Math 454, Fall 2018

PROBLEM SET 1, corrected

Due date to be announced

D. Jakobson

Do any 8 of the following problems. Every problem is worth 10 points.

Problem 1. Royden/Fitzpatrick, Chapter 2, Problem 7. A set of real numbers is called a G_{δ} set provided it is the intersection of a countable collection of open sets. Show that for any bounded set E, there exists a G_{δ} set G for which $E \subseteq G$ and $m^*(G) = m^*(E)$.

Problem 2. Royden/Fitzpatrick, Chapter 2, Problems 17 and 18.

- (a) Show that E is measurable iff for each $\epsilon > 0$, there exists a closed set F and an open set O s.t. $F \subseteq E \subseteq O$, and $m^*(O \setminus F) < \epsilon$.
- (b) Let E be a measurable set that has a finite outer measure. Show that there exists an F_{σ} set F and a G_{δ} set G s.t. $F \subseteq E \subseteq G$, and $m^*(F) = m^*(E) = m^*(G)$.

Problem 3. Royden/Fitzpatrick, Chapter 2, Problem 22. For any set A, define $m^{**}(A) \in [0, \infty]$ by

$$m^{**}(A) = \inf\{m^*(O) : A \subseteq O, O - open\}.$$

How is the set function m^{**} related to the outer measure $m^{*?}$ **Problem 4.** Royden/Fitzpatrick, Chapter 2, Problem 26. Let $\{E_k\}$ be a countable disjoint collection of measurable sets. Prove that for any set A,

$$m^*\left(A \cap \left(\bigcup_{k=1}^{\infty} E_k\right)\right) = \sum_{k=1}^{\infty} m^*(A \cap E_k).$$

Problem 5. Royden/Fitzpatrick, Chapter 2, Problem 28. Show that continuity of measure together with finite additivity of measure implies countable additivity of measure.

Problem 6. Royden/Fitzpatrick, Chapter 2, Problem 32. Does Lemma 16 remain true if Λ is allowed to be finite or to be uncountably infinite? Does it remain true if Λ is allowed to be unbounded?

Problem 7. Royden/Fitzpatrick, Chapter 2, Problem 34. Show that there is a continuous, strictly increasing function on the interval [0,1] that maps a set of positive measure onto a set of measure 0.

Problem 8. Royden/Fitzpatrick, Chapter 2, Problem 37. Let F be a continuous function defined on E. Is it true that $f^{-1}(A)$ is always measurable if A is measurable?

Problem 9. Royden/Fitzpatrick, Chapter 2, Problem 44. A subset $A \subseteq \mathbb{R}$ is called *nowhere dense* in \mathbb{R} provided that every open set O, there exists an open $U \subseteq O$ s.t. $U \cap A = \emptyset$. Show that the (middle thirds) Cantor set is nowhere dense in \mathbb{R} .

Problem 10 (extra credit). Royden/Fitzpatrick, Chapter 2, Problem 41. A nonempty subset X of \mathbb{R} is called *perfect* provided it is closed, and each neighbourhood of any point on X contains infinitely many points in X. Show that the (middle-thirds) Cantor set **C** is perfect. Hint: consider the endpoints of all subintervals defined in the construction of the Cantor set.

Problem 11 (extra credit). Royden/Fitzpatrick, Chapter 2, Problem 42. Prove that every perfect set is uncountable.

Problem 12 (extra credit). Prove that $\mathbf{C} + \mathbf{C} := \{x + y : x, y \in \mathbf{C}\} = [0, 2].$