) =box(x−t) in log-log scale, advected using RK3-TVD - WENO5
scheme. log(GTE) at T ≈ 5 is plotted against log(h). For each norm, the 4 leftmost points were used in the linear
fit.

12

Figure 9: Snapshots of the box advected by an RK3-TVD - WENO5 scheme. The true solution is plotted
in red, and the numerical solution is plotted in blue, at 3 different times (the box moves to the right). The grid
resolution is dx = 2π/(28).

Figure 10: Points used in Question 2), Parts a) and b).

13

Figure 11: Plot of |G(k)| against k/(∆x) for r = 0 : 0.02 : 1. The top straight line corresponds to r = 0, and
we have |G(k)|(r2) < |G(k)|(r1) for r1 < r2, pointwise.

Figure 12: Convergence plot for u(x, t) = cos(x − t) in log-log scale, advected using a 3rd order
scheme. log(GTE) at T ≈ 1 is plotted against log(h). For each norm, all points were used in the linear fit.

14

Figure 13: Convergence plot for u(x, t) =box(x − t) in log-log scale, advected using a 3rd order
scheme. log(GTE) at T ≈ 1 is plotted against log(h). All points were used in the linear fit for the L1 and the L2

norm.

Figure 14: Snapshots of the box advected by a 3rd order scheme. The true solution is plotted in red, and
the numerical solution is plotted in blue, at 3 different times (the box moves to the right). The grid resolution is
dx = 2π/(28).

15

