1. Let $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$ be two sets bounded from above. The sum of A and B is the set
\[A + B = \{ a + b : a \in A, b \in B \}, \]
Prove that $A + B$ is bounded from above and that
\[\sup(A + B) = \sup A + \sup B. \]

Solution:

Since A and B are bounded from above, $\sup A$ and $\sup B$ exist and
\begin{align*}
a &\leq \sup A \quad \forall a \in A \\
b &\leq \sup B \quad \forall b \in B.
\end{align*}

Let $c \in A + B$ be arbitrary, then $\exists a \in A, b \in B$ such that $c = a + b$. By (1) and (2),
\[c = a + b \leq \sup A + \sup B. \]

Since $c \in A + B$ was arbitrary, we conclude
\[c \leq \sup A + \sup B \quad \forall c \in A + B \]
and therefore that $\sup A + \sup B$ is an upper bound of $A + B$. This also shows $A + B$ is bounded from above.

Note that $\sup(A + B) = \sup A + \sup B$ if and only if the following hold:

(i) $\sup A + \sup B$ is an upper bound for $A + B$, and
(ii) for any $\epsilon > 0$, $\sup A + \sup B - \epsilon$ is not an upper bound for $A + B$.

We already showed (i), so we need only show (ii). Let $\epsilon > 0$ be arbitrary. Since $\sup A$ is the supremum of A, $\sup A - \epsilon/2$ is not an upper bound of A. Similarly, $\sup B - \epsilon/2$ is not an upper bound of B. Therefore, $\exists a_\epsilon \in A, b_\epsilon \in B$ such that
\begin{align*}
a_\epsilon &> \sup A - \epsilon/2 \quad (3) \\
b_\epsilon &> \sup B - \epsilon/2. \quad (4)
\end{align*}

Let $c_\epsilon = a_\epsilon + b_\epsilon$ (note that $c_\epsilon \in A + B$). Then, by (3) and (4),
\[c_\epsilon = a_\epsilon + b_\epsilon > \sup A + \sup B - \epsilon. \]
Hence, $\sup A + \sup B - \epsilon$ is not an upper bound of $A + B$. Since ϵ was arbitrary, we have (ii) and hence,

$$\sup A + \sup B = \sup(A + B).$$

Q.E.D.

Remarks:

(i) The quantifiers (such as “\exists” (there exists) and “\forall” (for all)) and the order in which they appear is very important in these proofs. To illustrate this, consider the two statements

$$\exists M \in \mathbb{R} \text{ such that } a \leq M \quad \forall a \in A \quad (5)$$

$$\forall a \in A, \exists M \in \mathbb{R} \text{ such that } a \leq M. \quad (6)$$

The first one (i.e. (5)) is the statement that M is an upper bound of the set A (it is therefore true whenever A is bounded from above). Note that since “$\exists M \in \mathbb{R}$” appears before “$a \leq M \quad \forall a \in A$”, M does not (cannot) depend on a. The second one (i.e. (5)) is always true (tautology). Indeed, since “$\exists M \in \mathbb{R}$” appears after “$\forall a \in A$”, M is allowed to depend on a and therefore $M = a \in A \subset \mathbb{R}$ trivially satisfies the inequality.

(ii) The supremum of a set S is not necessarily an element of the set S. It is not true that the supremum of S is the “maximum of the set S". To see this, consider $S := \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. One can show $\sup S = 1$, but $1 \notin S$. Also note that S has no maximum.
2. Using only field axioms of \mathbb{R} (Definition 2.1.1 in the book), prove that

$(-1) \cdot (-1) = 1.$

Write every step of the proof carefully indicating which field property you are using.

Solution:

There were many ways to do this, but here is one

\[
\begin{align*}
1 &= 1 \cdot 1 \\
&= (1 + 0) \cdot (1 + 0) \quad \text{(M3)} \\
&= (1 + (1 + (-1))) \cdot (1 + (1 + (-1))) \quad \text{(A3)} \\
&= 1 \cdot (1 + (1 + (-1))) + (1 + (-1)) \cdot (1 + (1 + (-1))) \quad \text{(A4)} \\
&= 1 + (1 + (-1)) + (1 + (-1)) \cdot (1 + (1 + (-1))) \quad \text{(D)} \\
&= 1 + (1 + (-1)) + 1 + (1 + (-1)) \cdot (1 + (-1)) \quad \text{(M3)} \\
&= 1 + 0 + 0 + (1 + (-1)) \cdot (1 + (-1)) \quad \text{(A4)} \\
&= 1 + (1 + (-1)) \cdot (1 + (-1)) \quad \text{(M3, A3)} \\
&= 1 + 1 \cdot (1 + (-1)) + (-1) \cdot (1 + (-1)) \quad \text{(D)} \\
&= 1 + 1 + (-1) + (1 + (-1)) \cdot (1 + (-1)) \quad \text{(M3, A2)} \\
&= 1 + 1 + (-1) + 1 + (-1) \cdot (-1) \quad \text{(M3)} \\
&= 1 + (1 + (-1)) + (-1) + (-1) \cdot (-1) \quad \text{(A2)} \\
&= 1 + ((-1) + 1) + (-1) + (-1) \cdot (-1) \quad \text{(A1)} \\
&= (1 + (-1)) + (1 + (-1)) + (-1) \cdot (-1) \quad \text{(M3)} \\
&= 0 + 0 + (-1) \cdot (-1) \quad \text{(A4)} \\
&= (-1) \cdot (-1). \quad \text{(A3, A3)}
\end{align*}
\]

Q.E.D.

