Estimates from below: spectral function, remainder in Weyl’s law and resonances

D. Jakobson (McGill), jakobson@math.mcgill.ca
Joint work with F. Naud (Avignon), I. Polterovich (Univ. de Montreal), J. Toth (McGill)

- [JPT]: IMRN Volume 2007: article ID rnm142. math.SP/0612250

17th May 2009
• $X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum: $\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Eigenvalue counting function:
$N(\lambda) = \#\{\sqrt{\lambda_j} \leq \lambda\}$.

Weyl’s law: $N(\lambda) = C_n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1})$.
$R(\lambda)$ - remainder.

• Spectral function: Let $x, y \in X$.
$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x)\phi_i(y)$.
If $x = y$, let $N_{x,y}(\lambda) := N_x(\lambda)$.

Local Weyl’s law:
$N_{x,y}(\lambda) = O(\lambda^{n-1}), \ x \neq y$;
$N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \ R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda)$ - local remainder.

• We study lower bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda)$.
\[X^n, n \geq 2 - \text{compact}. \Delta - \text{Laplacian. Spectrum:} \]
\[\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots \]

Eigenvalue counting function:
\[N(\lambda) = \#\{ \sqrt{\lambda_j} \leq \lambda \}. \]

Weyl’s law:
\[N(\lambda) = C_n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1}). \]

R(\lambda) - remainder.

Spectral function: Let \(x, y \in X. \)
\[N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x)\phi_i(y). \]

If \(x = y, \) let \(N_{x,x}(\lambda) := N_x(\lambda). \)

Local Weyl’s law:
\[N_{x,y}(\lambda) = O(\lambda^{n-1}), \quad x \neq y; \]
\[N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \quad R_x(\lambda) = O(\lambda^{n-1}); \quad R_x(\lambda) - \text{local remainder.} \]

- We study lower bounds for \(R(\lambda), R_x(\lambda) \) and \(N_{x,y}(\lambda). \)
• $X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum:
$\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Eigenvalue counting function:
$N(\lambda) = \# \{ \sqrt{\lambda_j} \leq \lambda \}.$

Weyl’s law: $N(\lambda) = C n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1}).$

$R(\lambda)$ - remainder.

• **Spectral function:** Let $x, y \in X.$
$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x) \phi_i(y)$.
If $x = y$, let $N_{x,x}(\lambda) := N_x(\lambda)$.

Local Weyl’s law:
$N_{x,y}(\lambda) = O(\lambda^{n-1}), \ x \neq y$;
$N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \ R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda)$ - local remainder.

• We study lower bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda).$
Notation: $f_1(\lambda) = \Omega(f_2(\lambda))$, $f_2 > 0$ iff
$$\limsup_{\lambda \to \infty} |f_1(\lambda)|/f_2(\lambda) > 0.$$ Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.

Theorem 1 [JP] If $x, y \in X$ are not conjugate along any shortest geodesic joining them, then
$$N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} \right).$$

Theorem 2 [JP] If $x \in X$ is not conjugate to itself along any shortest geodesic loop, then
$$R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}}).$$

Other results in dimension $n > 2$ involve heat invariants.
Notation: $f_1(\lambda) = \Omega(f_2(\lambda))$, $f_2 > 0$ iff \(\limsup_{\lambda \to \infty} |f_1(\lambda)|/f_2(\lambda) > 0\). Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.

Theorem 1 [JP] If $x, y \in X$ are not conjugate along any shortest geodesic joining them, then

$$N_{x,y}(\lambda) = \Omega \left(\lambda^{n-1/2} \right).$$

Theorem 2 [JP] If $x \in X$ is not conjugate to itself along any shortest geodesic loop, then

$$R_x(\lambda) = \Omega(\lambda^{n-1/2})$$

Other results in dimension $n > 2$ involve heat invariants.
• Notation: \(f_1(\lambda) = \Omega(f_2(\lambda)) \), \(f_2 > 0 \) iff
\[\limsup_{\lambda \to \infty} |f_1(\lambda)|/f_2(\lambda) > 0. \] Equivalently,
\(f_1(\lambda) \neq o(f_2(\lambda)) \).

• **Theorem 1**[JP] If \(x, y \in X \) are not conjugate along any
shortest geodesic joining them, then
\[N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right). \]

• **Theorem 2**[JP] If \(x \in X \) is not conjugate to itself along
any shortest geodesic loop, then
\[R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}}). \]

• Other results in dimension \(n > 2 \) involve heat invariants.
• Notation: \(f_1(\lambda) = \Omega(f_2(\lambda)), \) \(f_2 > 0 \) iff
\[\limsup_{\lambda \to \infty} \left| \frac{f_1(\lambda)}{f_2(\lambda)} \right| > 0. \] Equivalently,
\(f_1(\lambda) \neq o(f_2(\lambda)) \).

• **Theorem 1**[JP] If \(x, y \in X \) are not conjugate along any shortest geodesic joining them, then
\[N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right). \]

• **Theorem 2**[JP] If \(x \in X \) is not conjugate to itself along any shortest geodesic loop, then
\[R_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right) \]

• Other results in dimension \(n > 2 \) involve heat invariants.
Example: flat square 2-torus
\[\lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z} \]
\[\phi_j(x) = e^{2\pi i(n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2) \]

\[|\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda) \]

Gauss circle problem: estimate \(R(\lambda) \).

Theorem 2 \(\Rightarrow \) \(R(\lambda) = \Omega(\sqrt{\lambda}) \) -

Hardy–Landau bound. Theorem 2 generalizes that bound for the local remainder.

Soundararajan (2003):
\[R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}(\log \lambda)^{\frac{1}{4}} (\log \log \lambda)^{\frac{3(2^{4/3}-1)}{4}}}{(\log \log \log \lambda)^{5/8}} \right). \]

Hardy’s conjecture: \(R(\lambda) \ll \lambda^{1/2+\epsilon} \quad \forall \epsilon > 0 \).

Huxley (2003): \(R(\lambda) \ll \lambda^{\frac{131}{208}} (\log \lambda)^{2.26} \).
- **Example: flat square 2-torus**
 \[
 \lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z}
 \]
 \[
 \phi_j(x) = e^{2\pi i(n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2)
 \]

 \[
 |\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda)
 \]

Gauss circle problem: estimate $R(\lambda)$.

Theorem 2 \Rightarrow \[
R(\lambda) = \Omega(\sqrt{\lambda})
\]

Hardy–Landau bound. Theorem 2 generalizes that bound for the *local* remainder.

Soundararajan (2003):

\[
R(\lambda) = \Omega\left(\frac{\sqrt{\lambda}(\log \lambda)^{1/4}(\log \log \lambda)^{3(2^{4/3}-1)}}{(\log \log \log \lambda)^{5/8}}\right).
\]

- **Hardy’s conjecture**: $R(\lambda) \ll \lambda^{1/2+\epsilon} \ \forall \epsilon > 0$.

