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Abstract. We discuss some (numerical and theoretical) results about the co-

efficients and zeros of Tutte (dichromatic) polynomial of graphs of bounded de-
gree whose size increases. We also discuss related results for Bollobás-Riordan

polynomials.

1. Introduction

In this paper we discuss some numerical and theoretical results on the coeffi-
cients and zeros of Tutte and Bollobás-Riordan polynomials. The numerical results
on the coefficients of Tutte polynomials inspired the paper [JMNT], where weak
convergence of certain natural coefficient measures was investigated for sequences
of bounded degree graphs that converge in the sense of Benjamini-Schramm; we
generalize those results for Bollobás-Riordan polynomials in this paper. The MSc
thesis [Tur] of one of the authors also included a similar result for the coefficient
measure of the Tutte polynomial in the case of Benjamini-Schramm convergent
sequences of planar graphs with bounded face degree. We also establish some a
priori results for the coefficient measures of Tutte polynomials. Finally, we study
(numerically) zeros of the Tutte and Bollobás-Riordan polynomials.

Below, we summarize the results in our paper.

1.1. Tutte polynomials. The Tutte (or dichromatic) polynomial was introduced
by Tutte; it is the most general graph invariant satisfying a deletion-contraction
recurrence formula. After a change of variables, it can be transformed into a rank
polynomial (or Whitney rank generating function). It contains important informa-
tion about G, in particular about its connectivity properties, and about nowhere-
zero flows on G. In Statistical Physics, it describes the partition function for the
Potts model on G. When restricted to certain curves (or points), the dichromatic
polynomial specializes to some well-known graph invariants, including chromatic
polynomial, the number of spanning trees, the number of acyclic orientations etc.
It is closely related to important invariants in knot theory, including the Jones poly-
nomial. See [Wel] for an excellent survey on the properties of the Tutte polynomial.

The asymptotic behaviour of many graph invariants, including Laplace spectrum,
cycle distribution, colouring properties, non-concentration of eigenvectors etc. has
been studied extensively before. However, several asymptotic properties of the
Tutte polynomial have not been considered before, to our knowledge. In our paper,
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we focus on the coefficients of the Tutte polynomial TG (defined in (2.1)) as well
as its zeroes. In our numerical experiments, we focus on random d-regular graphs
G. In particular, we define a probability measure describing the concentration of
the (normalized) coefficients of this polynomial in 2.4. We study these probability
measures numerically, averaged over random regular graphs, in section 4.

In Section 3, we use the spanning tree expansion of TG and results about overlap
of spanning trees in G to establish Theorem 3.3, bounding the degree of TG in terms
of the size of overlap between two spanning trees of G. This result is generalized
to more than two spanning trees in Lemma 3.5.

In Section 3.1, the previous results are specialized to the case of d-regular graphs
G on n vertices. First, we note the following result of Catlin: a bound on the edge
connectivity of G implies existence of disjoint spanning trees, Proposition 3.7. Next,
we combine results due to Wormald about the edge connectivity of random regular
graphs, with Proposition 3.7 and Lemma 3.5 to establish Theorem 3.8 which gives
an a.s. bound on the degree of TG for d-regular G on n vertices, as n → ∞. The
case of cubic graphs (regular graphs of degree 3) is considered in Theorem 3.11
about the overlap of spanning trees on such graphs. All graphs in this paper will
be simple unless loops or multiple edges are explicitly allowed.

Section 4 collects the results of numerical experiments on the coefficient measure
of the Tutte polynomial of random regular graphs of varying size and degree. Some
comments are made regarding the shape of these distributions.

Section 5 contains various numerical representations of the zero sets of the Tutte
polynomial of random regular graphs. Both real and complex zeros are considered.
The real zeros lie in R2; the complex zeros lie in C2 and so we picture three-
dimensional “slices” of the zero sets. Various cross sections are presented in an effort
to better understand their structure. Some theoretical results are also presented.

1.2. Bollobás-Riordan polynomials. The Bollobás-Riordan polynomial is a 3-
variable polynomial defined for ribbon graphs (graphs with a cyclic edge orientation
at every vertex) which provides an extension of the rank polynomial to such graphs.
Those polynomials were introduced in [BR01, BR02].

In the second part of our paper, we investigate asymptotic properties of the
coefficients and zeros of Bollobás-Riordan polynomials for bounded degree ribbon
graphs whose size increases. We define ribbon graphs in §6. Bollobás-Riordan
polynomials are defined in §8. Random ribbon graphs were studied in several pa-
pers, including [Gam, Fl-P, Ch-Pit]. We summarize some of the relevant results in
§9, and provide a natural extension of Benjamini-Schramm convergence for ribbon
graphs. In section 10 we show that natural analogues of the coefficient measures
for those graphs converge to a delta function (as the graph size increases), extend-
ing one of the main results in [JMNT]. In section 11 we include some numerical
investigations of the coefficients and the zero sets of Bollobás-Riordan polynomials.

Finally, in section 12 we list some natural questions that provide further study
directions.

2. Tutte polynomial

The form of the dichromatic polynomial considered in this section is the Tutte
polynomial which we will denote TG(x, y). It is defined as follows: let G have n
vertices and m edges. Choose an ordering of the edges of G (the result will not
depend on a particular choice); for every spanning tree T of G, this ordering will
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define its internal activity int(T ) and external activity ext(T ); we refer to [Big1,
Ch. 13] for details.1 We note that int(T ) ≤ n− 1, and ext(T ) ≤ m− n+ 1. Then
the Tutte polynomial is defined by

(2.1) TG(x, y) =
∑
i,j

tG(i, j)xiyj ,

where tG(i, j) is the number of spanning trees of G with int(T ) = i and ext(T ) = j.
We note that

(2.2) TG(1, 1) =
∑
i,j

tG(i, j) = τ(G),

the number of spanning trees of G.
An equivalent definition of the Tutte polynomial for connected graphs is given

by ([CsFr, §2])

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−1(y − 1)k(A)+|A|−n

where k(A) is the number of connected components of A. This is (x−1)−n+1RG(x−
1, y − 1) where RG is the rank polynomial of G [Big1, Ch. 13].

2.1. Coefficient measures for the Tutte polynomial. Below, we focus on the
distribution of the coefficients of the Tutte polynomials TG(x, y).

We first discuss the question of normalization. It follows from (2.2) that TG(1, 1) =
τ(G), and its behaviour for random k-regular graphs Gn,k with n vertices was stud-
ied in [McK], where it was shown that for such graphs (assuming k ≥ 3) we have
almost surely

(2.3) lim
n→∞

τ(Gn,k)1/n → (k − 1)k−1

(k2 − 2k)k/2−1
.

Given a connected graph G with n vertices and m edges, we associate to each
graph a probability measure µG in the unit square [0, 1] × [0, 1] associated to the
coefficients of the Tutte polynomial TG(x, y) as follows:

(2.4) µ(G) :=
1

τ(G)

∑
i,j

τG(i, j) · δ(i/m, j/m),

where δ denotes the Dirac delta-function. It follows from (2.2) that µ(G) is indeed
a probability measure. Also, it follows from earlier remarks that for any spanning
tree T of G we have

int(T ) + ext(T ) ≤ (n− 1) + (m− n+ 1) = m.

It follows that in (2.1), for any monomial we have (i+ j)/m ≤ 1, and hence in (2.4)
µ(G) is actually supported in the triangle ∆ with vertices at (0, 0), (1, 0) and (0, 1).

1 Order the edges of G in an arbitrary way. An edge e /∈ T is externally active if it is minimal
in its fundamental cycle, which is formed by the union of e and the path connecting the endpoints
of e inside T ; ext(T ) is equal to the number of externally active edges in E(G)\T . An edge e ∈ T

is called internally active if it is minimal in its fundamental cocycle, which is formed by the union
of e and all the edges in E(G)\T having exactly one endpoint in each of the two subtrees obtained
from T by removing e; int(T ) is equal to the number of internally active edges in T .
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2.2. Sequences of graphs. Consider a sequence Gi of graphs with ni vertices and
mi edges. By weak compactness of the space of probability measures on ∆, we know
that the sequence of probability measures µ(Gi) will have convergent subsequences.
We would like to understand the limit measures of those sequences.

We concentrate on sequences of regular graphs Gn,k, but remark that in principle
this question can be studied for arbitrary sequences.

2.3. Previous work. Limits of Tutte polynomials for recursive families of graphs
([BDS]) have been studied in [CS]; several other families were considered in [Man]
and [LFH]. Weak convergence of measures on the roots of Tutte polynomials with
one fixed variable was found by [CsFr]

3. Distribution of the coefficients: a priori results

Below, we establish some a priori results about the coefficients of the Tutte
polynomial TG that are of independent interest.

