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Proposition 1. If x = (x1, x2, . . .), y = (y1, y2, . . .), then

d(x, y) =

(
∞∑
k=1

|xk − yk|p
)1/p

is a distance.

Proposition 2. In the space of continuous functions on [a, b],

d(f, g) =

[∫ b

a

|f(x)− g(x)|pdx
]1/p

defines a distance. We recall the Lp norm to be

||f ||p =
(∫ b

a

|f(x)|pdx
)1/p

Proposition 3. ||x− y||p defines a p-adic distance on Q.

Proposition 4.
||x|| :=

√
(x, x)

always defines a norm.

Lemma 5. The following identity holds.

(x, y) ≤ ||x|| · ||y||
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Proposition 6. Let (a1, . . . , an, . . .) be such that∑
a2i <∞

and let (b1, . . . , bn, . . .) be such that ∑
b2j <∞

and let

||a|| =

(
∞∑
i=1

a2i

)1/2

Then
∞∑
i=1

aibi ≤ ||a|| · ||b||

and so

(a, b) = a1b1 + · · ·+ anbn ≤

√√√√ n∑
i=1

a2i ·

√√√√ n∑
j=1

b2j → ||a|| · ||b||

as n→∞.

Lemma 7. Let a > 0, b > 0, and p, q ≥ 1 and such that

1

p
+

1

q
= 1

NB: We say that p, q are Conjugate Exponents. Then

(∗) a · b ≤ ap

p
+
bq

q

Theorem 8. Holder’s Inequality
Let p < 1

n∑
k=1

|akbk| ≤

(
n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

where
1

p
+

1

q
= 1

Theorem 9. Minkowski Inequality (For Sequences With n <∞)
Recall that for x = (x1, . . . , xn), we have

||x||p =

(
n∑
k=1

|xk|p
)1/p
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Proposition 10. Let x ∈ X be a contact point. Then, x must be one of the following.

• x is an isolated point x ∈ A

• x is a limit point of A, x ∈ A

• x is a limit point of A, x /∈ A

Also, if x is not an isolated point if and only if ∃(xn)∞n=1 where the xn are distinct such that
xn → x as n→∞ and thus

lim
n→∞

d(x, xn) = 0

Proposition 11.

A = A

Proposition 12. (i) A1 ⊂ A2 =⇒ A1 ⊂ A2

(ii) A = A1 ∪ A2 =⇒ A = A1 ∪ A2

Proposition 13. X∞ with l∞ distance is not separable.
Look at A ⊂ X, A = { all infinite sequences of 0’s and 1’s}. A is not countable by the
Cantor Diagonalization Argument.

Lemma 14. If xα 6= xβ, then B(xα, 1/3)
⋂
B(xβ, 1/3) = ∅.

Proposition 15. Let (Aα)α∈I be a collection of closed sets. Then

B =
⋂
α∈I

Aα

is also closed.

Proposition 16. Let A1, . . . , An be closed. Then

B =
n⋃
i=1

Ai

is closed.

Proposition 17. A is open if and only if X − A is closed.

Proposition 18. If Aα is open for any α ∈ I, then

B =
⋃
α∈I

Aα

is also open.
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Proposition 19. A finite intersection of open sets is also open. That is, if Ai is open for
i = 0, . . . , n, then

n⋂
i=1

Ai

is also open. Beware, however, that this is not necessarily true for the infinite case. An
example of this would be that if

An =

(
− 1

n
, 1 +

1

n

)
⊂ R

which is clearly open for any n, then

B =
∞⋂
n=1

An = [0, 1]

which is closed.

Lemma 20. {Gα} forms a basis if and only if for any open set A, and for any x ∈ A, there
exists α such that

x ∈ Gα ⊂ A

Proposition 21. Let X be a metric space. We claim that X is second countable if and only
if X is separable.

Corollary 22. Open sets with respect to d1, d2 are the same.

Corollary 23. The topologies (space X together with a collection of open sets) defined by
d1, d2 are the same.

Proposition 24. Distances in Rn defined by

dp(x, y) =

(
n∑
j=1

|xi − yi|p
)1/p

for p ≥ 1
d∞(x, y) = max

1≤j≤n
|xi − yi|

are equivalent.