Huxley (2003): $R(\lambda) \ll \lambda^{131/208}(\log \lambda)^{2.26}$.
• **Negative curvature.** Suppose sectional curvature satisfies

\[-K_1^2 \leq K(\xi, \eta) \leq -K_2^2\]

Theorem (Berard): \(R_x(\lambda) = O(\lambda^{n-1}/\log \lambda) \)

Conjecture (Randol): On a negatively-curved surface, \(R(\lambda) = O(\lambda^{1/2+\epsilon}) \). Randol proved an integrated (in \(\lambda \)) version for \(N_{x,y}(\lambda) \).

• **Theorem (Karnaukh)** On a negatively curved surface

\[R_x(\lambda) = \Omega(\sqrt{\lambda}) \]

+ logarithmic improvements discussed below.

Karnaukh’s results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.
- **Negative curvature.** Suppose sectional curvature satisfies
 \[-K_1^2 \leq K(\xi, \eta) \leq -K_2^2\]

Theorem (Berard): \(R_x(\lambda) = O(\lambda^{n-1} / \log \lambda) \)

Conjecture (Randol): On a negatively-curved surface, \(R(\lambda) = O(\lambda^{1/2+\epsilon}) \). Randol proved an integrated (in \(\lambda \)) version for \(N_{x,y}(\lambda) \).

- **Theorem (Karnaukh)** On a negatively curved surface

 \[R_x(\lambda) = \Omega(\sqrt{\lambda}) \]

 + logarithmic improvements discussed below. Karnaukh’s results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.
- **Thermodynamic formalism:** G^t: geodesic flow on $S\Sigma$, $\xi \in S\Sigma$, $T_\xi(S\Sigma) = E^s_\xi \oplus E^u_\xi \oplus E^o_\xi$,
- $\dim E^s_\xi = n - 1$: stable subspace, exponentially contracting for G^t;
- $\dim E^u_\xi = n - 1$: unstable subspace, exponentially contracting for G^{-t};
- $\dim E^o_\xi = 1$: tangent subspace to G^t.

Sinai-Ruelle-Bowen potential $\mathcal{H}: SM \to \mathbb{R}$:

$$\mathcal{H}(\xi) = \frac{d}{dt}\bigg|_{t=0} \ln \det dG^t_t|_{E^u_\xi}$$

- **Topological pressure** $P(f)$ of a Hölder function $f: S\Sigma \to \mathbb{R}$ satisfies (Parry, Pollicott)

$$\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[\int_l f(\gamma(s), \gamma'(s)) ds \right] \sim \frac{e^{P(f)T}}{P(f)}.$$
• **Thermodynamic formalism:** G^t - geodesic flow on SX, $\xi \in SX$, $T_\xi(SX) = E^s_\xi \oplus E^u_\xi \oplus E^o_\xi$,

 • $\dim E^s_\xi = n - 1$: stable subspace, exponentially contracting for G^t;

 • $\dim E^u_\xi = n - 1$: unstable subspace, exponentially contracting for G^{-t};

 • $\dim E^o_\xi = 1$: tangent subspace to G^t.

Sinai-Ruelle-Bowen potential $\mathcal{H} : SM \rightarrow \mathbb{R}$:

$$\mathcal{H}(\xi) = \left. \frac{d}{dt} \ln \det dG^t \right|_{t=0} |_{E^u_\xi}$$

• **Topological pressure** $P(f)$ of a Hölder function $f : SX \rightarrow \mathbb{R}$ satisfies (Parry, Pollicott)

$$\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[\int_\gamma f(\gamma(s), \gamma'(s)) \, ds \right] \sim \frac{e^{P(f)T}}{P(f)}.$$
• \(\gamma \) - geodesic of length \(l(\gamma) \). \(P(f) \) is defined as

\[
P(f) = \sup_{\mu} \left(h_\mu + \int f d\mu \right),
\]

\(\mu \) is \(G^t \)-invariant, \(h_\mu \) - (measure-theoretic) entropy.

• Ex 1: \(P(0) = h \) - topological entropy of \(G^t \). Theorem (Margulis): \(\#\{\gamma : l(\gamma) \leq T\} \sim e^{hT}/hT \).

Ex. 2: \(P(-\mathcal{H}) = 0 \).

• Theorem 3\[JP\] If \(X \) is negatively-curved then for any \(\delta > 0 \) and \(x \neq y \)

\[
N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} \left(\log \lambda \right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta} \right)
\]

Here \(P(-\mathcal{H}/2)/h \geq K_2/(2K_1) > 0 \).
• γ - geodesic of length $l(\gamma)$. $P(f)$ is defined as

$$P(f) = \sup_{\mu} \left(h_\mu + \int f d\mu \right),$$

μ is G^t-invariant, h_μ - (measure-theoretic) entropy.

• **Ex 1**: $P(0) = h$ - **topological entropy** of G^t. Theorem (Margulis): $\#\{\gamma : l(\gamma) \leq T\} \sim e^{hT}/hT$.

Ex. 2: $P(-H) = 0$.

• **Theorem 3**[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-H/2)}{h}-\delta} \right)$$

Here $P(-H/2)/h \geq K_2/(2K_1) > 0$.
• \(\gamma \) - geodesic of length \(l(\gamma) \). \(P(f) \) is defined as

\[
P(f) = \sup_{\mu} \left(h_\mu + \int f d\mu \right),
\]

\(\mu \) is \(G^t \)-invariant, \(h_\mu \) - (measure-theoretic) entropy.

• Ex 1: \(P(0) = h \) - \textbf{topological entropy} of \(G^t \). Theorem (Margulis): \#\{\gamma : l(\gamma) \leq T\} \sim e^{hT}/hT.

Ex. 2: \(P(-\mathcal{H}) = 0 \).

• \textbf{Theorem 3}[JP] If \(X \) is negatively-curved then for any \(\delta > 0 \) and \(x \neq y \)

\[
N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h}} - \delta \right)
\]

Here \(P(-\mathcal{H}/2)/h \geq K_2/(2K_1) > 0 \).
Theorem 4a [JP] X - negatively-curved. For any $\delta > 0$

$$R_x(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda) \frac{P(-\mathcal{H}/2)}{h} - \delta \right), \ n = 2, 3.$$

Results for $n \geq 4$ involve heat invariants.

$$K = -1 \Rightarrow R_x(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{1}{2} - \delta} \right)$$

Karnaukh, $n = 2$: estimate above + weaker estimates in variable negative curvature.
• **Global results:** $R(\lambda)$

Randol, $n = 2$:

$$K = -1 \Rightarrow R(\lambda) = \Omega \left((\log \lambda)^{\frac{1}{2} - \delta} \right), \quad \forall \delta > 0.$$

Theorem 4b [JPT] X - negatively-curved surface ($n = 2$). For any $\delta > 0$

$$R(\lambda) = \Omega \left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta} \right).$$

