Estimates from below for the spectral function and for the remainder in Weyl’s law

D. Jakobson (McGill), jakobson@math.mcgill.ca
I. Polterovich (Univ. de Montreal), iossif@dms.umontreal.ca
J. Toth (McGill), jtoth@math.mcgill.ca

- [JPT]: IMRN Volume 2007: article ID rnm142. math.SP/0612250

23rd October 2008
• $X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum:
$\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Eigenvalue counting function:
$N(\lambda) = \# \{ \sqrt{\lambda_j} \leq \lambda \}$.

Weyl’s law: $N(\lambda) = C_n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1})$.
$R(\lambda)$ - remainder.

• **Spectral function:** Let $x, y \in X$.
$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x) \phi_i(y)$.
If $x = y$, let $N_{x,y}(\lambda) := N_x(\lambda)$.

Local Weyl’s law:
$N_{x,y}(\lambda) = O(\lambda^{n-1}), \ x \neq y$;
$N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \ R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda)$ - local remainder.

• We study lower bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda)$.
$X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum:
$\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Eigenvalue counting function:
$N(\lambda) = \# \{ \sqrt{\lambda_j} \leq \lambda \}$.

Weyl’s law:
$N(\lambda) = C_n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1})$.
$R(\lambda)$ - remainder.

Spectral function: Let $x, y \in X$.
$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x)\phi_i(y)$.
If $x = y$, let $N_{x,y}(\lambda) := N_x(\lambda)$.

Local Weyl’s law:
$N_{x,y}(\lambda) = O(\lambda^{n-1}), \ x \neq y$;
$N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \ R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda)$ - local remainder.

We study lower bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda)$.
- $X^n, n \geq 2$ - compact. Δ - Laplacian. Spectrum:
 $\Delta \phi_i + \lambda_i \phi_i = 0, \ 0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$

Eigenvalue counting function:
$N(\lambda) = \#\{\sqrt{\lambda_i} \leq \lambda\}.$

Weyl’s law: $N(\lambda) = C_n V \lambda^n + R(\lambda), \ R(\lambda) = O(\lambda^{n-1}).$
$R(\lambda)$ - remainder.

Spectral function: Let $x, y \in X$.
$N_{x,y}(\lambda) = \sum_{\sqrt{\lambda_i} \leq \lambda} \phi_i(x)\phi_i(y).$
If $x = y$, let $N_{x,y}(\lambda) := N_x(\lambda).

Local Weyl’s law:
$N_{x,y}(\lambda) = O(\lambda^{n-1}), \ x \neq y;$
$N_x(\lambda) = C_n \lambda^n + R_x(\lambda), \ R_x(\lambda) = O(\lambda^{n-1}); \ R_x(\lambda) - local \ remainder.$

- We study **lower** bounds for $R(\lambda), R_x(\lambda)$ and $N_{x,y}(\lambda).$
• Notation: $f_1(\lambda) = \Omega(f_2(\lambda))$, $f_2 > 0$ iff
 \[
 \limsup_{\lambda \to \infty} \frac{|f_1(\lambda)|}{f_2(\lambda)} > 0.
 \]
 Equivalently, $f_1(\lambda) \neq o(f_2(\lambda))$.

• **Theorem 1**[JP] If $x, y \in X$ are not conjugate along any shortest geodesic joining them, then
 \[
 N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).
 \]

• **Theorem 2**[JP] If $x \in X$ is not conjugate to itself along any shortest geodesic loop, then
 \[
 R_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right)
 \]

• Other results in dimension $n > 2$ involve heat invariants.
• **Notation:** \(f_1(\lambda) = \Omega(f_2(\lambda)) \), \(f_2 > 0 \) iff
\[
\limsup_{\lambda \to \infty} \left| f_1(\lambda) / f_2(\lambda) \right| > 0.
\]
Equivalently, \(f_1(\lambda) \neq o(f_2(\lambda)) \).

• **Theorem 1** [JP] If \(x, y \in X \) are not conjugate along any shortest geodesic joining them, then
\[
N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} \right).
\]

• **Theorem 2** [JP] If \(x \in X \) is not conjugate to itself along any shortest geodesic loop, then
\[
R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})
\]

• Other results in dimension \(n > 2 \) involve heat invariants.
• Notation: \(f_1(\lambda) = \Omega(f_2(\lambda)), f_2 > 0 \) iff
\[\limsup_{\lambda \to \infty} \frac{|f_1(\lambda)|}{f_2(\lambda)} > 0. \] Equivalently,
\(f_1(\lambda) \neq o(f_2(\lambda)) \).

• **Theorem 1**[JP] If \(x, y \in X \) are not conjugate along any shortest geodesic joining them, then

\[
N_{x,y}(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right).
\]

• **Theorem 2**[JP] If \(x \in X \) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})
\]

• Other results in dimension \(n > 2 \) involve heat invariants.
• Notation: \(f_1(\lambda) = \Omega(f_2(\lambda)) \), if \(f_2 > 0 \) iff
\[
\limsup_{\lambda \to \infty} \frac{|f_1(\lambda)|}{f_2(\lambda)} > 0.
\]
Equivalently, \(f_1(\lambda) \neq o(f_2(\lambda)) \).