We first remark that the constant term of the Tutte polynomial is always 0.
Indeed, since there is a finite number of edges, there must be a first one in the
arbitrary ordering. Call it e. Let T be any spanning tree. If e ∈ T , then clearly
e is the smallest bridge between the two subsets disconnected by removing it from
T . Similarly, if e /∈ T , then e must be the smallest edge in Cyc(T, e) (a cycle
formed by the union of e and the path connecting the endpoints of e in T ). Thus
e must always be either internally or externally active and so either x or y must
have exponent at least 1 in any spanning tree.

We next define the concept of maximal and minimal spanning trees. We number
the edges by their ordering and assign each a length equal to its number. Then
construct the spanning trees that maximize and minimize the total lengths and
denote them Tmin and Tmax respectively. This leads to the following two Lemmas;
they are probably standard, but we include the proofs for completeness.

Lemma 3.1. Let T be a spanning tree and let e be internally active with respect to
T . Then e ∈ T ∩ Tmin.

Proof. Removing e from T creates two disconnected trees spanning sets of vertices
A and B. Since e is internally active, it is the smallest bridge between A and B
(an edge with one endpoint in A and another endpoint in B). Suppose e /∈ Tmin.
Adding it to Tmin will create a cycle Cyc(Tmin, e). This cycle includes vertices in
both A and B and therefore contains at least two bridges between the two sets. Let
f be the smallest bridge other than e. Now, since e is the smallest bridge between A
and B, e < f . Thus replacing f by e in Tmin reduces the total length, contradicting
the definition. Hence, e must have been in Tmin and so in T ∩ Tmin. �

Let T be a spanning tree of G; we denote its complement by by T {.

Lemma 3.2. Let T be any spanning tree and let e be externally active with respect
to T . Then e ∈ T { ∩ T {

max.

Proof. Let e be externally active and suppose e ∈ Tmax. Remove e from Tmax to
obtain two trees spanning sets A and B. Now consider Cyc(T, e). It must contain at
least one other bridge f between A and B. Now, by definition, e is the smallest edge
in Cyc(T, e) so e < f . Hence replacing e with f in Tmax increases its total length.
This contradicts the definition of Tmax and so e /∈ Tmax, proving our theorem. �
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It is important to note that the previous two lemmas are not if and only if
statements. They only specify sets that must contain all the internally or externally
active edges, not the set of such edges. They lead us to the following theorem.

Theorem 3.3. Let G be a graph with n vertices and m edges. Suppose also it has
two spanning trees T1 and T2 that overlap in only k edges. Suppose also that this
overlap is minimal. Then the Tutte polynomial of G cannot have terms of degree
more than m− (n− k − 1).

Proof. Let T1 and T2 be the two trees overlapping on only k edges. The Tutte
polynomial is independent of the ordering so we may select a specific ordering. Set
T1 to be Tmin by numbering its edges first. Let the k overlapping edges be n − k
to n − 1. We now want T2 to be Tmax. Assign the largest m − 1 − k numbers to
the remaining edges of T2, and the remaining numbers to the edges of (T1 ∪T2){ in
any way. We claim that T2 is now Tmax.

Let T be any spanning tree other than T2. We need to show that its total length
is less than that of T2. Since, by hypothesis, any two spanning trees have overlap
at least k, T ∩ Tmin must contain at least k edges. Since both T and T2 have n− 1
edges, we define a bijection f from T2 to T as follows.

(1) f is the identity on T ∩ T2.
(2) f maps T2 ∩ Tmin into Tmin ∩ T . This is possible since T2 ∩ Tmin has k

elements and Tmin ∩ T contains at least that many.

We now claim that f is a non-increasing function when the edges are ordered by
length. Denote the length function by L. Let e be an edge in T2. If e ∈ T , then
f(e) = e and so L(f(e)) = L(e). If not and e ∈ Tmin ∩ T2, then L(e) ≥ n− k given
how the edges were numbered in Tmin. Furthermore, since e /∈ T ∩T2, f(e) /∈ T ∩T2.
Now apply condition (2) and we have that f(e) ∈ Tmin but not in T2. Hence, by
our numbering, L(f(e)) < n− k and so L(f(e)) < L(e). The last case is if e /∈ Tmin

and e /∈ T . By the first statement and our numbering, L(e) ≥ m−k. By the second
statement, f(e) /∈ T2 meaning that L(f(e)) < m − k. Hence once again we have
L(f(e)) < L(e).

Thus, since f is constant on the overlap and strictly decreasing on T2 \ (T ∩T2),
the total length of T is less than that of T2 for any spanning tree T which is not
identically T2. Hence T2 = Tmax.

Now, by the previous two lemmas, an edge can only be active (externally or

internally) if it is in S = Tmin ∪ T {
max. Since Tmax contains n− 1− k elements not

in Tmin, S has size m − (n − 1 − k) and so the maximum degree of a term in the
Tutte polynomial is m− (n− 1− k). �

Remark 3.4. In the special case where two non-overlapping spanning trees exist,
the total activity cannot exceed m+ 1− n.

Some graphs have many entirely non-overlapping spanning trees. The following
theorem gives some bounds on activity of certain spanning subtrees of these graphs.

Lemma 3.5. Let G be a graph with n nodes and m edges having k non-overlapping
spanning trees numbered T1, T2, ..., Tk. Let T be a spanning tree that does not overlap
with the last ` trees of this list for some ` < k − 1. Then the contribution of T to
the Tutte polynomial of G cannot have degree more than m− (`+ 1)(n− 1).

Proof. Number the edges of T1 with the numbers 1 through n − 1. Number the
edges in the trees T2 to Tk with the numbers m − k(n − 1) + 1 through m, with



6 JAKOBSON, LANGSETMO, RIVIN, AND TURNER

the edges in Ti having smaller numbers than the edges in Tj if i < j. Number the
remaining edges with the numbers in between.

Now define G∗ = G \ Tmax,G. Recall that Tmin, Tmax were defined just before
Lemma 3.1. Let Gp∗ denote G after p applications of the ∗ operator. By our choice
of numbering T1 = Tmin,G, Tk = Tmax,G, Tk−1 = Tmax,G∗ and so on. Furthermore,
since edges in Tmax cannot be externally active, the activity of any spanning subtree
T contained in G∗ will be the same in G as in G∗ provided the maximal and minimal
trees have no overlap.

Now choose a spanning tree T satisfying the conditions of the theorem for some
` < k− 1. Then T ⊆ G`∗. Each of these applications of ∗ removes n− 1 edges from
G meaning that G`∗ has m − `(n − 1) edges. Since ` < k − 1, there are at least
two non-overlapping spanning trees so, by theorem 3.4, the total activity of T is at
most m− `(n− 1)− (n− 1) = m− (`+ 1)(n− 1). �

The previous results concerned the bounds on the external and internal activity
of specific trees. The following theorem give bounds on the average activity over all
spanning trees of a graph. For what follows let any order be given on the edges and
denote it by ≤. Internal and external activity will be defined with respect to ≤.
Reverse internal activity and reverse external activity will be defined to be internal
and external activity with respect to the reverse order ≥.

The following result may be standard, but we include the proof for completeness.

Theorem 3.6. Let G be a simple graph on n vertices and m edges with b bridges.

(1) The average external activity over all spanning trees of G is at most (m−
n+ 1)/2.

(2) The average internal activity over all spanning trees of G is at most (n −
1 + b)/2.

Proof. For (1), let T be a spanning tree of G and consider an edge e not in T .
Let C denote the unique cycle in T ∪ e. C must contain at least 3 edges and so
e cannot be both the largest and the smallest edge in C. Thus e cannot be both
externally active and reverse externally active. Hence the sum of the external and
reverse external activity of any spanning tree cannot exceed m − n + 1. Thus the
average of this quantity over all spanning trees is at most m−n+1. However, since
the Tutte polynomial does not depend on the ordering of the edges, the average
external activity and the average reverse external activity are equal. Thus twice
the average external activity is at most m−n+ 1 and the average external activity
is at most (m− n+ 1)/2.