Corollary 25. If a topological space is not Hausdorff, then it is not metrizable.
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Proposition 26. f : X → Y is continuous at every point x ∈ X if and only if for every
open set U in Y ,

f−1(U) ⊂ X

is also open. Moreover, this is also equivalent to saying that for every closed set B in Y ,

f−1(B) ⊂ X

is also closed. Another way to say this is

X − f−1(B) = f−1(Y −B)

Proposition 27. Points in K are in one to one correspondence with

∞∑
j=1

aj
3j

such that aj ∈ {0, 2}.

Theorem 28. If f : X → Y is continuous, and g : Y → Z is continuous, then

g ◦ f : X → Z

is also continuous.

Theorem 29. The space (C([a, b]), d∞) is complete.

Theorem 30. Let 1 ≤ p <∞. Then (C([a, b]), dp) is not complete.

Theorem 31. The space X is complete if and only if for every sequence of nested closed
balls

· · · ⊂ B(xn, rn) ⊂ · · · ⊂ B(x1, r1)

such that rn → 0 as n→∞. We should have a nonempty intersection.

Proposition 32. Equivalence is an equivalence relation.

Proposition 33.
d = 0⇐⇒ (xn) ∼ (yn)

Theorem 34. (Contraction Mapping Principle)
If X is complete, and A is a contraction mapping, then there exists a unique point x0 ∈ X
such that A(x0) = x0 is a fixed point of A. Moreover, for any x ∈ X, An(x)→ x0 as n→∞.
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Theorem 35. Let X be complete, and suppose that A ⊂ X. A is sequentially compact if
and only if A is totally bounded.

Proposition 36. X is complete, and A ⊆ X is compact if and only if for all ε > 0, there
exists in X a sequentially compact ε-net that covers A.

Theorem 37. (Arzela)
Let F be a family of continuous functions on [a, b]. Then F is sequentially compact in
(C([a, b]), d∞) if and only if F is uniformly bounded and equicontinuous.

Proposition 38. Let A ⊆ X. If A is sequentially compact, then A is sequentially compact
in itself if and only if A is as a closed subset of X.

Corollary 39. Any closed bounded subset of Rn is sequentially compact in itself.

Proposition 40. Let X be a metric space. X is a compactum if and only if X is complete
and totally bounded.

Proposition 41. Every compactum has a countable dense subset.

Theorem 42. The following are equivalent:

(i) X is a compactum.

(ii) An arbitrary open cover {Uα}α∈I of X has a finite subcover. That is there exists
α1, . . . , αn ∈ I such that

X ⊆
n⋂
i=1

Uαi

(iii) (Finite Intersection Property)
A family {F}α∈I of closed subsets of X such that every finite collection of Fn’s has a
nonempty intersection has ⋂

α∈I

Fα 6= ∅

Theorem 43. If X is compact, and f : X → Y is continuous, then f(X) is compact.

Theorem 44. If X is compact and f : X → Y is continuous, one-to-one and onto, then
f−1 is also continuous and hence f is also a homeomorphism.
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Theorem 45. Let D ⊆ C(X, Y ) where X, Y are compact. Then D is compact in C(X, Y )
if and only if for every ε > 0, there exists δ > 0 such that for every x1, x2 ∈ X,

dX(x1, x2) < δ =⇒ dY (f(x1), f(x2)) < ε

for every f ∈ D.

Theorem 46. A closed subset Y of a compact set X is compact.

Proposition 47. Let X be a metric space. Then Y is sequentially compact in X if and only
if Y is compact in itself.

Proposition 48. Any function that is continuous on a compact metric space X is uniformly
continuous.

Proposition 49. If X is compact, then f : X → R attains a least upper bound U and
greatest lower bound L.

Q: How do you catch a tiger in the desert?
A: First, check if you’re in Nevada. If so, then you can just google Mike Tyson’s home
address and catch it there. If not, then divide the desert in half, each time checking which
half the tiger isn’t in, then divide the complement of that half in half and so on. Then, once
you’re left with a segment of desert just big enough for you and the tiger... nab him with
an appropriately sized ε-net!
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