• **Theorem 1** [JP] If \(x, y \in X \) are not conjugate along any shortest geodesic joining them, then
\[
N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} \right).
\]

• **Theorem 2** [JP] If \(x \in X \) is not conjugate to itself along any shortest geodesic loop, then
\[
R_x(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})
\]

• Other results in dimension \(n > 2 \) involve heat invariants.
• Example: flat square 2-torus
\[\lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z} \]
\[\phi_j(x) = e^{2\pi i(n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2) \]

\[|\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda) \]

Gauss circle problem: estimate \(R(\lambda) \).

Theorem 2 \(\Rightarrow \) \[R(\lambda) = \Omega(\sqrt{\lambda}) \]

Hardy–Landau bound. Theorem 2 generalizes that bound for the local remainder.

Soundararajan (2003):

\[R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}(\log \lambda)^{1/4}(\log \log \lambda)^{3(2^{4/3} - 1)/4}}{(\log \log \log \lambda)^{5/8}} \right) \]

• **Hardy’s conjecture:** \(R(\lambda) \ll \lambda^{1/2+\epsilon} \forall \epsilon > 0 \).

Huxley (2003): \(R(\lambda) \ll \lambda^{131/208}(\log \lambda)^{2.26} \).
Example: flat square 2-torus

\[\lambda_j = 4\pi^2(n_1^2 + n_2^2), \quad n_1, n_2 \in \mathbb{Z} \]

\[\phi_j(x) = e^{2\pi i(n_1 x_1 + n_2 x_2)}, \quad x = (x_1, x_2) \]

\[|\phi_j(x)| = 1 \Rightarrow N(\lambda) \equiv N_x(\lambda) \]

Gauss circle problem: estimate \(R(\lambda) \).

Theorem 2 \(\Rightarrow \) \(R(\lambda) = \Omega(\sqrt{\lambda}) \) -

Hardy–Landau bound. Theorem 2 generalizes that bound for the local remainder.

Soundararajan (2003):

\[R(\lambda) = \Omega \left(\frac{\sqrt{\lambda} (\log \lambda)^{1/4} (\log \log \lambda)^{3(2^{4/3} - 1)/4}}{\log \log \log \lambda^{5/8}} \right). \]

Hardy’s conjecture: \(R(\lambda) \ll \lambda^{1/2+\epsilon} \forall \epsilon > 0 \).

Huxley (2003): \(R(\lambda) \ll \lambda^{\frac{131}{208}} (\log \lambda)^{2.26} \).
• **Negative curvature.** Suppose sectional curvature satisfies
\[-K_1^2 \leq K(\xi, \eta) \leq -K_2^2\]

Theorem (Berard): $R_x(\lambda) = O(\lambda^{n-1} / \log \lambda)$

Conjecture (Randol): On a negatively-curved surface, $R(\lambda) = O(\lambda^{1/2+\epsilon})$. Randol proved an integrated (in λ) version for $N_{x,y}(\lambda)$.

• **Theorem (Karnaukh)** On a negatively curved surface

$$R_x(\lambda) = \Omega(\sqrt{\lambda})$$

+ logarithmic improvements discussed below.

Karnaukh’s results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.
Negative curvature. Suppose sectional curvature satisfies
$$-K_1^2 \leq K(\xi, \eta) \leq -K_2^2$$

Theorem (Berard): $R_x(\lambda) = O(\lambda^{n-1}/\log \lambda)$

Conjecture (Randol): On a negatively-curved surface, $R(\lambda) = O(\lambda^{1+\epsilon})$. Randol proved an integrated (in λ) version for $N_{x,y}(\lambda)$.

Theorem (Karnaukh) On a negatively curved surface

$$R_x(\lambda) = \Omega(\sqrt{\lambda})$$

+ logarithmic improvements discussed below.

Karnaukh’s results (unpublished 1996 Princeton Ph.D. thesis under the supervision of P. Sarnak) served as a starting point and a motivation for our work.
• **Thermodynamic formalism:** G^t - geodesic flow on SX, $\xi \in SX$, $T_\xi(SX) = E^s_\xi \oplus E^u_\xi \oplus E^o_\xi$,
 • $\dim E^s_\xi = n - 1$: stable subspace, exponentially contracting for G^t;
 • $\dim E^u_\xi = n - 1$: unstable subspace, exponentially contracting for G^{-t};
 • $\dim E^o_\xi = 1$: tangent subspace to G^t.