Remarks:

The axiom of existence of the 0 element (A3) is states that there $\exists 0 \in \mathbb{R}$ such that $a + 0 = 0 + a = a$ for any $a \in \mathbb{R}$. It does not state that $a \cdot 0 = 0 \cdot a = 0$ for any $a \in \mathbb{R}$ (if you wanted to use it, you had to show it). Also, the existence of negative elements (A4) does not state uniqueness of the negative element to a real number a. Finally, it is not given as an axiom that $-(-a) = a$.
3. Show that there exists no rational number \(r \) such that \(r^2 = 3 \).

Solution:

We proceed by contradiction. Assume \(r^2 = 3 \) and \(r \in \mathbb{Q} \). Then we can write \(r \) as an irreducible fraction \(r = n/m \) where \(m \in \mathbb{N} \) and \(n \in \mathbb{Z} \) are coprime (\(\gcd(m,n) = 1 \)). Then,
\[
3 = r^2 = (n/m)^2 = n^2/m^2 \iff 3m^2 = n^2.
\]

If \(m \) is even, then \(m^2 \) is even and \(3m^2 \) is even so that \(n^2 \) is even and \(n \) is even, contradicting the fact that \(m \) and \(n \) are coprime. We conclude \(m \) is odd, which implies \(m^2 \) and \(3m^2 \) are odd so that \(n^2 \) and \(n \) are odd.

We can therefore write \(m = 2k + 1 \) for some \(k \in \mathbb{Z} \), \(n = 2\ell + 1 \) for some \(\ell \in \mathbb{Z} \). Then, we must have

\[
3(2k + 1)^2 = (2\ell + 1)^2
\]

\[
\iff 12k^2 + 12n^2 + 3 = 4\ell^2 + 4\ell + 1
\]

\[
\iff 12k^2 + 12n^2 + 3 + (-1) = 4\ell^2 + 4\ell + 1 + (-1)
\]

\[
\iff 12k^2 + 12n^2 + 2 = 4\ell^2 + 4\ell
\]

\[
\iff 6k^2 + 6k + 1 = 2\ell^2 + 2\ell
\]

\[
\iff 2(2k^2 + 3k) + 1 = 2(\ell^2 + \ell).
\]

Note that the LHS is an odd integer equal to an even integer on the RHS. This is a contradiction. We conclude that there is no \(r \in \mathbb{Q} \) such that \(r^2 = 3 \).

Q.E.D.
4. Let \(x, y, z \in \mathbb{R} \). Show that \(|x - y| + |y - z| = |x - z|\) if and only if \(x \leq y \leq z \) or \(x \geq y \geq z \).

Solution:

It is useful to first analyze under what condition equality holds in the triangle inequality \(|a + b| \leq |a| + |b|\):

\[
|a + b| = |a| + |b| \quad \Leftrightarrow \quad |a + b|^2 = (|a| + |b|)^2 \quad \text{(since both sides are non-negative)}
\]
\[
\Leftrightarrow \quad (a + b)^2 = |a|^2 + 2|a||b| + |b|^2
\]
\[
\Leftrightarrow \quad a^2 + 2ab + b^2 = a^2 + 2a|b| + b^2
\]
\[
\Leftrightarrow \quad 2ab = 2a|b|
\]
\[
\Leftrightarrow \quad ab = |ab|
\]
\[
\Leftrightarrow \quad ab \geq 0
\]

Thus \(|a + b| = |a| + |b| \Leftrightarrow ab \geq 0\).

Now we prove the problem: Let \(a := x - y \) and \(b := y - z \). Then \(a + b = (x - y) + (y - z) = x - z \).

Thus, as shown above:

\[
|x - y| + |y - z| = |x - z| \Leftrightarrow (x - y)(y - z) \geq 0
\]
\[
\Leftrightarrow (x - y \geq 0 \text{ and } y - z \geq 0) \text{ or } (x - y \leq 0 \text{ and } y - z \leq 0)
\]
\[
\Leftrightarrow (x \geq y \text{ and } y \geq z) \text{ or } (x \leq y \text{ and } y \leq z)
\]
\[
\Leftrightarrow (x \geq y \geq z) \text{ or } (x \leq y \leq z).
\]

Q.E.D.
5. If \(a \in \mathbb{R}, a > -1 \), prove by induction that

\[
(1 + a)^n \geq 1 + na
\]

for all \(n \in \mathbb{N} \).