• **Conjecture** (folklore). On a generic negatively curved surface

$$R(\lambda) = O(\lambda^{\epsilon}) \quad \forall \epsilon > 0.$$
• **Global results:** \(R(\lambda) \)

Randol, \(n = 2 \):

\[
K = -1 \implies R(\lambda) = \Omega \left((\log \lambda)^{\frac{1}{2} - \delta} \right), \quad \forall \delta > 0.
\]

Theorem 4b[JPT] \(X \) - negatively-curved surface \((n = 2) \). For any \(\delta > 0 \)

\[
R(\lambda) = \Omega \left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta} \right).
\]

• **Conjecture (folklore).** On a **generic** negatively curved surface

\[
R(\lambda) = O(\lambda^\epsilon) \quad \forall \epsilon > 0.
\]
Selberg, Hejhal: On general compact hyperbolic surfaces,

\[R(\lambda) = \Omega \left(\frac{(\log \lambda)^{\frac{1}{2}}}{\sqrt{\log \log \lambda}} \right). \]

- On compact arithmetic surfaces that correspond to quaternionic lattices \(R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}}{\log \lambda} \right). \) **Reason:** exponentially high multiplicities in the length spectrum; generically, \(X \) has *simple* length spectrum.
- In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.
• **Selberg, Hejhal:** On general compact hyperbolic surfaces,

\[R(\lambda) = \Omega \left(\frac{(\log \lambda)^{\frac{1}{2}}}{\sqrt{\log \log \lambda}} \right). \]

• On compact arithmetic surfaces that correspond to quaternionic lattices \(R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}}{\log \lambda} \right) \). **Reason:** exponentially high multiplicities in the length spectrum; generically, \(X \) has simple length spectrum.

• In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.
- **Selberg, Hejhal**: On general compact hyperbolic surfaces,

\[R(\lambda) = \Omega \left(\frac{(\log \lambda)^{\frac{1}{2}}}{\sqrt{\log \log \lambda}} \right). \]

- On compact arithmetic surfaces that correspond to quaternionic lattices \(R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}}{\log \lambda} \right). \) **Reason:** exponentially high multiplicities in the length spectrum; generically, \(X \) has *simple* length spectrum.

- In [JN], similar ideas are used to obtain lower bounds for resonances of infinite area hyperbolic surfaces.
We describe lower bounds for resonances obtained in [JN]. Let \(\Gamma \) be a \textit{geometrically finite} subgroup of \(\text{PSL}(2, \mathbb{R}) \) without elliptic elements. Fundamental domain \(X = \Gamma \backslash \mathbb{H}^2 \) has finitely many sides. Assume that \(X \) has \textit{infinite} hyperbolic area: \(X \) decomposes into a finite area surface \(N \) (called \textit{Nielsen region} or \textit{convex core}) to which finitely many infinite area half-cylinders (\textit{funnels}) are glued. If \(\Gamma \) has parabolic elements, then \(N \) has \textit{cusps} (parabolic vertices); a surface without cusps is called \textit{convex co-compact}; then \(\Gamma \) has no parabolic elements.
• The spectrum of $\Delta = y^2(\partial^2/\partial x^2 + \partial^2/\partial y^2)$ on X consists of the continuous spectrum $[1/4, +\infty]$ (no embedded eigenvalues) plus possibly a finite set of eigenvalues.

• The first nonzero eigenvalue $\lambda = \delta(1 - \delta)$, where δ is the Hausdorff dimension of the limit set $\Lambda(\Gamma) \subset S^1$ for the action of Γ, provided $\delta > 1/2$ (Patterson, Sullivan).

• The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.
The spectrum of $\Delta = y^2(\partial^2/\partial x^2 + \partial^2/\partial y^2)$ on X consists of the continuous spectrum $[1/4, +\infty]$ (no embedded eigenvalues) plus possibly a finite set of eigenvalues.

The first nonzero eigenvalue $\lambda = \delta(1 - \delta)$, where δ is the Hausdorff dimension of the limit set $\Lambda(\Gamma) \subset S^1$ for the action of Γ, provided $\delta > 1/2$ (Patterson, Sullivan).

The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.
• The spectrum of $\Delta = y^2(\partial^2/\partial x^2 + \partial^2/\partial y^2)$ on X consists of the continuous spectrum $[1/4, +\infty]$ (no embedded eigenvalues) plus possibly a finite set of eigenvalues.

• The first nonzero eigenvalue $\lambda = \delta(1 - \delta)$, where δ is the Hausdorff dimension of the limit set $\Lambda(\Gamma) \subset S^1$ for the action of Γ, provided $\delta > 1/2$ (Patterson, Sullivan).

• The resolvent

$$R(\lambda) = \left(\Delta_X - \frac{1}{4} - \lambda^2\right)^{-1} : L^2(X) \to L^2(X)$$

is well-defined and analytic in $\{\Im(\lambda) < 0\}$, except for finitely many poles corresponding to the finite point spectrum.
• **Resonances** are the poles of the resolvent $R(\lambda)$ in the whole \mathbb{C}. Their set is denoted by \mathcal{R}_X. Guillopé and Zworski showed that $\exists C > 0$ such that

\[
\frac{1}{C} < \# \{ z \in \mathcal{R}_X : |z| < R \} / R^2 < C, \quad R \to \infty.
\]

• Finer asymptotics: let

\[
N_C(T) = \# \{ z \in \mathcal{R}_X : \Im(z) \leq C, |\Re(z)| \leq T \}.
\]

• Zworski, Guillopé and Lin: “fractal” upper bound

Theorem 5. For convex co-compact X, $N_C(T) = O(T^{1+\delta})$; where C is fixed, and $T \to \infty$. They conjectured the upper bound is sharp.
Resonances are the poles of the resolvent $R(\lambda)$ in the whole \mathbb{C}. Their set is denoted by \mathcal{R}_X. Guillopé and Zworski showed that $\exists C > 0$ such that

$$
\frac{1}{C} < \#\{z \in \mathcal{R}_X : |z| < R\}/R^2 < C, \quad R \to \infty.
$$

Finer asymptotics: let

$$
N_C(T) = \#\{z \in \mathcal{R}_X : \Im(z) \leq C, |\Re(z)| \leq T\}.
$$

Zworski, Guillopé and Lin: “fractal” upper bound

Theorem 5. For convex co-compact X, $N_C(T) = O(T^{1+\delta})$; where C is fixed, and $T \to \infty$. They conjectured the upper bound is sharp.
• **Resonances** are the poles of the resolvent $R(\lambda)$ in the whole \mathbb{C}. Their set is denoted by \mathcal{R}_X. Guillopé and Zworski showed that $\exists C > 0$ such that

$$\frac{1}{C} < \#\{z \in \mathcal{R}_X : |z| < R\}/R^2 < C, \quad R \to \infty.$$

• Finer asymptotics: let

$$N_C(T) = \#\{z \in \mathcal{R}_X : \Im(z) \leq C, |\Re(z)| \leq T\}.$$

• Zworski, Guillopé and Lin: “fractal” upper bound

Theorem 5. For convex co-compact X, $N_C(T) = O(T^{1+\delta})$; where C is fixed, and $T \to \infty$. They conjectured the upper bound is sharp.
• **Lower bounds:** Guillopé, Zworski: $\forall \epsilon > 0 \exists C_\epsilon > 0$, such that

$$N_{C_\epsilon}(T) = \Omega(T^{1-\epsilon}).$$

The proof uses a wave trace formula for resonances on X and takes into account contributions from a *single* closed geodesic on X.