Sinai-Ruelle-Bowen potential $\mathcal{H} : SM \to \mathbb{R}$:

$$\mathcal{H}(\xi) = \left. \frac{d}{dt} \ln \det dG^t \right|_{t=0} \bigg|_{E^u_\xi}$$

• **Topological pressure** $P(f)$ of a Hölder function $f : SX \to \mathbb{R}$ satisfies (Parry, Pollicott)

$$\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[\int_\gamma f(\gamma(s), \gamma'(s)) ds \right] \sim \frac{e^{P(f)T}}{P(f)}.$$
- **Thermodynamic formalism**: G^t - geodesic flow on SX, $\xi \in SX$, $T_\xi(SX) = E^s_\xi \oplus E^u_\xi \oplus E^o_\xi$,
 - $\dim E^s_\xi = n - 1$: stable subspace, exponentially contracting for G^t;
 - $\dim E^u_\xi = n - 1$: unstable subspace, exponentially contracting for G^{-t};
 - $\dim E^o_\xi = 1$: tangent subspace to G^t.
- **Sinai-Ruelle-Bowen potential** $\mathcal{H} : SM \rightarrow \mathbb{R}$:
 \[
 \mathcal{H}(\xi) = \frac{d}{dt}\bigg|_{t=0} \ln \det dG^t_t|_{E^u_\xi}
 \]
- **Topological pressure** $P(f)$ of a Hölder function $f : SX \rightarrow \mathbb{R}$ satisfies (Parry, Pollicott)
 \[
 \sum_{l(\gamma) \leq T} l(\gamma) \exp \left[\int_{\gamma} f(\gamma(s), \gamma'(s)) \, ds \right] \sim \frac{e^{P(f)T}}{P(f)}.
 \]
• γ - geodesic of length $l(\gamma)$. $P(f)$ is defined as
\[
P(f) = \sup_\mu \left(h_\mu + \int fd\mu \right),
\]
μ is G^t-invariant, h_μ - (measure-theoretic) entropy.

• Ex 1: $P(0) = h$ - topological entropy of G^t. Theorem (Margulis): $\# \{ \gamma : l(\gamma) \leq T \} \sim e^{hT}/hT$.

Ex. 2: $P(-H) = 0$.

• Theorem 3 [JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$
\[
N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta} \right)
\]
Here $P(-\mathcal{H}/2)/h \geq K_2/(2K_1) > 0$.

• γ - geodesic of length $l(\gamma)$. $P(f)$ is defined as

$$P(f) = \sup_{\mu} \left(h_\mu + \int f d\mu \right),$$

μ is G^t-invariant, h_μ - (measure-theoretic) entropy.

• Ex 1: $P(0) = h$ - topological entropy of G^t. Theorem (Margulis): $\#\{\gamma : l(\gamma) \leq T\} \sim e^{hT}/hT$.

Ex. 2: $P(-\mathcal{H}) = 0$.

• Theorem 3[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h} - \delta} \right)$$

Here $P(-\mathcal{H}/2)/h \geq K_2/(2K_1) > 0$.
• γ - geodesic of length $l(\gamma)$. $P(f)$ is defined as

$$P(f) = \sup_{\mu} \left(h_{\mu} + \int f d\mu \right),$$

μ is G^t-invariant, h_{μ} - (measure-theoretic) entropy.

• Ex 1: $P(0) = h$ - **topological entropy** of G^t. Theorem (Margulis): \#\{\gamma : l(\gamma) \leq T\} \sim e^{hT}/hT.$

Ex. 2: $P(-\mathcal{H}) = 0$.

• **Theorem 3**[JP] If X is negatively-curved then for any $\delta > 0$ and $x \neq y$

$$N_{x,y}(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h}} - \delta \right)$$

Here $P(-\mathcal{H}/2)/h \geq K_2/(2K_1) > 0$.
Theorem 4a [JP] X - negatively curved. For any $\delta > 0$

$$R_x(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda) \frac{P(-\mathcal{H}/2)}{h} - \delta \right), \quad n = 2, 3.$$

Results for $n \geq 4$ involve heat invariants.

$$K = -1 \Rightarrow R_x(\lambda) = \Omega \left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{1}{2}} - \delta \right)$$

Karnaukh, $n = 2$: estimate above + weaker estimates in variable negative curvature.
• **Global results:** $R(\lambda)$

Randol, $n = 2$:

$$K = -1 \Rightarrow R(\lambda) = \Omega \left((\log \lambda)^{\frac{1}{2} - \delta} \right), \quad \forall \delta > 0.$$

Theorem 4b [JPT] X - negatively-curved surface ($n = 2$). For any $\delta > 0$

$$R(\lambda) = \Omega \left((\log \lambda)^{\frac{P(-H/2)}{h} - \delta} \right).$$

• **Conjecture (folklore).** On a generic negatively curved surface

$$R(\lambda) = O(\lambda^\epsilon) \quad \forall \epsilon > 0.$$

Selberg, Hejhal: On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}}{\log \lambda} \right)$.

Reason: exponentially high multiplicities in the length spectrum; generically, X has simple length spectrum.
• **Global results:** $R(\lambda)$

Randol, $n = 2$:

$$K = -1 \Rightarrow R(\lambda) = \Omega \left((\log \lambda)^{\frac{1}{2} - \delta} \right), \quad \forall \delta > 0.$$

Theorem 4b[JPT] X - negatively-curved surface ($n = 2$). For any $\delta > 0$

$$R(\lambda) = \Omega \left((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{\hbar} - \delta} \right).$$

• **Conjecture (folklore).** On a **generic** negatively curved surface

$$R(\lambda) = O(\lambda^\epsilon) \quad \forall \epsilon > 0.$$

Selberg, Hejhal: On compact arithmetic surfaces that correspond to quaternionic lattices $R(\lambda) = \Omega \left(\frac{\sqrt{\lambda}}{\log \lambda} \right)$.