The proof of (2) is similar. Let T be a spanning tree of G and let e be an edge
in T . Let C be the set of edges in G joining the two components of T − e. If e
is a bridge, it is the only element of C and thus it is both internally and reverse
internally active. If e is not a bridge, C contains at least two elements and so e
cannot be both internally and reverse internally active. Thus the sum of the internal
and reverse internal activity of T is at most n − 1 + b. Proceeding as before, the
average internal activity is at most (n− 1 + b)/2. �

3.1. Applications to regular graphs. We next apply the results from Section 3
to families of regular graphs. Theorem 3.3 implies that in a graph G with n vertices,
m ≥ 2n− 2 edges, and at least two edge-disjoint spanning trees, the degree of the
Tutte polynomial is at most m− n+ 1. So, finding edge-disjoint spanning trees in
G would imply a bound on the degree of TG(x, y).
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In the graph theory literature, the maximal number of edge-disjoint spanning
trees in G is called a tree packing number of G and is often denoted by σ(G). Many
interesting results about σ(G) can be found in a survey [Pal] and references therein.
The following basic observation is due to Catlin, see [Cat] or [Pal, Cor. 4]:

Proposition 3.7. If the edge connectivity λ(G) of the graph G satisfies λ(G) ≥ 2k,
then σ(G) ≥ k, i.e. G has k edge-disjoint spanning trees.

It is known (see [Wor]) that for random d-regular graphs Gn,d on n vertices,
λ(Gn,d) = d asymptotically almost surely, as n → ∞. It follows that σ(Gn,d) =
bd/2c. If d ≥ 4, then we have bd/2c ≥ 2, and so Theorem 3.3 applies.

We remark that an d-regular graph on n vertices has m = dn/2 edges.

Theorem 3.8. Let d ≥ 4. Then the degree of the Tutte polynomial of a random
d-regular graph G ∈ Gn,d on n vertices satisfies deg TG ≤ dn/2−n+1 almost surely
as n→∞.

This explains the “coefficient-free strips” in the figures in Section 4
For cubic graphs (regular graphs of degree 3), bd/2c = 1, so this case requires a

separate consideration. We first consider the case of simple graphs. The depth-first
search algorithm and the construction of the tree are first discussed.

Algorithm 1. Let G be a finite graph. Let S be an empty stack. Let T , the
depth-first search tree begin empty.

(1) Choose any vertex v of G and add it to T .
(2) Push each of the neighbours of v onto S, together with the edge connecting

it to v.
(3) Pop S and call the vertex v. Call its associated edge e.
(4) If v is not already in T , add v and e to T .
(5) Repeat steps 2 through 4 until T is a spanning tree.

The tree described above T is called the depth-first search tree. The method
for choosing the first vertex and the order in which neighbours are pushed to the
stack are not described. Some authors add vertices to the tree as they are pushed
to the stack, rather than after they have been popped. This is called the preorder
depth first search tree and behaves quite differently. What is described in the above
algorithm and will be used in what follows is sometimes referred to as the postorder
depth first search tree.

Lemma 3.9. The complement of a depth-first search tree in a cubic graph G without
loops or multiple edges is acyclic.

Proof. Choose a vertex v0 and perform a depth-first search starting at v0, building
the tree T as we go. Arguing for a contradiction, suppose that C is a cycle contained
in G\E(T ). Since G has no loops or multiple edges, C must be incident on at least
three vertices. Call this set of vertices VC . Each of these vertices has two edges in
C and one edge in the complement of C. Hence VC 6= V .

Suppose v0 /∈ VC . Let v be the first vertex in VC discovered by the search. It
must have been reached via its edge not in C. Now consider the two remaining edges
incident on v. Both are in C and lead to vertices that have not been discovered
since v is the first. Thus, following the next edge incident on v does not create a
cycle and so that edge is added to T hence C 6⊆ G \ T .
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Now suppose v0 ∈ VC . Then let v be the second vertex in VC to be discovered
by the search. If v was reached via an edge in C, then we are done since this edge
is in T . Otherwise, consider either of the other two edges incident to v. It is in C.
If it does not lead to v0, it does not create a cycle and is added to T . If it leads to
v0, it is not added to T and we move to the third edge incident on v. This edge is
also in C and leads to an undiscovered vertex. So, either way, we find an edge in
C to add to T . �

The following lemma is a standard result in matroid theory. We include the
proof for completeness.

Lemma 3.10. Any acyclic subset of edges S of a connected graph G can be extended
to a spanning tree.

Proof. This can be done with a greedy algorithm. The subgraph S has k connected
components. Since G is connected, there must be an edge in G \ S connecting two
of these components. Add it to S. It cannot create a cycle. There are now k − 1
connected components in S. Repeat the algorithm until there is only one. The set
S is then a spanning tree. �

Theorem 3.11. Any cubic graph G on n vertices without loops or multiple edges
has two spanning trees T1 and T2 such that T1∪T2 = G. In particular, #(T1∩T2) =
n/2− 2. Thus the degree of the Tutte polynomial for cubic simple graphs is at most
3n/2− n+ 1 + (2n− 2− 3n/2) = n− 1.

Proof. Choose a vertex v0 and let T1 be a depth-first search tree starting there.
Let T2 be a spanning tree obtained by extending G \ T1. Then T1 ∪ T2 = G since
G \ T1 ⊆ T2. Thus, by a counting argument, the spanning trees are minimally
overlapping. �

Next consider the case where we allow multiple edges, but not loops. Lemma 3.9
can be extended to cover these cases provided there is at least one vertex without
multiple edges. In this case, set v0 to be such a vertex. For any cycle C, which can
be incident on as few as 2 vertices, let v be the first vertex in VC reached by the
depth-first search. It must be reached by an edge not in C and so the remaining two
edges incident on v must be in C and must therefore lead to undiscovered edges.
Thus one of them is added to T and so C is not in G \ T .

Triple edges are impossible in connected cubic graphs of more than 2 vertices.
If every vertex has a double edge, then we must have one large ring with double
edges every second link. A depth first search tree on this kind of graph will have
an acyclic complement provided its first edge added in the depth first search is one
of a double edge.

Thus, even allowing multiple edges, the degree of Tutte polynomial of a cubic
graph on n vertices without loops is at most n− 1.

In the case where there are loops in the graph, the loops cannot be part of any
spanning tree. By a similar reasoning to that above, the complement of a depth first
search is acyclic once we remove the loops. Hence, in a cubic graph with ` loops, n
vertices and no multiple edges, the size of the minimal overlap is 2n−2− (3n/2−`)
and so the degree of the Tutte polynomial is at most n− 1 + `.
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3.2. Another argument in the case of cubic graphs. In this section, we use
the second definition of the Tutte polynomial to give an upper bound on the degree
of the Tutte polynomial of a simple random cubic graph. Essentially, we want to
bound

2k(A) + |A|+ n− 1

First of all, we rewrite this as

2k(A)−
∣∣∣A{
∣∣∣− n+m− 1 ≤

∑
C component of A

(2− out(C)− |C|) +m− 1

where out(C) is the number of edges joining C and C{ in E. Now we claim that
2− out(C)− |C| ≤ − |C| /2 for all components C.

First of all, if |C| ≥ 4, 2 − |C| ≤ |C| /2 so the claim holds. For |C| ≤ 3, we
check the cases one at a time. If a C contains only one vertex, out(C) = 3 since
the graph is cubic. Thus 2 − out(C) − |C| = 2 − 4 = −2 ≤ −1/2. If |C| = 2
then we must have one edge joining the two vertices leaving out(C) = 4. Thus
2− out(C)− |C| = 2− 4− 2 = −4 ≤ −1. If |C| = 3, then there are at most three
edges inside C. Thus out(C) ≥ 3. Hence 2−out(C)−|C| ≤ 2−3−3 = −4 ≤ −3/2.
Thus in all cases the claim is satisfied.

Thus, since every vertex is in a component,
∑
C component of A (2− out(C)− |C|) ≤

−n/2. Finally, since in a cubic graph on n vertices, m = 3n/2, this gives us that

2k(A)−
∣∣∣A{
∣∣∣− n+m− 1 ≤ −n

2
+

3n

2
− 1 = n− 1

Thus the maximum degree of the Tutte polynomial of a simple cubic graph on
n vertices is n− 1.

4. Numerical experiments on the coefficient measure

In this section, we present some numerical experiments on the coefficient mea-
sure. These were obtained by uniformly sampling random regular graphs, comput-
ing the coefficient measure of each and then averaging over 100 graphs.

It was very convenient for us to use Mathematica, since it conveniently has
built-in command RandomGraph[DegreeDistribution], sampling random graphs
with a given degree distribution.

In addition, Mathematica has a built-in command TuttePolynomial[G,{x,y}]
which produces the Tutte polynomial of the graph G. The standard Mathematica
commands were then used to plot the zeros and the coefficients.

In Figure 1 below, the distribution of the coefficients of TG was plotted, averaged
over 100 graphs as follows: (A) 3-regular graphs with 22 vertices; (B) 3-regular
graphs with 24 vertices.