• **Question:** Can one improve lower bounds taking into account contributions from *many* closed geodesics on X?

• **Answer:** Yes, this is done in [JN].
• **Lower bounds**: Guillopé, Zworski: \(\forall \epsilon > 0 \exists C_\epsilon > 0 \), such that
\[
N_{C_\epsilon}(T) = \Omega(T^{1-\epsilon}).
\]
The proof uses a wave trace formula for resonances on \(X \) and takes into account contributions from a *single* closed geodesic on \(X \).

• **Question**: Can one improve lower bounds taking into account contributions from *many* closed geodesics on \(X \)?

• **Answer**: Yes, this is done in [JN].
• **Lower bounds:** Guillopé, Zworski: $\forall \epsilon > 0 \exists C_\epsilon > 0$, such that

$$N_{C_\epsilon}(T) = \Omega(T^{1-\epsilon}).$$

The proof uses a wave trace formula for resonances on X and takes into account contributions from a *single* closed geodesic on X.

• **Question:** Can one improve lower bounds taking into account contributions from *many* closed geodesics on X?

• **Answer:** Yes, this is done in [JN].
• Guillopé, Lin, Zworski: let

$$D(z) = \{ \lambda \in \mathcal{R}_X : |\lambda - z| \leq 1 \}$$

Then for all $z : \Im(z) \leq C$, we have $D(z) = O(|\Re(z)|^\delta)$.

• Let $A > 0$, and let W_A denote the logarithmic neighborhood of the real axis:

$$W_A = \{ \lambda \in \mathbb{C} : \Im \lambda \leq A \log(1 + |\Re \lambda|) \}$$

• **Theorem 6.** Let X be a geometrically finite hyperbolic surface of infinite area, and let $\delta > 1/2$. Then there exists a sequence $\{z_i\} \in W_A, \Re(z_i) \to \infty$ such that

$$D(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta - 1/2}{\delta^2}} - \epsilon.$$
• Guillopé, Lin, Zworski: let

\[D(z) = \{ \lambda \in \mathcal{R}_X : |\lambda - z| \leq 1 \} \]

Then for all \(z : \Im(z) \leq C \), we have \(D(z) = O(|\Re(z)|^{\delta}) \).

• Let \(A > 0 \), and let \(\mathcal{W}_A \) denote the logarithmic neighborhood of the real axis:

\[\mathcal{W}_A = \{ \lambda \in \mathbb{C} : \Im\lambda \leq A \log(1 + |\Re\lambda|) \} \]

• **Theorem 6.** Let \(X \) be a geometrically finite hyperbolic surface of infinite area, and let \(\delta > 1/2 \). Then there exists a sequence \(\{z_i\} \in \mathcal{W}_A, \Re(z_i) \to \infty \) such that

\[D(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta - 1/2}{\delta}} - \epsilon. \]
• Guillopé, Lin, Zworski: let

\[\mathcal{D}(z) = \{ \lambda \in \mathcal{R}_X : |\lambda - z| \leq 1 \} \]

Then for all \(z : \Im(z) \leq C \), we have \(\mathcal{D}(z) = O(|\Re(z)|^\delta) \).

• Let \(A > 0 \), and let \(\mathcal{W}_A \) denote the logarithmic neighborhood of the real axis:

\[\mathcal{W}_A = \{ \lambda \in \mathbb{C} : \Im \lambda \leq A \log(1 + |\Re \lambda|) \} \]

• **Theorem 6.** Let \(X \) be a geometrically finite hyperbolic surface of infinite area, and let \(\delta > 1/2 \). Then there exists a sequence \(\{z_i\} \in \mathcal{W}_A, \Re(z_i) \to \infty \) such that

\[\mathcal{D}(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta - 1/2}{\delta}} - \epsilon. \]
• **Corollary:** If $\delta > 1/2$, then $W_A \cap R_X$ is different from a lattice.

• Examples of Γ such that $\delta(\Gamma) > 1/2$ are easy to construct. Pignataro, Sullivan: fix the topology of X. Denote by $l(X)$ the maximum length of the closed geodesics that form the boundary of N. Then $\lambda_0(X) \leq C(X)/l(X)$, where $C = C(X)$ depends only on the topology of X. By Patterson-Sullivan, $\lambda_0 < 1/4 \iff \delta > 1/2$, so letting $l(X) \to 0$ gives many examples.

• Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.
• **Corollary:** If $\delta > 1/2$, then $W_A \cap \mathcal{R}_X$ is different from a lattice.

• Examples of Γ such that $\delta(\Gamma) > 1/2$ are easy to construct. Pignatario, Sullivan: fix the topology of X. Denote by $l(X)$ the maximum length of the closed geodesics that form the boundary of N. Then $\lambda_0(X) \leq C(X)l(X)$, where $C = C(X)$ depends only on the topology of X. By Patterson-Sullivan, $\lambda_0 < 1/4 \iff \delta > 1/2$, so letting $l(X) \to 0$ gives many examples.

• Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.
Corollary: If \(\delta > 1/2 \), then \(\mathcal{W}_A \cap \mathcal{R}_X \) is different from a lattice.

Examples of \(\Gamma \) **such that** \(\delta(\Gamma) > 1/2 \) **are easy to construct.** Pignataro, Sullivan: fix the topology of \(X \). Denote by \(I(X) \) the maximum length of the closed geodesics that form the boundary of \(N \). Then \(\lambda_0(X) \leq C(X)I(X) \), where \(C = C(X) \) depends only on the topology of \(X \). By Patterson-Sullivan, \(\lambda_0 < 1/4 \iff \delta > 1/2 \), so letting \(I(X) \to 0 \) gives many examples.

Proof of Theorem 6 uses (a version of Selberg) trace formula due to Guillopé and Zworski, and Dirichlet box principle.
Theorem 6 gives a logarithmic lower bound
\[D(z_i) \geq (\log |\Re(z_i)|) \frac{\delta^{-1/2} - \epsilon}{\delta} \]
for an infinite sequence of disks \(D(z_i, 1) \). Conjecture of Guillopé and Zworski would imply that \(\forall \epsilon > 0 \exists \{z_i\} \) such that
\[D(z_i) \geq |\Re(z_i)|^{\delta - \epsilon} \].

Question: can one get polynomial lower bounds for some particular groups \(\Gamma \)?
Answer: Yes. Idea: look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.