Reason: exponentially high multiplicities in the length spectrum; generically, X has **simple** length spectrum.
Proof of Theorem 4b: (about $R(\lambda)$). X-compact, negatively-curved surface.

Wave trace on X (even part):

$$e(t) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t).$$

Cut-off: $\chi(t, T) = (1 - \psi(t))\hat{\rho} \left(\frac{t}{T} \right)$, where

- $\rho \in \mathcal{S}(\mathbb{R})$, supp $\hat{\rho} \subset [-1, +1]$, $\rho \geq 0$, even;
- $\psi(t) \in C_0^\infty(\mathbb{R})$, $\psi(t) \equiv 1, t \in [-T_0, T_0]$, and $\psi(t) \equiv 0, |t| \geq 2T_0$.

In the sequel, $T = T(\lambda) \to \infty$ as $\lambda \to \infty$. Let

$$\kappa(\lambda, T) = \frac{1}{T} \int_{-\infty}^{\infty} e(t)\chi(t, T)\cos(\lambda t)dt$$
Key microlocal result:

Proposition 5. Let \(T = T(\lambda) \leq \epsilon \log \lambda \). Then

\[
\kappa(\lambda, T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)^\# \cos(\lambda l(\gamma)) \cdot \chi(l(\gamma), T)}{T \sqrt{|\det(I - P_\gamma)|}} + O(1)
\]

where

- \(\gamma \) - closed geodesic;
- \(l(\gamma) \) - length;
- \(l(\gamma)^\# \) - primitive period;
- \(P_\gamma \) - Poincaré map.

Long-time version of the “wave trace” formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with \(l(\gamma) \leq T(\lambda) \) to \(\kappa(\lambda, T) \) as \(\lambda, T(\lambda) \to \infty \).
• **Key microlocal result:**

 Proposition 5. Let $T = T(\lambda) \leq \epsilon \log \lambda$. Then

 \[
 \kappa(\lambda, T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)\# \cos(\lambda l(\gamma)) \cdot \chi(l(\gamma), T)}{T \sqrt{|\det(I - P_{\gamma})|}} + O(1)
 \]

 where

 γ - closed geodesic; $l(\gamma)$ - length; $l(\gamma)\#$ - primitive period; P_{γ} - Poincaré map.

• *Long-time* version of the “wave trace” formula of Duistermaat and Guillemin, microlocalized to shrinking neighborhoods of closed geodesics. Allows to isolate contribution from a growing number of closed geodesics with $l(\gamma) \leq T(\lambda)$ to $\kappa(\lambda, T)$ as $\lambda, T(\lambda) \to \infty$.

● **Proof** - separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.

● **Dynamical lemma**: Let X - compact, negatively curved manifold. $\Omega(\gamma, r)$ - neighborhood of γ in S^*X of radius r (cylinder). There exist constants $B > 0, a > 0$ s.t. for all closed geodesics on X with $l(\gamma) \in [T - a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.
• **Proof** - separation of closed geodesics in phase space + small-scale microlocalization near closed geodesics.

• **Dynamical lemma**: Let X - compact, negatively curved manifold. $\Omega(\gamma, r)$ - neighborhood of γ in S^*X of radius r (cylinder). There exist constants $B > 0, a > 0$ s.t. for all closed geodesics on X with $l(\gamma) \in [T - a, T]$, the neighborhoods $\Omega(\gamma, e^{-BT})$ are disjoint, provided $T > T_0$.

Radius $r = e^{-BT}$ is exponentially small in T, since the number of closed geodesic grows exponentially.
• **Lemma 6.** If $R(\lambda) = o((\log \lambda)^b)$, $b > 0$ then

$$\kappa(\lambda, T) = o((\log \lambda)^b).$$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

• Consider the sum

$$S(T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{|\det(I - P_\gamma)|}}$$

• P_γ preserves stable and unstable subspaces. Dimension 2: eigenvalues are

$$\exp \left[\pm \int_\gamma \mathcal{H}(\gamma(s), \gamma'(s)) ds \right].$$
• **Lemma 6.** If $R(\lambda) = o((\log \lambda)^b)$, $b > 0$ then

$$\kappa(\lambda, T) = o((\log \lambda)^b).$$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

• Consider the sum

$$S(T) = \sum_{\ell(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{\det(I - P_{\gamma})}}$$

• P_{γ} preserves stable and unstable subspaces. Dimension 2: eigenvalues are

$$\exp \left[\pm \int_{\gamma} \mathcal{H}(\gamma(s), \gamma'(s)) ds \right].$$
Lemma 6. If $R(\lambda) = o((\log \lambda)^b), \ b > 0$ then

$$\kappa(\lambda, T) = o((\log \lambda)^b).$$

Goal: estimate $\kappa(\lambda, T)$ from below. Need to extract long exponential sums as the leading asymptotics of the long-time wave trace expansion.