In Figure 2 below, the distribution of the coefficients of TG was plotted, averaged
over 100 graphs as follows: (A) 4-regular graphs with 19 vertices; (B) 4-regular
graphs with 20 vertices; (C) 5-regular graphs with 16 vertices; (D) 6-regular graphs
with 17 vertices.
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(a) (b)

Figure 1. Coefficients of the Tutte polynomial: 3-regular graphs

(a) (b)

(c) (d)

Figure 2. Coefficients of the Tutte polynomial: 4- 5- and 6-
regular graphs

To generate random planar graphs, we used RandomGraph command inMathematica
to generate random regular graphs, then used PlanarGraphQ[G] command to check
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for planarity, and discarded the graphs that were not planar. The following coeffi-
cient distributions are obtained by sampling only planar graphs.

In Figure 3 below, the distribution of the coefficients of TG was plotted, averaged
over 100 planar graphs as follows: (A) 3-regular planar graphs with 20 vertices;
(B) 3-regular planar graphs with 22 vertices; (C) 3-regular planar graphs with 24
vertices; (D) 4-regular planar graphs with 19 vertices.

(a) (b)

(c) (d)

Figure 3. Coefficients of the Tutte polynomial: planar graphs

We end this section by plotting the distribution of the Tutte coefficients coeffi-
cients of the Petersen graph in Figure 4:
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Figure 4. Tutte coefficients: the Petersen graph

4.1. Asymptotic behaviour of the coefficients. It appears, based on the nu-
merical experiments described above, that the coefficient measures µG, averaged
over regular graphs on n vertices, converge to a delta function as n → ∞. The
coefficient measures for planar graphs seem to have a similar behaviour. A related
result for the coefficient measures of rank polynomials were established in the paper
[JMNT], and in the MSc thesis [Tur] of one of the authors. The authors plan to
further study questions about the coefficients and other properties of the graph
polynomials in the near future. Some of those questions are discussed in Section
12.

5. Zeros of Tutte polynomials

Although the main focus of this paper is the coefficient measure of the Tutte
polynomial, the zero sets N (TG) of TG are also of interest. This section presents
a brief overview of results in this area. It concludes with some numerical results
illustrating various cross sections of the zero sets. The convergence of roots of
TG(x, y) for fixed y was addressed in several papers, including [Sok], [CsFr] and
many others. Here we would like to study the behaviour of N (TG) as a subset of
R2 (or of C2).

Often the following form of the Tutte polynomial is considered in the literature:

(5.1) ZG(q, v) =
∑
A⊆E

qk(A)v|A|,

where the sum is taken over all subsets A of the edge set E of G, and k(A) denotes
the number of connected components of the graph (V,A). The two forms are related
(see e.g. the Introduction in [Sok]) by

TG(x, y) = (x− 1)−k(E)(y − 1)−|V |ZG((x− 1)(y − 1), y − 1);

ZG(q, v) = (q/v)k(E)v|V |TG(1 + q/v, 1 + v),

so their zero sets are equivalent. In statistical physics, limits of zeros of ZG(q, v)
for fixed q correspond to phase transitions in the q-state Potts model (cf. the
Introduction in [Sok] and references therein). Many result surveyed below were
established for the zero set N (ZG).
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Below, we shall restrict ourselves to connected graphs G = (V,E). We first
discuss some heuristics about the behaviour of the nodal set N (ZG) as |q|, |v| →
∞. That behaviour of N (ZG) is determined by the highest powers of q and v
in ZG. Clearly, for any A ⊆ G, we have k(A) ≤ |V |, with equality iff A = ∅.
Accordingly, ZG(q, v) = q|V | + terms of lower degree in q. Similarly, for any
A ⊆ G, we have |A| ≤ |E|, with equality iff A = E. Accordingly, ZG(q, v) =
v|E|q + terms of lower degree in v. Keeping just those highest degree terms of
ZG , we get q|V | + qv|E| + lower order. The zero set of the highest degree terms
(after division by q) is v|E|+q|V |−1 = 0. For d-regular graphs, we have |V | = n and
|E| = dn/2, so the previous equation becomes qn−1 +vnd/2 = 0. It seems interesting
to see how accurately this very naive expression approximates the real nodal set of
ZG in the limit |q|, |v| → ∞; we hope to address that question in a future project.

An important question is to find explicit bounds for N (ZG) and to see how they
depend on a graph G. In the paper [JPS, Theorems 1.2 and 1.3], the authors proved
that for simple graphs, if v is fixed, then all zeros q of ZG(q, v) lie in the disc

|q| < K∗µ∆∗(G, v),

where K∗µ ≤ 5 + 2µ, µ = ∆̂(G, v)/∆∗(G, v) and where ∆∗(G, v) and ∆̂(G, v) are
given by the following expressions:

∆∗(G, v) = max
x∈V

∑
x∈e,e=(xy)

min{|v|, |v|√
|1 + v|

}
∏
y∈f

max{1, |1 + v|}1/2;

and

∆̂(G, v) = max
x∈V

∑
x∈e,e=(xy)

min{|v|, |v|
|1 + v|

}
∏
y∈f

max{1, |1 + v|}1/2.

We remark that we have specialized the formulas in [JPS] (valid for multivariate
Tutte polynomials) to the case where the edge weights we = v for every edge e ∈ E.
The results in [JPS] generalized earlier results of Sokal [Sok].

In the special case of d-regular graphs Gn,d, we have

∆∗(G, v) = dmin{|v|, |v|√
|1 + v|

}max{1, |1 + v|}d/2,

and

∆̂(G, v) = dmin{|v|, |v|
|1 + v|

}max{1, |1 + v|}d/2;

therefore

µ =
min{1, |1 + v|−1}

min{1, |1 + v|−1/2}
.

5.1. Zeros: experimental results. In this section, we looked at the zeros of
TG(x, y) for one random regular graph at a time (without averaging). We first
considered real zeros. As |x|, |y| → ∞, the zero set seems to be asymptotic to an
algebraic curve; we do prove any rigorous results in that direction, but hope to
address this question in future work.

We used standard Mathematica commands to plot zeros of Tutte polynomials.
In Figure 5 below, real zeros of TG were plotted, for the following random regular

graphs: (A) a 3-regular graph with 16 vertices; (B) a 4-regular graph with 16
vertices; (C) a 6-regular graph with 16 vertices; (D) a 5-regular graph with 10
vertices.
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(a) (b)

(c) (d)

Figure 5. Real Tutte zeros: random regular graphs

We next plot the real zeros of the Tutte polynomial of the Petersen graph in
Figure 6.
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Figure 6. Real Tutte zeros: the Petersen graph

It also seems interesting to complexify x and y variables, and to consider the null
variety of TG(x, y) in C2. In two dimensional complex space, representing the zero
sets is more difficult. The following images show the zero sets for the real (blue) and
imaginary parts (red) of the Tutte polynomial of various random regular graphs.
The zero sets of the functions are the intersections of these curves.

In Figure 7 below, complex zeros of TG were plotted, for the following random
regular graphs: (A) a 3-regular graph with 8 vertices in the space with x complex
and y real; (B) a 3-regular graph with 8 vertices in the space with y complex and x
real; (C) a 3-regular graph with 10 vertices in the space with x complex and y real;
(D) a 3-regular graph with 10 vertices in the space with y complex and x real.

In Figure 8 below, complex zeros of TG were plotted, for the following random
regular graphs: (A) a 4-regular graph with 8 vertices in the space with x complex
and y real; (B) a 4-regular graph with 8 vertices in the space with y complex and x
real; (C) a 4-regular graph with 9 vertices in the space with x complex and y real;
(D) a 4-regular graph with 9 vertices in the space with y complex and x real.

In Figure 9 below, complex zeros of TG were plotted, for the following random
regular graphs: (A) a 4-regular graph with 10 vertices in the space with x complex
and y real; (B) a 4-regular graph with 10 vertices in the space with y complex and
x real; (C) a 5-regular graph with 8 vertices in the space with x complex and y
real; (D) a 5-regular graph with 8 vertices in the space with y complex and x real.

6. Ribbon graphs: summary

Below we summarize our results about Bollobás-Riordan polynomials associated
to ribbon graphs. In the paper [JMNT], the authors studied limiting distribution
of coefficients of rank polynomials for random sparse graphs. In the current paper,
we would like to extend those results to the case of oriented ribbon graphs, which
are graphs with a cyclic orientation of edges at each vertex. Such graphs arise in
the study of knot invariants, in quantum field theory and in other areas.