Theorem 7. Let \(\Gamma \) be an infinite index geom. finite subgroup of an arithmetic group \(\Gamma_0 \) derived from a quaternion algebra. Let \(\delta(\Gamma) > 3/4 \). Then \(\forall \epsilon > 0, \forall A > 0 \), there exists \(\{z_i\} \subset \mathcal{W}_A, \Re(z_i) \to \infty \), such that
\[D(z_i)) \geq |\Re(z_i)|^{2\delta - 3/2 - \epsilon} \].
• Theorem 6 gives a \textit{logarithmic} lower bound
\[D(z_i) \geq (\log |\Re(z_i)|)^{\frac{\delta-1/2}{\delta} - \epsilon} \]
for an infinite sequence of disks \(D(z_i, 1) \). Conjecture of Guillopé and Zworski would imply that \(\forall \epsilon > 0 \ \exists \{z_i\} \) such that
\[D(z_i) \geq |\Re(z_i)|^{\delta - \epsilon}. \]

Question: can one get \textit{polynomial} lower bounds for some particular groups \(\Gamma \)?

Answer: Yes. **Idea:** look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.

• **Theorem 7.** Let \(\Gamma \) be an infinite index geom. finite subgroup of an arithmetic group \(\Gamma_0 \) derived from a quaternion algebra. Let \(\delta(\Gamma) > 3/4 \). Then
\[\forall \epsilon > 0, \forall A > 0, \text{there exists } \{z_i\} \subset W_A, \Re(z_i) \to \infty, \]
such that
\[D(z_i)) \geq |\Re(z_i)|^{2\delta-3/2-\epsilon}. \]
• Theorem 6 gives a *logarithmic* lower bound
\[D(z_i) \geq (\log |\Re(z_i)|) \frac{\delta-1/2}{\delta} - \epsilon \]
for an infinite sequence of disks \(D(z_i, 1) \). Conjecture of Guillopè and Zworski would imply that \(\forall \epsilon > 0 \ \exists \{z_i\} \) such that
\[D(z_i) \geq |\Re(z_i)|^{\delta-\epsilon} \).

• **Question:** can one get *polynomial* lower bounds for some particular groups \(\Gamma \)?

Answer: Yes. **Idea:** look at infinite index subgroups of arithmetic groups a la Selberg-Hejhal.

• **Theorem 7.** Let \(\Gamma \) be an infinite index geom. finite subgroup of an arithmetic group \(\Gamma_0 \) derived from a quaternion algebra. Let \(\delta(\Gamma) > 3/4 \). Then
\(\forall \epsilon > 0, \forall A > 0 \), there exists \(\{z_i\} \subset W_A, \Re(z_i) \to \infty \), such that
\[D(z_i)) \geq |\Re(z_i)|^{2\delta-3/2-\epsilon}. \]
Key ideas:

- **Number of closed geodesics on** X:

 $$\#\{\gamma : l(\gamma) < T\} \sim \frac{e^{\delta T}}{\delta T}, \quad T \to \infty.$$

- **Number of distinct** closed geodesics in the arithmetic case: for Γ derived from a quaternion algebra, one has

 $$\#\{L < T : L = l(\gamma)\} \ll e^{T/2}.$$

 Accordingly, for $\delta > 1/2$, there exists exponentially large multiplicities in the length spectrum.

- **Distinct lengths are well-separated** in the arithmetic case: for $l_1 \neq l_2$, we have

 $$|l_1 - l_2| \gg e^{-\max(l_1,l_2)/2}.$$

Ex: $M_1, M_2 \in SL(2, \mathbb{Z})$, $\text{tr} M_1 \neq \text{tr} M_2$ then $|\text{tr} M_1 - \text{tr} M_2| = 2|\cosh(l_1/2) - \cosh(l_2/2)| \geq 1.$
Key ideas:

- **Number of closed geodesics on** \(X \):

\[
\#\{\gamma : I(\gamma) < T\} \sim \frac{e^{\delta T}}{\delta T}, \quad T \to \infty.
\]

- **Number of distinct closed geodesics in the arithmetic case:** for \(\Gamma \) derived from a quaternion algebra, one has

\[
\#\{L < T : L = I(\gamma)\} \ll e^{T/2}.
\]

Accordingly, for \(\delta > 1/2 \), there exists *exponentially large* multiplicities in the length spectrum.

- **Distinct lengths are well-separated in the arithmetic case:** for \(l_1 \neq l_2 \), we have

\[
\left| l_1 - l_2 \right| \gg e^{-\max(l_1,l_2)/2}.
\]

Ex: \(M_1, M_2 \in \text{SL}(2, \mathbb{Z}), \ \text{tr} M_1 \neq \text{tr} M_2 \) then
\[
\left| \text{tr} M_1 - \text{tr} M_2 \right| = 2 \left| \cosh(l_1/2) - \cosh(l_2/2) \right| \geq 1.
\]
Key ideas:

• Number of closed geodesics on X:

$$\#\{\gamma : l(\gamma) < T\} \sim \frac{e^{\delta T}}{\delta T}, \quad T \to \infty.$$

• Number of distinct closed geodesics in the arithmetic case: for Γ derived from a quaternion algebra, one has

$$\#\{L < T : L = l(\gamma)\} \ll e^{T/2}.$$

Accordingly, for $\delta > 1/2$, there exists exponentially large multiplicities in the length spectrum.

• Distinct lengths are well-separated in the arithmetic case: for $l_1 \neq l_2$, we have

$$|l_1 - l_2| \gg e^{-\max(l_1,l_2)/2}.$$

Ex: $M_1, M_2 \in \text{SL}(2, \mathbb{Z}), \text{tr}M_1 \neq \text{tr}M_2$ then

$$|\text{tr}M_1 - \text{tr}M_2| = 2|\cosh(l_1/2) - \cosh(l_2/2)| \geq 1.$$
Trace formula (Guillopé, Zworski): Let $\psi \in C_0^\infty((0, +\infty))$, and N - Nielsen region. Then (in case there are no cusps)

$$\sum_{\lambda \in \mathcal{R}_X} \hat{\psi}(\lambda) = -\frac{V(N)}{4\pi} \int_0^{+\infty} \frac{\cosh(t/2)}{\sin^2(t/2)} \psi(t) dt$$

$$+ \sum_{\gamma \in \mathcal{P}} \sum_{k \geq 1} \frac{l(\gamma)\psi(kl(\gamma))}{2 \sinh(kl(\gamma)/2)},$$

where $\mathcal{P} = \{\text{primitive closed geodesics on } X\}$. For $\alpha, t \gg 0$, we take

$$\psi_{t, \alpha}(x) = e^{-itx} \psi_0(x - \alpha),$$

where $\psi_0 \in C_0^\infty([-1, 1]), \psi \geq 0$, and $\psi_0 = 1$ on $[-1/2, 1/2]$.
- Geometric side (sum over closed geodesics):

\[S_{\alpha,t} = \sum_{\alpha-1 \leq kl(\gamma) \leq \alpha+1} \frac{l(\gamma)\psi_0(kl(\gamma) - \alpha)}{2 \sinh(kl(\gamma)/2)} e^{-itkl(\gamma)}. \]