Consider the sum

$$S(T) = \sum_{l(\gamma) \leq T} \frac{l(\gamma)}{\sqrt{\det(I - P_\gamma)}}$$

P_γ preserves stable and unstable subspaces. Dimension 2: eigenvalues are

$$\exp \left[\pm \int_\gamma \mathcal{H}(\gamma(s), \gamma'(s)) ds \right].$$
• $\mathcal{P}_\gamma - Id$ is conjugate to

\[
\begin{pmatrix}
\exp \left[\int_\gamma \mathcal{H} \right] - 1 & 0 \\
0 & \exp \left[-\int_\gamma \mathcal{H} \right] - 1
\end{pmatrix}
\]

Thus, $S(T)$ is asymptotic to

\[
\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[-\frac{1}{2} \int_\gamma \mathcal{H} \right].
\]

Results of Parry and Pollicott \Rightarrow

• **Theorem 7.** As $T \to \infty$,

\[
S(T) \sim \frac{e^{P\left(-\frac{\mathcal{H}}{2}\right) \cdot T}}{P\left(-\frac{\mathcal{H}}{2}\right)}
\]

Here $P\left(-\frac{\mathcal{H}}{2}\right) \geq (n - 1)K_2/2$.
\[P_\gamma - \text{Id} \text{ is conjugate to } \left(\begin{array}{cc} \exp \left[\int_\gamma \mathcal{H} \right] - 1 & 0 \\ 0 & \exp \left[- \int_\gamma \mathcal{H} \right] - 1 \end{array} \right) \]

Thus, \(S(T) \) is asymptotic to

\[
\sum_{l(\gamma) \leq T} l(\gamma) \exp \left[- \frac{1}{2} \int_\gamma \mathcal{H} \right].
\]

Results of Parry and Pollicott ⇒

\[\textbf{Theorem 7.} \text{ As } T \to \infty, \]

\[S(T) \sim \frac{e^{P(-\frac{\mathcal{H}}{2}) \cdot T}}{P(-\mathcal{H}/2)} \]

Here \(P \left(-\frac{\mathcal{H}}{2} \right) \geq (n - 1)K_2/2. \)
Dirichlet box principle ⇒ “straighten the phases:” \(\exists \lambda \) s.t.

\[
\cos(\lambda I(\gamma)) > \nu > 0, \quad \forall \gamma : I(\gamma) \leq T.
\]

(\(\lambda I(\gamma) \) close to \(2\pi \mathbb{Z} \)). This combined with Theorem 7 shows that \(\exists \lambda, T \) s.t.

\[
\kappa(\lambda, T) \sim \frac{\exp[P \left(-\frac{\mathcal{H}}{2}\right) T(1 - \delta/2)\]}{T}
\]

This leads to contradiction with Lemma 6. Q.E.D.

For Dirichlet principle need \(T \asymp \ln \ln \lambda \), So, get logarithmic lower bound in Theorem 4b.
Proof of Theorem 3: $N(x, y, \lambda)$

Wave kernel on X:

$$e(t, x, y) = \sum_{i=0}^{\infty} \cos(\sqrt{\lambda_i}t)\phi_i(x)\phi_i(y),$$

fundamental solution of the wave equation

$$(\partial^2 / \partial t^2 - \Delta)e(t, x, y) = 0, \ e(0, x, y) = \delta(x - y), \ (\partial / \partial t)e(0, x, y) = 0.$$

$$k_{\lambda,T}(x, y) = \int_{-\infty}^{\infty} \frac{\psi(t/T)}{T} \cos(\lambda t)e(t, x, y)dt$$

where $\psi \in C_0^\infty([-1, 1])$, even, monotone decreasing on $[0,1]$, $\psi \geq 0$, $\psi(0) = 1$.
Lemma 6a If $N_{x,y}(\lambda) = o(\lambda^a(\log \lambda)^b)$, where $a > 0, b > 0$ then

$$k_{\lambda,T}(x, y) = o(\lambda^a(\log \lambda)^b).$$
• **Pretrace formula.** M - universal cover of X, no conjugate points, $E(t, x, y)$ be the wave kernel on M. Then for $x, y \in X$, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

• **Hadamard Parametrix** for $E(t, x, y) \Rightarrow$

$$K_{\lambda, T}(x, y) \sim_{\lambda \to \infty} Q_1 \lambda^{\frac{n-1}{2}} \times \sum_{\omega \in \pi_1(X) : d(x, \omega y) \leq T}$$

$$\psi \left(\frac{d(x, \omega y)}{T} \right) \sin(\lambda d(x, \omega y) + \theta_n) \frac{\sqrt{Tg(x, \omega y) d(x, \omega y)^{n-1}}}{\sqrt{Tg(x, \omega y) d(x, \omega y)^{n-1}}} + O \left[\lambda^{\frac{n-3}{2}} e^{O(T)} \right].$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0.$
Pretrace formula. M - universal cover of X, no conjugate points, $E(t, x, y)$ be the wave kernel on M. Then for $x, y \in X$, we have

$$e(t, x, y) = \sum_{\omega \in \pi_1(X)} E(t, x, \omega y)$$

Hadamard Parametrix for $E(t, x, y)$ ⇒

$$K_{\lambda, T}(x, y) \sim_{\lambda \to \infty} Q_1 \lambda^{\frac{n-1}{2}} \times \sum_{\omega \in \pi_1(X) : d(x, \omega y) \leq T} \psi \left(\frac{d(x, \omega y)}{T} \right) \sin(\lambda d(x, \omega y) + \theta_n) \frac{\sqrt{d(x, \omega y)}}{\sqrt{T g(x, \omega y) d(x, \omega y)^{n-1}}} + O \left[\lambda^{\frac{n-3}{2}} e^{O(T)} \right].$$