Solution:

Base case: For \(n = 1 \), we indeed have \((1 + a)^1 = (1 + a) \geq 1 + 1 \cdot a\).

Induction step: Assume \((1 + a)^k \geq 1 + ka\), \(k \in \mathbb{N} \). We want to show \((1 + a)^{k+1} \geq 1 + (k + 1)a\).

Indeed,

\[
(1 + a)^{k+1} = (1 + a)^k \cdot (1 + a)
\]

by associativity

\[
\geq (1 + ka) \cdot (1 + a)
\]

by induction hypothesis and since \(a > -1 \)

\[
= 1 \cdot (1 + a) + (ka) \cdot (1 + a)
\]

by distributivity

\[
= 1 + a + ka + ka^2
\]

by distributivity and multiplicative identity

\[
= 1 + a(1 + k) + ka^2
\]

by associativity and distributivity

\[
\geq 1 + a(1 + k).
\]

since \(ka^2 > 0 \)

Note that in the second step \(a > -1 \Rightarrow a + 1 > 0 \) and therefore \((1 + a)^k \geq 1 + ka \Rightarrow (1 + a)^k \cdot (1 + a) \geq (1 + ka) \cdot (1 + a)\).

By induction, we have shown that \((1 + a)^n \geq 1 + an\) for all \(n \in \mathbb{N} \).

Q.E.D.
6. For any \(A \subseteq \mathbb{R} \) we define
\[
-A = \{-a : a \in A\}
\]
Suppose that \(A \) is bounded from above. Prove that \(-A \) is bounded from below and that
\[
\inf(-A) = -\sup A
\]

Solution:

We start by showing that \(-\sup A\) is a lower bound for \(-A\). Let \(a \in A \) be arbitrary. Then \(a \leq \sup A \) and thus \(-\sup A \leq -a\). Since \(a \) was arbitrarily chosen this means that \(-\sup A \leq -a\) for all \(a \in A \) i.e. \(-\sup A\) is a lower bound for \(-A\). This especially proves that \(-A\) is bounded below.

In order to prove that \(\inf(-A) = -\sup A \) we need to show two things:

(i) \(-\sup A\) is a lower bound for \(-A\), and
(ii) For any \(\epsilon > 0 \), \(-\sup A + \epsilon\) is not a lower bound for \(-A\).

We just proved (i) above, so all that remains to do is to show (ii). Let \(\epsilon > 0 \) be arbitrary. Since \(\sup A \) is the least upper bound for \(A \), \(\sup A - \epsilon < \sup A \) is not an upper bound for \(A \) i.e. there exists an \(a \in A \) with \(\sup A - \epsilon < a \). Then \(-\sup A + \epsilon > -a\) which means that \(-\sup A + \epsilon\) is not a lower bound for \(-A\). This proves (ii) and therefore that \(\inf(-A) = -\sup A \).

Q.E.D.

Remark:

By substituting \(-A\) for \(A \) we obtain the result that if \(A \) is bounded below then \(\inf(A) = -\sup(-A) \). This especially shows that the infimum exists. So the completeness property of \(\mathbb{R} \) also implies that any subset of \(\mathbb{R} \) that is bounded below has an infimum in \(\mathbb{R} \).
Let $x \in \mathbb{R}$ be irrational and $r \in \mathbb{Q}$, $r \neq 0$, be rational. Prove that $x + r$ and $x \cdot r$ are irrational.

Solution:

We prove both statements via proof by contradiction, using the fact that the set \mathbb{Q} of all rational numbers is a field. We will prove all statements directly from the field axioms.

$x + r$: Assume that $x + r$ is rational. Since r is rational, its additive inverse $-r$ is rational. Since \mathbb{Q} is closed under addition, $(x + r) + (-r) \overset{\text{assoc.}}{=} x + (r + (-r)) = x + 0 = x$ is rational, which is a contradiction. Thus the assumption is wrong and $x + r$ is irrational. (Note that the statement is trivially valid in the case $r = 0$ i.e. the condition $r \neq 0$ is not needed for this part of the problem.)

Q.E.D.

$x \cdot r$: Assume that $x \cdot r$ is rational. Since $r \neq 0$ is rational, its multiplicative inverse $1/r$ is rational. Since \mathbb{Q} is closed under multiplication, $(x \cdot r) \cdot (1/r) \overset{\text{assoc.}}{=} x \cdot (r \cdot (1/r)) = x \cdot 1 = x$ is rational, which is a contradiction. Thus the assumption is wrong and $x \cdot r$ is irrational. (Note that the condition $r \neq 0$ is essential for this part of the problem: it can be shown (using field axioms only, see Theorem 2.1.2 of Bartle and Sherbert) that $x \cdot 0 = 0$ and thus rational for all $x \in \mathbb{R}$.)

Q.E.D.