- Lemma 8: \(\exists A > 0 \) s.t. \(\forall T > 0 \), if we let \(\alpha = 2 \log T - A \), and

\[J(T) = \int_T^{3T} \left(1 - \frac{|t - 2T|}{T} \right) |S_{\alpha,t}|^2 dt, \]

then

\[J(T) \geq C_2 T^{4\delta - 2} \frac{(\log T)^2}{(\log T)^2}. \]
• **Geometric side (sum over closed geodesics):**

\[
S_{\alpha,t} = \sum_{\alpha-1 \leq kl(\gamma) \leq \alpha+1} \frac{l(\gamma)\psi_0(kl(\gamma) - \alpha)}{2 \sinh(kl(\gamma)/2)} e^{-itkl(\gamma)}. \]

• **Lemma 8:** \(\exists A > 0 \) s.t. \(\forall T > 0 \), if we let \(\alpha = 2\log T - A \), and

\[
J(T) = \int_T^{3T} \left(1 - \frac{|t - 2T|}{T} \right) |S_{\alpha,t}|^2 dt,
\]

then

\[
J(T) \geq \frac{C_2 T^{4\delta - 2}}{(\log T)^2}.
\]
Lemma 8 \Rightarrow \text{Theorem 7}: Assume for contradiction that for all } z \in W_A, \Re(z) \geq R_0 \text{ we have } D(z) \leq |\Re(z)|^\beta. \text{ Let }
\alpha = 2 \log T - A. \text{ We have }
\frac{C_2 T^{1+4\delta-3}}{(\log T)^2} \leq J(T) \leq \int_{T}^{3T} |S_{\alpha,T}|^2 dt.

Assumption implies that

\[S_{\alpha,T} = O(1 + t^\beta + T^{2\delta-3}). \]

Integrating, we find that

\[J(T) = O(T^{2\beta+1}). \]

This leads to a contradiction if \(2\beta + 1 < 1 + 4\delta - 3 \), or \(\beta < 2\delta - 3/2 \), proving Theorem 7.
Proof of Lemma 8 uses the fact that geodesic lengths on X have exponentially high multiplicities and their lengths are well-separated.

After expanding $|S^2_{\alpha,T}|^2$ and integrating, we write $J(T) = J_1(T) + J_2(T)$, where $J_1(T)$ is the diagonal term

$$J_1(T) = T \sum_{l \in \mathcal{L}(\Gamma)} \frac{(l\# \mu(l))^2 \psi^2_0(l - \alpha)}{4 \sinh^2(l/2)},$$

where \mathcal{L}_{Γ} denotes set of distinct lengths of closed geodesics on X; $\mu(l)$ is the multiplicity of l; $l\#$ the primitive length of a closed geodesic.

$J_1(T) \geq 0$, and $J_2(T)$ denotes the off-diagonal term. $J_2(T)$ involves integrals $\int_T^{3T} (1 - |t - 2T|/T)e^{i(l_1-l_2)t} dt$, where $l_1 \leq l_2$. Since distinct l_j-s are well-separated, we get cancellation in $J_2(T)$. One can show that $|J_2(T)| \leq J_1(T)/2$ with α, T chosen as in Lemma.
• It remains to bound $J_1(T)$ from below. $\psi_0(l - \alpha)$ is supported on $[\alpha - 1, \alpha + 1]$. The denominator $4 \sinh^2(l/2)$ is of order e^α. We find that

$$J_1(T) \geq C_3 T e^{-\alpha} \sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]} (\mu(l))^2.$$

• Call the last sum S. Then

$$S \geq \left(\frac{\sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]} \mu(l)}{\left(\sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]} 1 \right)^{1/2}} \right)^2.$$

The numerator is $\gg [e^{\delta \alpha} / \alpha]^2$ by the prime geodesic theorem. The denominator is $O(e^{\alpha/2})$ (since the lengths are well-separated). Hence $S \gg e^{(2\delta - 1/2)\alpha} / \alpha^2$. Substituting $J(T) \gg S \cdot T / e^\alpha$, $\alpha = 2 \log T - A$, we get $J(T) \gg T^{4\delta - 2} / (\log T)^2$, proving Lemma 8.
• It remains to bound $J_1(T)$ from below. $\psi_0(l - \alpha)$ is supported on $[\alpha - 1, \alpha + 1]$. The denominator $4 \sinh^2(l/2)$ is of order e^α. We find that

$$J_1(T) \geq C_3 T e^{-\alpha} \sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]} (\mu(l))^2.$$

• Call the last sum S. Then

$$S \geq \left(\frac{\sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]} \mu(l)}{\sum_{l \in \mathcal{L}_\Gamma \cap [\alpha - 1/2, \alpha + 1/2]}} \right)^2$$

The numerator is $\gg [e^{\delta \alpha} / \alpha]^2$ by the prime geodesic theorem. The denominator is $O(e^{\alpha/2})$ (since the lengths are well-separated). Hence $S \gg e^{(2\delta - 1/2)\alpha} / \alpha^2$. Substituting $J(T) \gg S \cdot T / e^\alpha$, $\alpha = 2 \log T - A$, we get $J(T) \gg T^{4\delta - 2} / (\log T)^2$, proving Lemma 8.
Examples of an “arithmetic” groups Γ_N with $\delta > 3/4$ are subgroups of index 2 of the groups Λ_N constructed by A. Gamburd in 2002. Gamburd showed that $\delta(\Lambda_N) \to 1$ as $N \to \infty$, hence $\delta(\Gamma_N) > 3/4$ for large enough N.
Proof of Theorem 4b: (about $R(\lambda)$). X-compact, negatively-curved surface. **Wave trace** on X (even part):

$$e(t) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i} t).$$

Cut-off: $\chi(t, T) = (1 - \psi(t))\hat{\rho}(\frac{t}{T})$, where

- $\rho \in S(\mathbb{R})$, supp $\hat{\rho} \subset [-1, +1]$, $\rho \geq 0$, even;
- $\psi(t) \in C_0^\infty(\mathbb{R})$, $\psi(t) \equiv 1$, $t \in [-T_0, T_0]$, and $\psi(t) \equiv 0$, $|t| \geq 2T_0$.

In the sequel, $T = T(\lambda) \to \infty$ as $\lambda \to \infty$. Let

$$\kappa(\lambda, T) = \frac{1}{T} \int_{-\infty}^{\infty} e(t) \chi(t, T) \cos(\lambda t) dt$$
Key microlocal result:
Proposition 9. Let $T = T(\lambda) \leq \epsilon \log \lambda$. Then

$$
\kappa(\lambda, T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)^\# \cos(\lambda l(\gamma)) \cdot \chi(l(\gamma), T)}{T \sqrt{|\det(I - \mathcal{P}_\gamma)|}} + O(1)
$$

where

- γ - closed geodesic; $l(\gamma)$ - length; $l(\gamma)^\#$ - primitive period; \mathcal{P}_γ - Poincaré map.