Here $g = \sqrt{\det g_{ij}}$ in normal coordinates, $\theta_n = (\pi/4)(3 - (n \mod 8))$, and $Q_1 \neq 0$.
• **Pointwise analog of the sum $S(T)$:**

$$S_{x,y}(T) = \sum_{\omega: d(x,\omega y) \leq T} \frac{1}{\sqrt{g(x,\omega y)} d(x,\omega y)^{n-1}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at x. $S_{x,y}(T)$ grows at the same rate as $S(T)$.

• **Reason:** let $x, y \in M$, γ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and $\text{dist}(x, y) = r$. Then

$$\sqrt{g(x, y)} r^{n-1} \ll \text{Jac}_{\text{Vert}(\xi)} G^r.$$

Here $\text{Vert}(\xi) \in T_{\xi}SM$ - vertical subspace; $E_{\xi}^u \in T_{\xi}SM$ - unstable subspace at ξ.

By properties of Anosov flows,

$$\text{Dist}[DG^r(\text{Vert}(\xi)), DG^r(E_{\xi}^u)] \leq Ce^{-\alpha r}.\text{ Therefore,}$$

$$\text{Jac}_{\text{Vert}(\xi)} G^r \ll \text{Jac}_{E_{\xi}^u} G^r = \exp\left[\int_{\gamma} \mathcal{H}\right]$$
• Pointwise analog of the sum $S(T)$:

$$S_{x,y}(T) = \sum_{\omega : d(x, \omega y) \leq T} \frac{1}{\sqrt{g(x, \omega y)} d(x, \omega y)^{n-1}},$$

where $g = \sqrt{\det g_{ij}}$ in normal coordinates at x. $S_{x,y}(T)$ grows at the same rate as $S(T)$.

• **Reason:** let $x, y \in M$, γ - geodesic from x to y, $\xi = (x, \gamma'(0))$, and $\text{dist}(x, y) = r$. Then

$$\sqrt{g(x, y)} r^{n-1} \ll \text{Jac}_{\text{Vert} (\xi)} G'.$$

Here $\text{Vert} (\xi) \in T_{\xi} SM$ - vertical subspace; $E_{\xi}^u \in T_{\xi} SM$ - unstable subspace at ξ.

By properties of Anosov flows, $\text{Dist}[DG^r(\text{Vert}(\xi)), DG^r(E_{\xi}^u)] \leq Ce^{-\alpha r}$. Therefore,

$$\text{Jac}_{\text{Vert} (\xi)} G' \ll \text{Jac}_{E_{\xi}^u} G' = \exp \left[\int_{\gamma} \mathcal{H} \right]$$
Our local estimates are not uniform in \(x, y \). Need Proposition 5 to prove global estimates.

Heat trace asymptotics:

\[
\sum_{i} e^{-\lambda_i t} \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_j t^{j - \frac{n}{2}}, \quad t \to 0^+
\]

Local: \(\mathcal{K}(t, x, x) = \sum_{i} e^{-\lambda_i t} \phi_i^2(x) \sim \frac{1}{(4\pi)^{n/2}} \sum_{j=0}^{\infty} a_j(x) t^{j - \frac{n}{2}} \),

\(a_j(x) \) - local heat invariants, \(a_j = \int_{X} a_j(x)dx \).

\(a_0(x) = 1, a_0 = \text{vol}(X) \). \(a_1(x) = \frac{\tau(x)}{6}, \tau(x) \) - scalar curvature.
"Heat kernel” estimates:

Theorem 2b [JP] If the scalar curvature \(\tau(x) \neq 0 \), \(\Rightarrow \) \(R_x(\lambda) = \Omega(\lambda^{n-2}) \).

Global [JPT] If \(\int_X \tau \neq 0 \), \(\Rightarrow \) \(R(\lambda) = \Omega(\lambda^{n-2}) \).