A natural extension of the rank polynomial to ribbon graphs is the Bollobás-
Riordan polynomial ([BR01, BR02]), which is a polynomial in 3 variables. First, we
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(a) (b)

(c) (d)

Figure 7. Complex zeros of the Tutte polynomial: 3-regular graphs

define the normalized coefficient measures for such polynomials. Next, we extend
the definition of Benjamini-Schramm convergence from graphs to ribbon graphs.
Finally, we extend some of the results in [JMNT] to the coefficients of Bollobás-
Riordan polynomials for sequences of ribbon graphs that converge in the Benjamini-
Schramm sense. Next, we compute the limit measure for sequences of random
ribbon graphs arising from random edge orientations of regular graphs, see e.g.
[Gam] and [Ch-Pit].

7. Ribbon graphs and “left-hand turn” surfaces

Below, we discuss ribbon graphs the associated left hand turn (LHT) surfaces.
An orientable ribbon graph is a graph embedded on an orientable surface such

that every face such that every face of the resulting polyhedral surface is con-
tractible. In this paper, we restrict ourselves to orientable ribbon graphs; this
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(a) (b)

(c) (d)

Figure 8. Complex zeros of the Tutte polynomial: 4-regular graphs

simplifies our exposition. We refer to [Chm] and [MY] for more detailed descrip-
tion of ribbon graphs, including discussion about non-orientable ribbon graphs,
sometimes called Möbius graphs.

Let G be a graph embedded on an orientable surface S. A choice of orientation
on S defines a cyclic ordering of edges at every vertex; we denote such an ordering
by O. Conversely, given a graph G with a cyclic ordering O of edges at every
vertex, one can reconstruct in a canonical way an oriented surface S (considered in
the papers of Brooks, Makover, Monastyrski [BM01, BM04, BrMon] and Gamburd
[Gam]) as follows.

First, consider the left-hand turn paths defined by (G,O): start along an oriented
edge, then “turn left” according to the cyclic orientation at the head of the oriented
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(a) (b)

(c) (d)

Figure 9. Complex zeros of the Tutte polynomial: 4- and 5-
regular graphs

edge, and continue until you get a closed cycle. The set of directed edges of G de-
composes into a disjoint union of such cycles. Those cycles correspond to boundary
components of a polyhedral surface S(G,O), obtained by filling in every cycle with
a disk. We call the corresponding surface the left hand turn (LHT) surface.2

The surface S(G,O) can be defined equivalently as follows: cut every edge of
G in the middle, and consider the corresponding “half-edges.” The cyclic ordering
of half-edges at every vertex determines a permutation β of the set of 2E(G) half-
edges; a cycles in the cyclic decomposition of β consists of the half-edges incident
to a given vertex, with the cyclic ordering determined by O. The cycle structure of

2 Given a combinatorial graph G, there are clearly
∏

v∈V (G)(deg(v)− 1)! choices of the orien-

tation O, and of the corresponding orientable ribbon graphs.
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β coincides with the degree sequence of G. Another permutation α is an involution:
it interchanges the half-edges that form a given edge. The cycle structure of α is
(2, 2, . . . , 2). One can show ([Chm, Gam, BM01, BM04, BrMon]) that the left-hand
turn paths defined by (G,O) correspond to cycles in the cyclic decomposition of
βα. We discuss this further in Section 9.

We remark that for any subgraph F of G, a cyclic orientation O(G) of edges
of G incident to a given vertex u induces a cyclic orientation O(F ) of the edges
of F incident to u. Accordingly, given an oriented ribbon graph (G,O), one can
canonically define a ribbon subgraph (F,O(F )).

An orientation O is called prime if (G,O) has precisely one LHT path (equiva-
lently, the surface S(G,O) has one boundary component). The following result was
shown in [BM01, Xu]; see also [BrMon]. Suppose that d is odd, and n ≡ 2(mod 4);
or that n odd, and d ≡ 2(mod 4). Let G be a d-regular graph, and T a spanning
tree of G such that G\T is connected (or more generally, so that each component of
G\T has an even number of edges). Then G admits a prime orientation. Moreover,
this last condition holds with asymptotic probability one as n→∞.

8. Bollobás-Riordan polynomials

We refer to the papers by [Ch-Pak] and [Mof] for the definition of Bollobás-
Riordan polynomial. Let (G,O) be a ribbon graph, as described in Section 7.
Given a subset F of edges of G, we define a subgraph of G as follows: we keep
all the vertices of G, but only the edges from F ; we shall call the corresponding
subgraph F as well.

We denote by |V (G)| the number of vertices of G; by |E(G)| the number of its
edges; and by k(G) the number of its connected components. Also, we denote by
r(G) = |V (G)| − k(G) the rank of G; by null(G) = |E(G)| − r(G) the nullity (or
co-rank) of G.

As discussed in Section 7, to every ribbon graph G we can canonically associate
a surface with boundary S(G,O) (whose boundary components correspond to the
left hand turn paths defined by (G,O)). This coincides with the definition given
in [Ch-Pak, §2]. We denote the number of its boundary components by bc(G,O).
We also remark that for any subgraph F of G, a cyclic orientation O(G) of ribbon
“half-edges” of G incident to a given vertex u induces a cyclic orientation O(F ) of
ribbon “half-edges” of F incident to u. Accordingly, we can canonically define a
ribbon graph (F,O(F )).

The Bollobás-Riordan polynomial is defined as follows. Denote by F(G) the set
of all spanning subgraphs of G.

(8.1) BR(G,O)(x, y, z) =
∑

F∈F(G)

xr(G)−r(F )ynull(F )zk(F )+null(F )−bc(F ).

We remark that if we set z = 1, we get the following identity:

BR(G,O)(x, y, 1) = xr(G)RG(1/x, y),

where r(G) = |V (G)| − 1 and RG denotes the rank polynomial of G as defined in
[JMNT]. We remark that deg(x) ≤ |V (G)| = n, deg(y) ≤ |E(G)| = m. We now
make some elementary remarks about deg(z).

Let F be a subgraph of G with k connected components, say C1, . . . , Ck. Let the
component Ci have ni vertices, mi edges and bi boundary components. The power
of z in the term corresponding to F is given by 2k(F ) + |E(F )| − |V (F )| − bc(F ),
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where 2k(F ) = 2k is twice the number of connected components of F ; |E(F )| =∑k
i=1mi ≤ m = |E(G)|; |V (F )| = |V (G)| = n; and bc(F ) =

∑k
i=1 bi ≥ k. We

remark that k ≤ n. Accordingly,

(8.2) deg(z) ≤ 2k +m− n− k = m+ k − n ≤ m = |E(G)|.

For orientable ribbon graphs (G,O) considered in this paper, the number of bound-
ary components bc(F ) of a subgraph F coincides with the number of LHT paths of
F with an induced orientation (an isolated vertex of F is defined to correspond to
one LHT path).

We note that the sum of all the coefficients of BR(G,O)(x, y, z) = 2|E(G)| = 2m.
Accordingly, if

BR(G,O)(x, y, z) =
∑

(i,j,k)

ρ(i, j, k)xiyjzk,

we define the normalized coefficient measure of BR(G,O) by

(8.3) µBR(G,O) =
1

2m

∑
(i,j,k)

ρ(i, j, k)δ

(
i

n
,
j

m
,
k

m

)
.

By the previous remarks, µBR(G,O) is a probability measure supported in the unit
cube [0, 1]3 ⊂ R3.

We would like to study limit points of the measures µBR(G`, O`) for sequences
(G`, O`) of sparse graphs with increasing number of vertices; we remark that by
compactness, limit points will exist for arbitrary sequences of graphs, but we restrict
ourselves to sparse graphs in this paper.

We finally remark that for an oriented ribbon subgraph F of an oriented ribbon
graph G, the power of z in (8.1) is twice the genus 2γ(F,O) of the surface S(F,O),
see e.g. [Chm, p. 4]. It follows that the largest degree of z is attained by F = G.

(8.4) degz(BR(G,O)(x, y, z)) = 2γ(G,O).

9. Random graphs with orientations

In this section, we apply some of the results obtained in [Gam] and [Ch-Pit] to
the study of Bollobás-Riordan polynomials.

Random d-regular graphs with orientation considered in [Gam, §3,4] were de-
scribed in Section 7 using permutations β and α. For such graphs, the cycle struc-
ture of β is (d, d, . . . , d). The cycle structure of α is (2, 2, . . . , 2). The LHT paths
(corresponding to the faces of S(G,O)) correspond to the cycles of βα. To state
the next result, we introduce the following notation: AN denotes the alternat-
ing subgroup (of the permutation group SN ); Cd denotes the conjugacy class in
AN consisting of permutations whose cycle decomposition is the product of (N/d)
disjoint d-cycles; the convolution of probability measures on SN is denoted by ∗.
Finally, the total variation distance between probability measures µ, ν on G = AN
is defined by ||µ− ν|| = maxA⊂G |µ(A)− ν(A)|.