Long-time version of the “wave trace” formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with $l(\gamma) \leq T(\lambda)$ to $\kappa(\lambda, T)$ as $\lambda, T(\lambda) \to \infty$.
- **Key microlocal result:**

 Proposition 9. Let $T = T(\lambda) \leq \epsilon \log \lambda$. Then

 $$\kappa(\lambda, T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma) \# \cos(\lambda l(\gamma)) \cdot \chi(l(\gamma), T)}{T \sqrt{|\det(I - P_\gamma)|}} + O(1)$$

 where

 γ - closed geodesic; $l(\gamma)$ - length; $l(\gamma) \#$ - primitive period; P_γ - Poincaré map.

- *Long-time* version of the “wave trace” formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with $l(\gamma) \leq T(\lambda)$ to $\kappa(\lambda, T)$ as $\lambda, T(\lambda) \to \infty$.

- **General Results**
- **Negative Curvature**
- **Resonances**
- **Proof: Arithmetic case**
- **Proof: Weyl’s Law**
- **Proof: Spectral Function**
- **Subtracting heat kernel terms**
• **Proof** - separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.

• **Dynamical lemma**: Let X - compact, negatively curved manifold. $\Omega(\gamma, r)$ - neighborhood of γ in S^*X of radius r (cylinder). There exist constants $B > 0, a > 0$ s.t. for all closed geodesics on X with $l(\gamma) \in [T - a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.
• **Proof** - separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.

• **Dynamical lemma**: Let X - compact, negatively curved manifold. $\Omega(\gamma, r)$ - neighborhood of γ in S^*X of radius r (cylinder). There exist constants $B > 0, a > 0$ s.t. for all closed geodesics on X with $l(\gamma) \in [T - a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.
- **Lemma 10.** If $R(\lambda) = o((\log \lambda)^b)$, $b > 0$ then

$$\kappa(\lambda, T) = o((\log \lambda)^b).$$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

- Consider the sum

$$S(T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{|\det(I - P_{\gamma})|}}$$

- P_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are

$$\exp \left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds \right].$$
Lemma 10. If \(R(\lambda) = o((\log \lambda)^b), \ b > 0 \) then

\[
\kappa(\lambda, T) = o((\log \lambda)^b).
\]

Goal: estimate \(\kappa(\lambda, T) \) from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

\[
S(T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{|\det(I - \mathcal{P}_\gamma)|}}
\]

- \(\mathcal{P}_\gamma \) preserves stable and unstable subspaces.
- Dimension 2: eigenvalues are

\[
\exp \left[\pm \int_\gamma \mathcal{H}(\gamma(s), \gamma'(s)) \, ds \right].
\]
• **Lemma 10.** If $R(\lambda) = o((\log \lambda)^b)$, $b > 0$ then

$$\kappa(\lambda, T) = o((\log \lambda)^b).$$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

• Consider the sum

$$S(T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{\det(I - P_{\gamma})}}$$

• P_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are

$$\exp \left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds \right].$$
\begin{itemize}
 \item $\mathcal{P}_\gamma - \text{Id}$ is conjugate to
 \begin{pmatrix}
 \exp \left[\int_\gamma \mathcal{H} \right] - 1 & 0 \\
 0 & \exp \left[- \int_\gamma \mathcal{H} \right] - 1
 \end{pmatrix}

 Thus, $S(T)$ is asymptotic to
 \[
 \sum_{l(\gamma) \leq T} l(\gamma) \exp \left[- \frac{1}{2} \int_\gamma \mathcal{H} \right].
 \]

 Results of Parry and Pollicott \Rightarrow

 \item **Theorem 11.** As $T \to \infty$,
 \[
 S(T) \sim \frac{e^{P\left(-\frac{\mathcal{H}}{2}\right) \cdot T}}{P\left(-\frac{\mathcal{H}}{2}\right)}
 \]
 Here $P\left(-\frac{\mathcal{H}}{2}\right) \geq (n - 1)K_2/2$.
\end{itemize}
• $P_\gamma - Id$ is conjugate to
\[
\begin{pmatrix}
\exp \left[\int_\gamma H \right] - 1 & 0 \\
0 & \exp \left[-\int_\gamma H \right] - 1
\end{pmatrix}
\]
Thus, $S(T)$ is asymptotic to
\[
\sum_{I(\gamma) \leq T} I(\gamma) \exp \left[-\frac{1}{2} \int_\gamma H \right].
\]

Results of Parry and Pollicott ⇒

• **Theorem 11.** As $T \to \infty$,

\[
S(T) \sim \frac{e^{P\left(-\frac{H}{2}\right) \cdot T}}{P\left(-\frac{H}{2}\right)}
\]

Here $P\left(-\frac{H}{2}\right) \geq (n - 1)K_2/2$.
\textbf{Dirichlet box principle} \Rightarrow “straighten the phases:" $\exists \lambda$ s.t.

$$\cos(\lambda l(\gamma)) > \nu > 0, \ \forall \gamma : l(\gamma) \leq T.$$

($\lambda l(\gamma)$ close to $2\pi \mathbb{Z}$). This combined with Theorem 11 shows that $\exists \lambda, T$ s.t.

$$\kappa(\lambda, T) \sim \frac{\exp[P \left(-\frac{\mathcal{H}}{2}\right) T(1 - \delta/2)]}{T}$$

This leads to contradiction with Lemma 10. Q.E.D. For Dirichlet principle need $T \asymp \ln \ln \lambda$, So, get logarithmic lower bound in Theorem 4b.
Proof of Theorem 3: $N(x, y, \lambda)$

Wave kernel on X:

$$e(t, x, y) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t)\phi_i(x)\phi_i(y),$$

fundamental solution of the wave equation

$$(\partial^2/\partial t^2 - \Delta)e(t, x, y) = 0, \quad e(0, x, y) = \delta(x - y),$$

$$(\partial/\partial t)e(0, x, y) = 0.$$

$$k_{\lambda, T}(x, y) = \int_{-\infty}^{\infty} \frac{\psi(t/T)}{T} \cos(\lambda t)e(t, x, y)dt$$

where $\psi \in C_0^\infty([-1, 1])$, even, monotone decreasing on $[0,1]$, $\psi \geq 0$, $\psi(0) = 1$.
Lemma 10a If $N_{x,y}(\lambda) = o(\lambda^a(\log \lambda)^b)$, where $a > 0, b > 0$ then

$$k_{\lambda, T}(x, y) = o(\lambda^a(\log \lambda)^b).$$
• **Pretrace formula.** M - universal cover of X, no conjugate points, $E(t, x, y)$ be the wave kernel on M. Then for $x, y \in X$, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