Remark: if \(\tau(x) = 0 \), let \(k = k(x) \) be the first positive number such that the \(k \)-th local heat invariant \(a_k(x) \neq 0 \). If \(n - 2k(x) > 0 \), then

\[
R_x(\lambda) = \Omega(\lambda^{n-2k(x)}).
\]

Similar result holds for \(R(\lambda) \): if \(\int a_k(x)dx \neq 0 \) and \(n - 2k > 0 \), then

\[
R(\lambda) = \Omega(\lambda^{n-2k}).
\]
• **Oscillatory error term:** subtract \([(n - 1)/2]\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} a_j(x) \lambda^{n-2j} \left(\frac{n}{4\pi}\right)^{j/2} \Gamma\left(\frac{n}{2}-j+1\right) + R^{osc}_x(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

• **Theorem 2c** [JP] If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R^{osc}_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}}\right)
\]

Theorem 4c [JP] \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}_x(\lambda) = \Omega\left(\lambda^{\frac{n-1}{2}} (\log \lambda)^{\frac{p(-\mathcal{H}/2)}{h}} - \delta\right), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

• **Global Conjecture:** \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega\left((\log \lambda)^{\frac{p(-\mathcal{H}/2)}{h}} - \delta\right), \text{ any } n.
\]
• **Oscillatory error term:** subtract \([(n-1)/2]\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{[\frac{n-1}{2}]} \frac{a_j(x)\lambda^{n-2j}}{(4\pi)^{\frac{n}{2}} \Gamma\left(\frac{n}{2} - j + 1\right)} + R_x^{osc}(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

• **Theorem 2c**[JP] If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x^{osc}(\lambda) = \Omega\left(\frac{n-1}{2}\right)
\]

Theorem 4c[JP] \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R_x^{osc}(\lambda) = \Omega\left(\lambda^\frac{n-1}{2} \left(\log\lambda\right)^\frac{P(-\mathcal{H}/2)}{h} - \delta\right), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

• **Global Conjecture:** \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega\left(\left(\log\lambda\right)^\frac{P(-\mathcal{H}/2)}{h} - \delta\right), \text{ any } n.
\]
• **Oscillatory error term:** subtract \([\lfloor \frac{n-1}{2} \rfloor\) terms coming from the heat trace:

\[
N_x(\lambda) = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} a_j(x) \lambda^{n-2j} + R_x^{osc}(\lambda)
\]

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of \(N_x(\lambda)\).

• **Theorem 2c**[JP] If \(x \in X\) is not conjugate to itself along any shortest geodesic loop, then

\[
R_x^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}})
\]

Theorem 4c[JP] \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R_x^{osc}(\lambda) = \Omega(\lambda^{\frac{n-1}{2}} \log \lambda \frac{P(-\mathcal{H}/2)}{h} - \delta), \text{ any } n.
\]

If \(n \geq 4\) then Theorem 2b, \(R_x(\lambda) = \Omega(\lambda^{n-2})\) gives a better bound for \(R_x(\lambda)\).

• **Global Conjecture:** \(X\) - negatively-curved. For any \(\delta > 0\)

\[
R^{osc}(\lambda) = \Omega((\log \lambda)^{\frac{P(-\mathcal{H}/2)}{h}} - \delta), \text{ any } n.
\]
The behavior of $N(x, y, \lambda)/(\lambda^{(n-1)/2})$ was studied by Lapointe, Polterovich and Safarov. [LPS] *Average growth of the spectral function on a Riemannian manifold.* arXiv:0803.4171, to appear in Comm. PDE.
[JS] High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. CMP 270 (2007), 813-833

Motivation: high energy asymptotics for Δ on scalars are influenced by geodesic flow G^t.

Question: which dynamical system influences to high energy asymptotics of the Hodge laplacian $d\delta + \delta d$, and the Dirac operator?

Answer: frame flow, or parallel transport along the geodesic flow (cf. Bolte and Glaser, Dencker, Bunke and Olbrich, [JS]). This flow was considered by V. Arnold in 1961.
• [JS] High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. CMP 270 (2007), 813-833

• Motivation: high energy asymptotics for Δ on scalars are influenced by geodesic flow G^t.

• Question: which dynamical system influences to high energy asymptotics of the Hodge laplacian $d\delta + \delta d$, and the Dirac operator?

• Answer: frame flow, or parallel transport along the geodesic flow (cf. Bolte and Glaser, Dencker, Bunke and Olbrich, [JS]). This flow was considered by V. Arnold in 1961.
• [JS] High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. CMP 270 (2007), 813-833

• Motivation: high energy asymptotics for Δ on scalars are influenced by geodesic flow G^t.

• Question: which dynamical system influences to high energy asymptotics of the Hodge laplacian $d\delta + \delta d$, and the Dirac operator?

• Answer: frame flow, or parallel transport along the geodesic flow (cf. Bolte and Glaser, Dencker, Bunke and Olbrich, [JS]). This flow was considered by V. Arnold in 1961.
• [JS] High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. CMP 270 (2007), 813-833

• Motivation: high energy asymptotics for Δ on scalars are influenced by geodesic flow G^t.

• Question: which dynamical system influences to high energy asymptotics of the Hodge laplacian $d\delta + \delta d$, and the Dirac operator?

• Answer: frame flow, or parallel transport along the geodesic flow (cf. Bolte and Glaser, Dencker, Bunke and Olbrich, [JS]). This flow was considered by V. Arnold in 1961.
• \(k\)-frame flow: \((v_1, \ldots, v_k)\) ordered ON set of \(k\) unit vectors. \(v_1\) defines a geodesic \(\gamma\); \((v_2, \ldots, v_k)\) are parallel transported along \(\gamma\).

