
Math 564, Fall 2011 D. Jakobson

SKETCHES OF SOLUTIONS, HOME MIDTERM

Problem 1. Define the measure on [0, 1] by

µ([a, b)) = log2
1 + b

1 + a
.

a) Prove that µ is preserved by the map f(x) = {1/x}, where {y} denotes the
fractional part of y.

Every real number in x ∈ [0, 1] can be expanded into a (finite or infinite) continued
fraction

x =
1

n1 +
1

n2+
1

n3+...

, (1)

sometimes denoted by x = [n1, n2, n3, . . . ].

b) Prove that finite continued fractions correspond to rational numbers, while
infinite fractions correspond to irrational numbers.

c) Prove that the function f in part a) can be written as a shift map,

f([n1, n2, n3, . . . ]) = [n2, n3, . . . ].

Solution: Note that µ([0, 1]) = 1. We have for 0 < a < b < 1,

f−1([a, b]) = ∪∞
n=1

(
1

n+ b
,

1

n+ a

)
The measure µ of that set is equal to

∞∑
n=1

log2

(
(b+ n)(a+ n+ 1)

(a+ n)(b+ n+ 1)

)

=
∞∑

n=1

[log2(b+ n) + log2(a+ n+ 1)− log2(a+ n)− log2(b+ n+ 1)]

= log2(1 + b)− log2(1 + a) = µ([a, b]).

Since the interval was arbitrary, we are done.
Part (c) is obvious from the definition of f , since for x as in (1),

1/x = n1 +
1

n2 +
1

n3+...

.

Clearly, finite continued fractions give rise to rational numbers (clear the denom-
inators). Conversely, if we apply the map f to a rational number p/q, 0 < p < q,
the result {q/p} will have a smaller denominator p, so after ≤ q applications of f
we shall get 1 and the continued fraction will terminate.
Problem 2. We keep the notation from Problem 1.

a) Describe the measure µ in problem 1 in the space of sequences [n1, n2, n3, . . . ].
b) Describe all the periodic continued fractions, x = [n1, . . . , nk, n1, . . . , nk, . . . ].

Solution: Part b): the real number x satisfies the equation

x =
1

n1 +
1

n2+...+ 1
nk+x

.

1



Clearing the denominators, it is easy to see by induction that x satisfies

x =
Ax+B

Cx+D

where A,B,C,D are integers that depend on n1, . . . , nk; it follows that x satisfies
quadratic equation with integer coefficients, so it is a quadratic irrational. In fact,
every quadratic irrational gives rise to eventually periodic continued fraction, but
we won’t prove it.

Part a). We want to compute the measure of the cylinder consisting of all
continued fractions with n1 = a1, . . . , nk = ak, where (a1, . . . , ak) is a given k-
tuple of natural numbers. This set corresponds to the interval in (0, 1) with rational
endpoints at αk = 1

a1+
1

a2+... 1
ak

and βk = 1
a1+

1

a2+... 1
ak+1

; the interval will be [αk, βk]

for even k, and [βk, αk] for odd k. The measure is then computed by the usual
formula.
Problem 3. Let x, y ∈ [0, 1], x = [0.n1n2 . . . ] and y = [0.m1m2 . . . ]. Define
f(x, y) = k, if nk = mk, but nj ̸= mj for 1 ≤ j ≤ k− 1; and f(x, y) = ∞ if no such
k exists. Prove that f is Lebesgue measurable on [0, 1]× [0, 1], and that it is finite
almost everywhere.

Solution: The measure of the set where f is finite is equal to

10

100
+ 90

(
10

104
+ 90

(
10

106
+ . . .

))
= 1.

Equivalently, the measure of all (x, y) ∈ [0, 1]2 s.t. the k-th digits in the decimal
expansions of x and y never coincide for 1 ≤ k ≤ n is equal to (9/10)n → 0 as
n → ∞.