The main result in [Gam] is the following theorem ([Gam, Thm. 4.1]):

Theorem 9.1. Let N = dn and let Pd denote the probability measure on AN
supported on Cd. Let U denote the uniform distribution on AN . Then for d ≥ 3,

lim
n→∞

||Pd ∗ P2 − U || = 0.
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This allowed to determine the asymptotic behaviour of the number of LHT paths
for random cubic graphs G with a random orientation O at every vertex, cf. [Gam,
Corollary 5.1].

Theorem 9.2. Let L(n) denote the number of LHT paths in a random cubic graph
on n vertices with random orientation. Then, as n→∞, E(L(n)) = log(3n) + γ +
o(1) and Var(L(n)) = log(3n) + γ − π2/6 + o(1), where γ = 0.5772 . . . is Euler’s
constant. Further, (L(n)− log n)/

√
log n converges to standard normal distribution

N(0, 1).

The corresponding result for random regular graphs is [Gam, Corollary 4.1].

Theorem 9.3. The distribution of LHT paths for random regular graphs with ran-
dom orientation converges to Poisson-Dirichlet distribution.

These results were extended in [Fl-P, Ch-Pit]. Below we formulate the results in
[Ch-Pit] in a form that is convenient for applications to BS convergent sequences of
graphs. We assume all vertices of our graphs will have degree d satisfying 3 ≤ δ ≤
d ≤ D (minimum degree δ ≥ 3; maximum degree D). It follows from the definition
of BS convergence that there exist limiting proportions bδ, . . . , bD of vertices of
degree δ, . . . , D respectively.

9.1. Random oriented graphs with a given degree sequence. The results in
[Ch-Pit] can be reformulated to provide a model for random graphs with orienta-
tions, generalizing the model considered in [Gam].

Let Gj have nj vertices. Let (nj,δ, . . . , nj,D) be a sequence that is realizable as a

degree sequence of a graph with nj vertices; we have
∑D
k=δ nj,k = nj . We assume

that
lim
j→∞

nj,k/nj = bk, δ ≤ k ≤ D.

Let Hj denote the half-edges of Gj ; we have Nj := |Hj | =
∑D
k=δ knj,k = 2E(Gj).

We remark that

(9.1) Nj � 2nj

D∑
k=δ

kbk

Consider now a conjugacy class β in the alternating group SNj
whose cycle structure

is
Cm := (nj,δCδ, . . . , nj,DCD);

it determines the cyclic orientation Oj at the vertices.
Let α be a permutation whose cycle structure is C2 := (2, 2, . . . , 2) (it determines

the edges of Gj). We are interested in the cycle structure of the product βα.
Denote by P (m, j) := P (nj,δ, . . . , nj,D) the probability measure supported on the
conjugacy class of Cm. Let P (2, j) denote the measure P2 on SNj supported on the
conjugacy class (2, . . . , 2). An analogue of Theorem 9.1 in this setting was proved in
[Ch-Pit, Theorem 2.2], who determined the asymptotic distribution of P (m, j)∗P2.
We state their result below.

Theorem 9.4. Let P (m, j) and P (2, j) be as above. Let Uj denote the uniform
distribution on ANj if Cm and C2 are of the same parity; and the uniform distri-
bution on SNj

\ ANj
if Cm and C2 are of different parity. Then as Nj → ∞, we

have
||P (m, j) ∗ P (2, j)− Uj || = O(N−1

j ).
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The following results follow as corollaries (see [Ch-Pit, §3]). We note that the
construction in [Ch-Pit] is dual to the construction in the current paper: polygons
glued along pairs of sides to form a surface in [Ch-Pit] correspond to cyclically
oriented edges around a vertex in our paper. Accordingly, the number of vertices
in [Ch-Pit, Thm. 3.1] is equal to the number of faces in our paper.

In the next statement, we keep the notation of Theorem 9.4. Below, P denotes
the uniform measure on the set of LHT surfaces (Gj , O) considered in 9.4; recall
that P = P (m, j) ∗ P (2, j). Also, let Fj denote the number of faces in (Gj , O);
those faces are in bijection with cycles in the product of two permutations. Let CeN
(resp. CoN ) denote the total number of cycles of the permutation chosen uniformly
at random from all even permutations (respectively all odd permutations) in SN .
The next result is a restatement of [Ch-Pit, Thm. 3.1].

Proposition 9.5. If Cm and C2 are of the same parity, then ||P(Fj − CeNj
)|| =

O(N−1
j ); if Cm and C2 are of the opposite parity, then ||P(Fj −CoNj

)|| = O(N−1
j ).

Denote by CN the number of cycles of a random permutation in SN . It is known
that

E[CN ] =

N∑
j=1

1/j = logN +O(1); Var[CN ] =

N∑
j=1

(1/j)(1− 1/j) = logN +O(1).

We continue the summary of results from [Ch-Pit, §3,4]. The first result concerns
the number Xj of components of the surface S(Gj , Oj), [Ch-Pit, Thm. 4.1]:

P(Xj = 1) = 1−O(N−1
j ).

Fix a ∈ N. The genus γj of S(Gj , Oj) was determined in [Ch-Pit, Thm. 4.2].

Theorem 9.6. With notation as above, for all admissible `, the genus γj = γ of
S(Gj , Oj) satisfies (here we denote Nj = N,mj = m)

P(γj = 1 +N/4−m/2− `/2) =
(2 +O(log−1/2N))√

2πVar[CN ]
exp

(
− (`− E[CN ])2

2Var[CN ]

)
,

where ` is admissible provided (`− E[CN ])/
√

Var[CN ] ∈ [−a, a].

Using (9.1), find that

(9.2) E[γ(Gj , Oj)] � 1 +
nj
2

(
D∑
k=δ

kbk − 1

)
− log

(
2nj(

D∑
k=δ

kbk)

)
By (8.4), we find that

E[degz(BRGj
(x, y, z))] = 2E[γ(Gj , Oj)]

10. Convergence of the coefficient measures of Bollobás-Riordan
polynomials

In this section, we extend the results of [JMNT] showing that the normalized
coefficient measures of rank polynomials converge to a delta function, provided a
sequence of the corresponding (bounded degree) graphs converges in the sense of
Benjamini-Schramm convergent sequences. We extend that result to the normalized
coefficient measures (8.3), provided a sequence of (bounded degree) oriented ribbon
graphs converges as in (10.1) defined below.
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10.1. BS Convergence for oriented ribbon graphs and LHT surfaces. In
the section 9, we considered random oriented graphs with a given degree sequence.
In this section, we would like to study more general sequences of oriented graphs.
We concentrate on two cases:

(a) Take a sequence of graphs Gj (of minimal degree 3) that converges BS, and
put a random cyclic orientation of the edges at every vertex.

(b) Generalize the notion of BS convergence to oriented graphs.

Motivated by our approach in [JMNT], we extend the definition of Benjamini-
Schramm convergence “left-hand turn” surfaces S(G,O); this coincides with the
BS convergence for oriented ribbon graphs.

In what follows, we will consider an extension of Benjamini-Schramm conver-
gence to ribbon graphs and oriented graphs. Everything remains the same, except
that every instance of rooted graph is replaced by rooted oriented or rooted ribbon
graph. Isomorphisms of such graphs are required to also preserve the additional
structure.

Let {(Gj , Oj)} be a sequence of ribbon graphs; we restrict ourselves to graphs of
bounded degree, and assume that |V (Gj)| → ∞ as j → ∞. Denote by S(Gj , Oj)
the corresponding LHT surfaces. By analogy with the usual Benjamini-Schramm
convergence, we say that (Gj , Oj) converges to an infinite ribbon graph (G∞, O∞)
with a given probability measure on its vertices, provided the following holds. Given
R ∈ N and a finite ribbon graph α, denote by P(Gj ,Oj)(α,R) the probability that a
ball of radius R centered at a random vertex u ∈ (Gj , Oj) is isomorphic to α.

Definition 10.1. The sequence (Gj , Oj) converges to (G∞, O∞) provided that for
any R ∈ N, and for any α, there exists 0 ≤ P∞(α,R) ≤ 1 such that P(Gj ,Oj)(α,R)→
P∞(α,R) as j →∞.

This is not the original definition given by Benjamini and Schramm, but it is
equivalent in the case of graphs of uniformly bounded degree.