• It is \(\text{SO}(k-1)\)-extension of \(G^t\); ergodicity of \(m\)-frame flow \(\Rightarrow\) ergodicity of \(k\)-frame flow, \(k < m\). Dimension 2: equivalent to ergodicity of \(G^t\) (up to orientation).

• \(X\) negatively curved, \(-K_2^2 \leq K \leq -K_1^2\).

• Key object: Brin group \(B\): closure of the holonomy group around closed piecewise US-paths (segments go along stable and unstable manifolds). \(B = \text{SO}(n-1)\) \(\Rightarrow\) frame flow is ergodic and Bernoulli. Restricted holonomy \(\Rightarrow\) nonergodic frame flow.
• **k-frame flow**: (v_1, \ldots, v_k) ordered ON set of k unit vectors. v_1 defines a geodesic γ; (v_2, \ldots, v_k) are parallel transported along γ.

• It is $\text{SO}(k - 1)$-extension of G^t; ergodicity of m-frame flow \Rightarrow ergodicity of k-frame flow, $k < m$. Dimension 2: equivalent to ergodicity of G^t (up to orientation).

• X negatively-curved, $-K_2^2 \leq K \leq -K_1^2$.

• Key object: *Brin group* B: closure of the holonomy group around closed piecewise US-paths (segments go along stable and unstable manifolds). $B = \text{SO}(n - 1)$ \Rightarrow frame flow is ergodic and Bernoulli. Restricted holonomy \Rightarrow nonergodic frame flow.
• k-frame flow: (v_1,\ldots,v_k) ordered ON set of k unit vectors. v_1 defines a geodesic γ; (v_2,\ldots,v_k) are parallel transported along γ.

• It is $\text{SO}(k-1)$-extension of G^t; ergodicity of m-frame flow \Rightarrow ergodicity of k-frame flow, $k < m$. Dimension 2: equivalent to ergodicity of G^t (up to orientation).

• X negatively-curved, $-K_2^2 \leq K \leq -K_1^2$.

• Key object: Brin group B: closure of the holonomy group around closed piecewise US-paths (segments go along stable and unstable manifolds). $B = \text{SO}(n-1) \Rightarrow$ frame flow is ergodic and Bernoulli. Restricted holonomy \Rightarrow nonergodic frame flow.
k-frame flow: \((v_1, \ldots, v_k)\) ordered ON set of \(k\) unit vectors. \(v_1\) defines a geodesic \(\gamma\); \((v_2, \ldots, v_k)\) are parallel transported along \(\gamma\).

- It is \(SO(k - 1)\)-extension of \(G^t\); ergodicity of \(m\)-frame flow \(\Rightarrow\) ergodicity of \(k\)-frame flow, \(k < m\). Dimension 2: equivalent to ergodicity of \(G^t\) (up to orientation).
- \(X\) negatively-curved, \(-K_2^2 \leq K \leq -K_1^2\).
- Key object: *Brin group* \(B\): closure of the holonomy group around closed piecewise US-paths (segments go along stable and unstable manifolds). \(B = SO(n - 1)\) \(\Rightarrow\) frame flow is ergodic and Bernoulli. Restricted holonomy \(\Rightarrow\) nonergodic frame flow.
• The frame flow is known to be ergodic and have the K property
 • if X has constant curvature (Brin 76, Brin-Pesin 74);
 • for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
 • if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
 • if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).

• [JS]: Quantum Ergodicity holds in all the above cases
• Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
The frame flow is known to be ergodic and have the K property

if X has constant curvature (Brin 76, Brin-Pesin 74);

- for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
- if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
- if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).

[JS]: Quantum Ergodicity holds in all the above cases

Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
• The frame flow is known to be ergodic and have the K property
• if X has constant curvature (Brin 76, Brin-Pesin 74);
• for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
 • if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
 • if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).
• [JS]: Quantum Ergodicity holds in all the above cases
• Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
The frame flow is known to be ergodic and have the K property
- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
- if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
- if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).

[JS]: Quantum Ergodicity holds in all the above cases

Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
• The frame flow is known to be ergodic and have the K property
• if X has constant curvature (Brin 76, Brin-Pesin 74);
• for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
• if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
• if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).

• [JS]: Quantum Ergodicity holds in all the above cases
• Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
The frame flow is known to be ergodic and have the K property
- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
- if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
- if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).
- [JS]: Quantum Ergodicity holds in all the above cases
- Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
The frame flow is known to be ergodic and have the K property

- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C^3 topology) (Brin 75);
- if n is odd, but not equal to 7 (Brin-Gromov 80); or if $n = 7$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03);
- if n is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if $n = 8$ and $K_1/K_2 > 0.99023...$ (Burns-Pollicott 03).

[JS]: Quantum Ergodicity holds in all the above cases

Conjecture: If $-1 < K < -1/4$, then frame flow is Bernoulli.
Structural stability and other properties of frame flows were studied by Pugh, Schub, Wilkinson, Policott, Burns, Dolgopyat and many others. Kaehler manifold: \(J \) is a flow invariant; full frame flow is not ergodic. Ergodicity can sometimes be proved for restricted frame flow (Brin and Gromov, 80). This implies an appropriate version of quantum ergodicity, [JSZ].