Now, f(x, y) is measurable since it a sequence of step functions fk(x, y) =
min{k, f(x, y)} converge to f a.e.
Problem 4. Let f ∈ L1(X,µ) and µ(X) = 1. Prove that there exists a monotone
function g ∈ L1([0, 1]), such that for all t ∈ [0, 1],

inf
µ(A)=t

∫
A

f(x)dµ(x) =

∫ t

0

g(τ)dτ

sup
µ(A)=t

∫
A

f(x)dµ(x) =

∫ 1

1−t

g(τ)dτ

Hint: consider the function

h(a) = µ({x ∈ X : f(x) ≤ a}).

Solution: It is clear that h(a) is nondecreasing, h(a) → 0 as a → −∞, and
h(a) → 1 as a → +∞. We shall solve the problem in the case when h(a) is
continuous. We shall also assume that µ takes all values between 0 and 1 (e.g. that
the space X is not discrete); and that the function f is never equal to constant on
a set of positive measure. Under those assumptions, the function h(a) is strictly
monotone, and so there exists a function g(t) defined on [0, 1] s.t. h(g(t)) = t.
Let us show that infµ(A)=t

∫
A
f(x)dµ(x) is attained on X(t) := {x : f(x) ≤ g(t)}.

Indeed, let A be any subset of X of measure t; then µ(Y ) := µ(X(t)\ (X(t)∩A)) is
equal to µ(Z) := µ(A\(X(t)∩A)). But by definition of X(t), the function function
f is ≤ g(t) on Y , and ≥ g(t) on Z. It follows that the set attaining the infimum is
uniquely defined (up to a set of measure 0).



We next show that µ{x : f(x) ≤ a} = µ0{t ∈ (0, 1) : g(t) ≤ a}. The right hand
side is equal to h(a), since g(t) ≤ a is equivalent to t ≤ h(a); the left hand side is
equal to h(a) by definition; such functions are called equimeasurable. It follows that

for any Borel function ξ, we have
∫ 1

0
ξ(g(t))dt =

∫
X
ξ(f(x))dµ(x). In particular,

putting ξ to be the characteristic function of [0, t] gives the first identity.
To prove the second identity, we remark that supµ(A)=t

∫
A
f(x)dx is attained on

the set Y (t) := {x : f(x) ≥ g(1 − t)}. By definition, µ(Y (t)) = 1 − µ{x : f(x) ≤
g(1−t)} = 1−h(g(1−t)) = 1−(1−t) = t; the proof that the supremum is attained
on Y (t) is similar to the proof of the corresponding statement for the infimum. To
complete the proof, we choose ξ to be the characteristic function of [1− t, 1].
Problem 7. Let x = a0 + a1p+ a2p

2 + . . . ∈ Zp. We define ||x|| = p−k, where k is
the smallest integer s.t. ak ̸= 0 ( mod p). Recall that we have defined a measure
µ = µp on Zp (Assignment 2, Part 2, Problem 2), by requiring that µ(pnZp) = p−n.
Let s > 0. Compute

∫
Zp

||x||−sµ(x).

Hint: Let Wk = {x ∈ Zp : ||x|| = p−k}; those are measurable disjoint sets. Then
the integral I satisfies I =

∑∞
k=0 p

−ksµ(Wk).
Solution: We need to compute µ(Wk). We have Wk = pkZp \ pk+1Zp. By the
definition of µ, we find that µ(Wk) = p−k − p−k−1. Accordingly,

I =
∞∑
k=0

p−ksp−k−1(p− 1) =
p− 1

p(1− ps−1)
=

p− 1

p− p−s
.

Problem 8. Let f ∈ L1(µ). Prove that for each ϵ > 0, there exists δ > 0, such
that

∫
E
|f |dµ < ϵ for any measurable E with µ(E) < δ.

Solution: Find a simple function g : X → R+, g ≤ |f |, such that
∫
|f |−

∫
g ≤ ϵ/2.

Let g =
∑n

j=1 ajχ(Ej), aj ≥ 0. Suppose µ(E) < δ.
Now,∫

E

|f |dµ =

∫
E

(|f |−g)dµ+

∫
E

gdµ ≤
∫
X

(|f |−g)dµ+δ ·(max
j

aj) < ϵ/2+δ ·(max
j

aj).

So, it suffices to take δ < ϵ/(2maxj aj).