For what follows, instead or choosing the root from the uniform distribution, we
choose the root from the stationary distribution, essentially choosing a uniformly
random root edge. For sequences of graphs of uniformly bounded degree (and no
isolated points), Benjamini-Schramm convergence according to the uniform distri-
bution is equivalent to that under the stationary distribution. Indeed the probabil-
ity measures in the two cases differ only by multiplication by a uniformly bounded,
continuous function. Since the graph is oriented, we will more specifically choose
a specific direction of traversal of the root edge. In the case of ribbon graphs, this
will mean the side of the ribbon to the left as the edge is traversed in that direction.
Let ~uv denote the edge uv traversed from u to v. Benjamini-Schramm convergence
is stated in terms of functions of graphs rooted at vertices, however for this proof it
is more convenient to consider graphs rooted at edges. The two are equivalent for
locally finite graphs since a function f on the directed edges can be considered a
function of the vertices by letting f(v) be the average of the f( ~vu), for arcs pointing
out of v.

Let L ~uv denote the length of the boundary component containing ~uv. For an edge
subgraph A, let LA~uv denote the length of the boundary component in A containing
~uv.
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Theorem 10.2. The sequence of coefficient measures of the Bollobás-Riordan poly-
nomials of a Benjamini-Schramm convergent sequence of oriented ribbon graphs
with uniformly bounded degree converges to a δ function.

Proof. Consider a sequence (Gj , Oj) of oriented ribbon graphs of bounded degree,
that converges in the sense of Definition 10.1; we denote the number of vertices of
Gj by nj , and the number of edges of Gj by mj .

For each j, let Aj be a subset of the edge set of Gj chosen by including each
edge uniformly and independently at random with probability 1

2 .
It is shown in Theorem 18 of [JMNT] that

• The measure associated to |Aj | /nj converges weakly to a δ function.
• The measure associated to k(Aj)/nj (where k(Aj) is the number of con-

nected components of Aj) converges weakly to a δ function.
• The density mj/nj converges to a non-zero real number.

This implies that the measures associated to r(Aj)/mj and s(Aj)/mj where r is
the rank and s the co-rank of Aj converge weakly to δ functions. In Lemma 17 of
[JMNT], it is shown that the subgraphs Aj themselves form a Benjamin-Schramm
convergent sequence of un-oriented graphs. This result extends naturally to ribbon
graphs. Similarly to Lemma 17, one could also formulate the convergence result in
the language of probability measures on random subgraphs of (Gj , Oj); we leave it
as an exercise.

It suffices to show that E [bc(Aj)/mj ] converges and Var (bc(Aj)/mj)→ 0. The
expectations and variance here are taken with respect to the choice of a uniformly
random edge subgraph Aj by independently removing each edge with probability
1
2 . The proof will be very similar to the treatment of the number of connected
components in [JMNT]. Let us first note that

bc(Aj) =
∑

(u,v):uv∈Aj

(
L
Aj

~uv

)−1

and let

`Aj ( ~uv) =


(
L
Aj

~uv

)−1

, if uv ∈ Aj
0, otherwise

.

Then bc(Aj) =
∑

(u,v):uv∈E(Gj)

`Aj ( ~uv). Define further

`
Aj

R ( ~uv) =

{
`Aj ( ~uv), if `Aj ( ~uv) > 1

R

0, otherwise
.

The quantity `
Aj

R ( ~uv) depends only on what happens within the ball of radius R
about uv and is within 1/R of `Aj ( ~uv).

To show convergence of the expectation, we use linearity of expectation.

E
[
bc(Aj)

mj

]
= E

[ ∑
~uv:uv∈E

1

mj
`Aj ( ~uv)

]

=
1

mj

∑
~uv:uv∈E(Gj)

E
[
`Aj ( ~uv)

]
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We may now approximate E
[
`Aj ( ~uv)

]
using `

Aj

R ( ~uv). E
[
`Aj ( ~uv)

]
and E

[
`
Aj

R ( ~uv)
]

differ by at most 1
R . However, `

Aj

R ( ~uv) is entirely determined by the behaviour

of Aj in the ball of radius R about uv. Hence E
[
`
Aj

R ( ~uv)
]

is entirely determined

by the ball of radius R about uv. Since the Gj have uniformly bounded degree,
such a ball can possibly be isomorphic to only a finite number of graphs. Since the
Gj are Benjamini-Schramm convergent, the probability that the ball of radius R
about a randomly selected ~uv is isomorphic to any given graph converges. Thus

DR,j = (1/mj)
∑

~uv E
[
`
Aj

R ( ~uv)
]

converges to a limit DR as j →∞. The sequence

of DR (indexed by R) is Cauchy, and thus converges to a limit D as R → ∞.
Let ε > 0 be given and choose R > 3/ε. Then, for all j, 1

mj

∑
~uv E

[
`Aj ( ~uv)

]
is

within ε/3 of DR,j . Choose J large enough that for all j ≥ J , DR,j is within ε/3
of DR, which is within 1/R of D. Then, summing up all the errors for all j ≥ J ,
(1/mj)

∑
~uv E

[
`Aj ( ~uv)

]
is within ε of D. Thus (1/mj)

∑
~uv E

[
`Aj ( ~uv)

]
converges

to D.
For the variance, let ε > 0 be given. Let R > 16

ε and consider again `
Aj

R ( ~uv).
Since the graph has bounded degree, there is a bound on the number of edges at

distance at most R from any point. Hence, for all but O(mj) pairs (uv,wx), `
Aj

R ( ~uv)

and `
Aj

R ( ~wx) are independent. Hence Var

 ∑
(u,v):uv∈E(Gj)

`
Aj

R ( ~uv)

 = O(mj). Now

let f
Aj

R ( ~uv) = `Aj ( ~uv) − `Aj

R ( ~uv) and note that this is always bounded above by
1/R < ε/16. We note that

bc(Aj) =
∑

(u,v):uv∈E(Gj)

`
Aj

R ( ~uv) +
∑

(u,v):uv∈E(Gj)

f
Aj

R ( ~uv)

and so

Var (bc(Aj)) = Var

 ∑
(u,v),uv∈E(Gj)

`
Aj

R ( ~uv) +
∑

(u,v),uv∈E(Gj)

f
Aj

R ( ~uv)


= V ar

 ∑
(u,v):uv∈E(Gj)

`
Aj

R ( ~uv)

+ Var

 ∑
(u,v):uv∈E(Gj)

f
Aj

R ( ~uv)

+

Cov

 ∑
(u,v):uv∈E(Gj)

f
Aj

R ( ~uv),
∑

(u,v):uv∈E(Gj)

`
Aj

R ( ~uv)


We know that the first term is O(mj). The other two are each less than (ε/8)4m2

j

and so their sum is less than εm2
j . Choose a graph sufficiently far in the sequence

Gj that for all subsequent graphs, the first term is smaller than (ε/2)m2
j . Hence

Var (bc(Aj)/mj) < 3ε/2 past a certain point in the sequence. This holds for all
ε > 0 and so Var (bc(Aj)/mj)→ 0. This finishes the proof. �

This theorem deals with the case of deterministic Benjamini-Schramm conver-
gent sequences of oriented ribbon graphs. This corresponds to point (b) stated
at the start of this section. There can also be Benjamini-Schramm convergent se-
quences of random ribbon graphs. In these, each Gj is a distribution on the graphs
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of a given size. The random vertex is selected by first choosing a graph Gj from Gj
and then selecting a random vertex from it. Point (a) given at the start of the sec-
tion is such a case. There is an underlying Benjamini-Schramm convergent sequence
of graphs Gj . It is made into an oriented ribbon graph by assigning independently
and uniformly at random a cyclic ordering to the edges at every vertex. This gives
us a sequence (Gj ,Oj) of random ribbon graphs. They are Benjamini-Schramm
convergent since, for all oriented ribbon graphs α with underlying graph α′ and
radii R, P(Gj ,Oj)(α,R) = PGj (α′, R)P(α|α′) where P(α|α′) denotes the probability
of obtaining α from α′ by assigning a cyclic ordering of edges to every vertex. The
first factor converges as j →∞ since the Gj were Benjamini-Schramm convergent.
The second factor does not depend on j.

The theorem and proof as stated do not apply to Benjamini-Schramm convergent
sequences of random oriented ribbon graphs. However, the proof can be modified
to account for the r andomness that arises from giving a cyclic orientation Oj to the
edges around each vertex in a Benjamini-Schramm convergent sequence of random

graphs. Replace each instance of L
Aj

~uv , `Aj ( ~uv) and `
Aj

R ( ~uv) by L
Aj ,Oj

~uv , `Aj ,Oj ( ~uv)

and `
Aj ,Oj

R ( ~uv) respectively to represent the fact that the length of boundary com-
ponents depends also on the cyclic ordering which is now also random. The crucial

properties that `Aj ,Oj ( ~uv) and `
Aj ,Oj

R ( ~uv) are within 1/R of each other and that

`
Aj ,Oj

R ( ~uv) depends only on the behaviour of Aj and Oj in the ball of radius R about
uv remain unchanged. Take the expectation and variance over both Aj and Oj .
The proof proceeds exactly as before. Thus Theorem 10.2 applies to the sequences
of ribbon graphs described in point (a) at the start of this section.