• **Hadamard Parametrix** for $E(t, x, y) \Rightarrow$

$$K_{\lambda, T}(x, y) \sim_{\lambda \to \infty} Q_1 \lambda^{\frac{n-1}{2}} \times \sum_{\omega \in \pi_1(X): d(x, \omega y) \leq T}$$

$$\psi \left(\frac{d(x, \omega y)}{T} \right) \frac{\sin (\lambda d(x, \omega y) + \theta_n)}{\sqrt{Tg(x, \omega y) d(x, \omega y)^{n-1}}} + O \left[\lambda^{\frac{n-3}{2}} e^{O(T)} \right].$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.
• **Pretrace formula.** M - universal cover of X, no conjugate points, $E(t, x, y)$ be the wave kernel on M. Then for $x, y \in X$, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

• **Hadamard Parametrix** for $E(t, x, y) \Rightarrow$

$$K_{\lambda, T}(x, y) \sim_{\lambda \to \infty} Q_1 \lambda \frac{n-1}{2} \times \sum_{\omega \in \pi_1(X) : d(x, \omega y) \leq T} \psi \left(\frac{d(x, \omega y)}{T} \right) \frac{\sin(\lambda d(x, \omega y) + \theta_n)}{\sqrt{Tg(x, \omega y) d(x, \omega y)^{n-1}}} + O \left[\lambda \frac{n-3}{2} e^{O(T)} \right].$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.
• Pointwise analog of the sum $S(T)$:

$$S_{x,y}(T) = \sum_{\omega : d(x,\omega y) \leq T} \frac{1}{\sqrt{g(x,\omega y)} \, d(x,\omega y)^{n-1}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at x. $S_{x,y}(T)$ grows at the same rate as $S(T)$.

• **Reason:** let $x, y \in M$, γ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and $\text{dist}(x, y) = r$. Then

$$\sqrt{g(x,y)} r^{n-1} \ll \text{Jac}_{\text{Vert}(\xi)} G^r.$$

Here $\text{Vert}(\xi) \in T_\xi SM$ - vertical subspace; $E^u_\xi \in T_\xi SM$ - unstable subspace at ξ.

By properties of Anosov flows,

$$\text{Dist}[DG^r(\text{Vert}(\xi)), DG^r(E^u_\xi)] \leq Ce^{-\alpha r}.$$ Therefore,

$$\text{Jac}_{\text{Vert}(\xi)} G^r \ll \text{Jac}_{E^u_\xi} G^r = \exp \left[\int_\gamma H \right].$$
• Pointwise analog of the sum $S(T)$:

$$S_{x,y}(T) = \sum_{\omega: d(x,\omega y) \leq T} \frac{1}{\sqrt{g(x,\omega y)} d(x,\omega y)^{n-1}}$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at x. $S_{x,y}(T)$ grows at the same rate as $S(T)$.

• **Reason:** let $x, y \in M$, γ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and $\text{dist}(x, y) = r$. Then $\sqrt{g(x, y)} r^{n-1} \ll \text{Jac}_{\text{Vert}(\xi)} G''$. Here $\text{Vert}(\xi) \in T_\xi SM$ - vertical subspace; $E^u_\xi \in T_\xi SM$ - unstable subspace at ξ. By properties of Anosov flows, $\text{Dist}[DG^r(\text{Vert}(\xi)), DG^r(E^u_\xi)] \leq C e^{-\alpha r}$. Therefore, $\text{Jac}_{\text{Vert}(\xi)} G'' \ll \text{Jac}_{E^u_\xi} G'' = \exp \left[\int_\gamma \mathcal{H} \right]$
Our local estimates are not uniform in x, y. Need Proposition 9 to prove global estimates.

Heat trace asymptotics:

$$\sum_i e^{-\lambda_i t} \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_j \ t^{j-n/2}, \quad t \to 0^+$$

Local: $\mathcal{K}(t, x, x) = \sum_i e^{-\lambda_i t} \phi_i^2(x) \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_j(x) t^{j-n/2}$,

$a_j(x)$ - local heat invariants, $a_j = \int_X a_j(x) dx$.

$a_0(x) = 1$, $a_0 = \text{vol}(X)$. $a_1(x) = \frac{\tau(x)}{6}$, $\tau(x)$ - scalar curvature.
“Heat kernel” estimates:

Theorem 2b [JP] If the scalar curvature \(\tau(x) \neq 0 \), \(\implies R_x(\lambda) = \Omega(\lambda^{n-2}) \).

Global: [JPT] If \(\int_X \tau \neq 0 \), \(\implies R(\lambda) = \Omega(\lambda^{n-2}) \).

Remark: if \(\tau(x) = 0 \), let \(k = k(x) \) be the first positive number such that the \(k \)-th local heat invariant \(a_k(x) \neq 0 \). If \(n - 2k(x) > 0 \), then

\[
R_x(\lambda) = \Omega(\lambda^{n-2k(x)}).
\]

Similar result holds for \(R(\lambda) \): if \(\int a_k(x)dx \neq 0 \) and \(n - 2k > 0 \), then

\[
R(\lambda) = \Omega(\lambda^{n-2k}).
\]
- **Oscillatory error term:** subtract \([(n - 1)/2]\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \frac{a_j(x)\lambda^{n-2j}}{(4\pi)^{\frac{n}{2}} \Gamma\left(\frac{n}{2} - j + 1\right)} + R_x^{osc}(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

- **Theorem 2c** [JP] If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right)
\]

Theorem 4c [JP] \(X\) - negatively curved. For any \(\delta > 0\)

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log\lambda\right)^{\frac{P(-\mathcal{H}/2)}{h}} - \delta\right), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

- **Global Conjecture:** \(X\) - negatively curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega\left(\left(\log\lambda\right)^{\frac{P(-\mathcal{H}/2)}{h}} - \delta\right), \text{ any } n.
\]
• **Oscillatory error term:** subtract \([(n - 1)/2]\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} a_j(x)\lambda^{n-2j} \frac{\lambda^n}{(4\pi)^2 \Gamma\left(\frac{n}{2}-j+1\right)} + R_x^{osc}(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

• **Theorem 2c[JP]** If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})
\]

Theorem 4c[JP] \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

• **Global Conjecture:** \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \text{ any } n.
\]
• **Oscillatory error term:** subtract \([(n - 1)/2]\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} a_j(x) \lambda^{n-2j} \left(\frac{n}{4\pi}\right)^{\frac{n}{2}} \Gamma\left(\frac{n}{2} - j + 1\right) + R_x^{osc}(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

• **Theorem 2c** [JP] If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right)
\]

Theorem 4c [JP] \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} \left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

• **Global Conjecture:** \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega\left(\left(\log \lambda\right)^{\frac{P(-\mathcal{H}/2)}{h} - \delta}\right), \text{ any } n.
\]
The behavior of $N(x, y, \lambda)/\left(\lambda^{(n-1)/2}\right)$ was studied by Lapointe, Polterovich and Safarov.