In Section 6 of [JMNT], the precise coordinates of the limiting δ function of the
coefficient measure of the rank polynomial were found in the case of random regular
graphs. We now find the z-axis coordinate for the limit of the coefficient measure of
the Bollobás-Riordan polynomial for oriented ribbon graphs obtained from random
regular graphs by adding a cyclic ordering of the edges at every vertex. Random
regular graphs are not a sequence of Benjamini-Schramm convergent deterministic
graphs. However, as discussed in section 6 of [JMNT], they converge to a fixed
graph and thus are almost uniformly Benjamini-Schramm convergent as defined on
page 17 of the same paper, allowing them to be treated similarly to a deterministic
sequence. By 8.4, the degree degz(BR(G,O)(x, y, z)) = 2γ(G,O), where γ(G,O)
denotes the genus of the orientable LHT surface S(G,O). By Euler’s formula, it is
equal to 2+ |E(G)|− |V (G)|−L(G,O), where L(G,O) denotes the number of LHT
paths of (G,O); it is also equal to the number of faces of S(G,O). By Proposition
9.5, for d-regular graphs on n vertices with random orientation, L(G,O) grows
logarithmically in n. We have |V (G) = n, |E(G)| = dn/2. The normalized z-
coordinate of the δ function is equal to E[2γ(G,O)]/|E(G)|. To leading order in
n, it is asymptotic to [n(d/2 − 1)]/[dn/2]. After cancellations, we find that the
normalized z-coordinate of the limiting δ function is equal to (d− 2)/d.

11. Numerical investigations: coefficients and zeros of
Bollobás-Riordan polynomials

To compute Bollobás-Riordan on random graphs, we generate random cyclic
orientations of half-edges around each vertex, and then use the SAGE ribbon graph
library to count the number of boundary components for each induced subgraph we
must sum over. The SAGE code is included in the section 12. Since the evaluation



RANK AND BOLLOBÁS-RIORDAN POLYNOMIALS 27

of the Tutte polynomial can yield the number of 3-colourings, which is a #P -
complete problem, the computation of the Tutte polynomial is #P -hard (the class
#P is a complexity class that contains function problems of counting solutions that
correspond to underlying NP decision problems). Therefore, computing the Tutte
and Bollobás-Riordan polynomials is not feasible for large graphs in reasonable
amounts of time. Note that the computation employed below is exponential in the
number of edges, so the problem quickly becomes intractable as the the graphs
grow. However, the computation is highly parallelizable (we can sum over induced
graphs separately on different processors and then sum up the polynomials at the
end), which can yield notable increases in speed and potentially allow us to study
slightly larger graphs.

We first provide pictures of the coefficient measures for Bollobás-Riordan poly-
nomials.

Figure 10 shows the coefficient measure for a ribbon graph obtained by choosing
a random orientation on a 3-regular graph on 12 vertices; the graph itself is shown
as well.

(a) (b)

Figure 10. BR Coefficients: 3-regular graph on 12 vertices

Next, Figure 11 shows the coefficient measure for a ribbon graph obtained by
choosing a random orientation on a 4-regular graph on 10 vertices; the graph itself
is shown as well.

Next, we include the pictures of the zero sets in R3 of Bollobás-Riordan polyno-
mials. Figure 12 shows the zero set for a 3-regular graph on 12 vertices; it is the
same graph as in Figure 10.
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(a) (b)

Figure 11. BR Coefficients: 4-regular graph on 10 vertices

Figure 12. Bollobás-Riordan zeros: 3-regular graph on 12 vertices

Figure 13 shows the zero set for a 4-regular graph on 10 vertices; it is the same
graph as in Figure 11.
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Figure 13. Bollobás-Riordan zeros: 4-regular graph on 10 vertices

12. Conclusion

In conclusion, we would like to discuss some natural questions that arise from
the results in [JMNT] and the present paper.
Problem 1. It seems natural to generalize results in [JMNT] and the present
paper to higher-dimensional simplicial complexes; a natural generalization of rank
and Bollobás-Riordan polynomials are the Kruskal-Renardi polynomials, see e.g.
[KR], [BBC]. We expect that an analogue of Theorem 10.2 holds for (suitably
defined) sequences of converging CW complexes, at least under suitable bounded
degree restrictions.
Problem 2. We hope to establish large deviation results for the coefficient mea-
sures of rank polynomials (for random regular graphs, and possibly for more general
models of random graphs with degrees). This is work in progress with O. Angel,
C. MacRury and L. Silberman. We also hope to establish similar results for the
coefficient measures Bollobás-Riordan polynomials (e.g. for random regular graphs
with random orientations, and possibly for more general models considered e.g. in
[Ch-Pit]).
Problem 3. It seems natural to study asymptotic behaviour of the zero sets of
rank, BR and related polynomials; in particular beyond the asymptotic behaviour
“at infinity” discussed briefly in Section 5. Since the degree of the polynomials is
growing, their nodal sets should be rescaled appropriately. It could be interesting
to compare their behaviour with the asymptotic behaviour of nodal sets of high
energy Laplace eigenfunctions, cf. e.g. [Zel] for a recent survey.
Problem 4. It seems very interesting to explore in more detail possible applications
to Statistical Physics, e.g. in connection to the q-state Potts model on graphs.
Problem 5. It seems interesting to explore possible connections to knot polyno-
mials and asymptotic properties of knot invariants.
Problem 6. A natural question is to study the asymptotic behaviour of the coeffi-
cient measures and zero sets for sequences of dense graphs, removing the bounded
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degree restriction of [JMNT] and the present paper; one could consider various
notions of convergence for such graphs (e.g. graphon convergence etc).

Appendix: Computer code

In this section we include the computer code used in the numerical investiga-
tions described in Section 11. The Mathematica commands we used to generate
random regular graphs and their Tutte polynomials were described in section 4 and
5 .

For Bollobás-Riordan polynomials, we used SAGE to generate random graphs
with random orientations, and standard Mathematica commands to plot the
coefficient densities and zeros of the corresponding polynomials. We include the
SAGE code below.

from copy import deepcopy

G = graphs.RandomRegular(3,20) #uniform random 3-regular graph on 20

vertices

V = G.vertices()

dartlist = [[] for _ in range(len(V))]

#We label each edge with a positive number k, and each half-edge

with either 2k or 2k-1. This allows us to pass between edges and

half-edges to make use of the ribbon graph library while we are

cycling over spanning edge subsets during the computation of the

Bollobas-Riordan polynomial.

r = [] #involution of darts (sends each dart to its other half)

for i, e in enumerate(G.edges()):

dartlist[e[0]].append(2*i+1)

dartlist[e[1]].append(2*i+2)

G.set_edge_label(e[0], e[1], i+1)

r.append([2*i+1,2*i+2])

E = G.edges()}

rank_G = len(V) - G.connected_components_number()

nullity_G = len(E) - rank_G

s = [] #cyclic permutations of darts in mutable list form,

generated uniformly at random

for dl in dartlist:

shuffle(dl)

s.append(dl)

edge_subsets = []

#generates a list of edge subsets

for i in range(1,1 << len(E)):

subset = [E[bit] for bit in range(len(E))

if i & (1 << bit) > 0]

edge_subsets.append(subset)

#we now loop over all spanning subgraphs

x,y,z = var(’x,y,z’)

brpoly(x,y,z) = x^(rank_G);

for E_F in edge_subsets:

F = Graph([V,E_F])
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removededges = [l[2] for l in

list(Set(E).difference(Set(E_F)))]

removeddarts = []

r_F = []

for e in removededges:

removeddarts.append(2*e-1)

removeddarts.append(2*e)

for d in r:

if d[0] not in removeddarts and d[1] not in removed darts:

r_F.append(d);

s_F = deepcopy(s)

for i, dl in enumerate(s):

for d in dl:

if d in removeddarts:

s_F[i].remove(d)

s_F = [a for a in s_F if (a != [] and len(a) != 1)]

sigma_F = PermutationGroupElement(’’.join([str(tuple(a))

for a in s_F]))

rho_F = PermutationGroupElement(’’.join([str(tuple(a))

for a in r_F]))

isolated = F.degree_histogram()[0]

bc = RibbonGraph(sigma_F,rho_F).number_boundaries()

bc += isolated

components_F = F.connected_components_number()

rank_F = len(V) - components_F

nullity_F = len(E_F) - rank_F

brpoly = brpoly + x^(rank_G - rank_F) * y^(nullity_F) *

z^(components_F - bc + nullity_F)

print(brpoly)
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