Math 354, Honors Analysis, D. Jakobson

Short summary: things to review and remember

A distance (p,q) between points p,q in a metric space satisfies

- dist(p,q) > 0 if $p \neq q$; dist(p,p) = 0.
- $\operatorname{dist}(p,q) = \operatorname{dist}(q,p).$
- $\operatorname{dist}(p,q) + \operatorname{dist}(q,r) \ge \operatorname{dist}(p,r).$

Main examples of metric spaces (in this course):

- \mathbf{R}^n , intervals.
- Spaces of sequences: l_p, l_∞ .
- Spaces of functions: C([0,1]) with distances d_p, p < ∞ (incomplete), d_∞ (complete).
- Space of bounded functions B(X, Y), with the uniform (supremum) distance. It is complete if Y is complete.
- (optional). The space $\mathcal{CL}(\mathcal{X}, \mathcal{Y})$ of continuous linear functionals from a Banach space X to a Banach space Y, with the operator norm. It is complete.

A sequence p_k converges to p in a metric space X iff for any $\varepsilon > 0$ there exists a natural number N such that for every k > N, $\operatorname{dist}(p_k, p) < \varepsilon$. A sequence p_k is *Cauchy* iff for any $\varepsilon > 0$ there exists a natural number N such that for every k, l > N, $\operatorname{dist}(p_k, p_l) < \varepsilon$. A sequence in \mathbb{R}^n converges iff all the coordinate sequences converge.

Let X, Y be metric spaces, and let f be a function from X to Y. f is continuous at $x \in X$ iff one of the following two equivalent conditions holds:

- for any sequence $x_k \to x$ in $X, f(x_k) \to f(x)$ in Y;
- for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\operatorname{dist}_X(x', x) < \delta$ then $\operatorname{dist}_Y(f(x'), f(x)) < \varepsilon$.

The function f is *continuous* iff one of the following three equivalent conditions holds:

- f is continuous at every point of X;
- for any open set $U \subset Y$, $f^{-1}(U)$ is open in X.
- for any closed set $V \subset Y$, $f^{-1}(V)$ is closed in X.

A function $f : \mathbf{R}^n \to \mathbf{R}^m$ is continuous iff all its coordinate functions are continuous. Things to review about \mathbf{R}^n :

- inner products and norm in Rⁿ; Cauchy-Schwarz inequality; Minkowski and Hölder inequalities.
- different definitions of distance give rise to the same open sets in \mathbf{R}^n .

Some useful facts about \mathbf{R}^n :

- a subset of \mathbf{R}^n is *compact* iff it is *closed* and *bounded*.
- a ball in \mathbf{R}^n is convex.
- an *open* subset of \mathbf{R}^n is connected iff it's path connected (not true for arbitrary subsets of \mathbf{R}^n).

Things to remember about open and closed sets:

• a set A is open iff every point x in A is an *interior point* of A, i.e. if x has a neighborhood (an open ball centered at x) which is contained in A.

- a set A is closed iff every *limit point* x of A (a limit of a sequence of points in A) is contained in A;
- A is open iff its complement is closed;
- arbitrary union of open sets is open, arbitary intersection of closed sets is closed;
- *finite* intersection of open sets is open, *finite* union of closed sets is closed;
- the empty set and the whole space are both open and closed.

Things to remember about interior, exterior, and boundary:

- a point x is in the *interior* of A (denoted IntA) iff it's an interior point of A;
- a point x is in the *exterior* of A (denoted ExtA) iff it's an interior point of the complement A;
- a point x is on the *boundary* of A (denoted BdA) iff it's neither an interior nor an exterior point of A, i.e. if in every neighborhood of x there are points from A and the complement of A;
- Int*A*, Ext*A* and Bd*A* are disjoint; their union is the whole space;
- A is open iff A = IntA, B is closed iff $\text{Bd}B \subseteq B$.

Let f, g be continuous functions into \mathbf{R} , and let a, b be real numbers. Then af + bg, fg are continuous, and f/g is continuous provided $g \neq 0$. Also, if $f: X \to Y$ is continuous, $g: Y \to Z$ is continuous on f(X), then their composition g(f(x)) is a continuous function from X to Z. Continuous functions map compact (connected, path connected) sets into compact (connected, path connected) sets. Further definitions to remember:

- Uniform convergence.
- Equicontinuous, uniformly continuous.
- Totally bounded.
- Compact, sequentially compact.
- Connected, path connected.
- Complete, completion.
- Banach space.
- Continuous linear mapping (=bounded) between vector spaces; operator norm.

Things to remember about compact sets:

- A is *compact* iff every sequence in A has a subsequence converging to a point in A;
- A closed subset of a compact set is compact;
- A continuous function attains a maximum and a minimum on a compact set (extreme value theorem);
- A continuous function on a compact set is uniformly continuous.
- For metric spaces, "compact" is equivalent to "totally bounded and complete" which in turn is equivalent to "sequentially compact;"
- Continuous image of a compact set is compact.

Things to remember about complete sets:

- A is *complete* iff every Cauchy sequence in A converges to a point in A;
- A closed subset of a complete metric space is complete;
- \mathbf{R}^n is complete;

- the space of continuous functions on an interval where dist(f,g) = max |f g| is complete (here convergence is equivalent to the uniform convergence). The same is true for the space of bounded functions from an arbitrary metric space into a complete metric space (with the uniform distance); and for the space of continuous linear mappings from a normed vector space into a complete normed vector space (with the operator norm);
- The space l_p of sequences is complete for $1 \le p \le \infty$;
- The space $\hat{C}([0,1])$ is not complete for d_p distance, $p < \infty$;
- every incomplete metric space possesses a completion.

Things to remember about convex, path connected and connected sets:

- a subset A of a vector space X is convex iff for every $x, y \in A$ the segment from x to y (i.e. the set $t \cdot x + (1 t) \cdot y, 1 \ge t \ge 0$) is contained in A;
- A is *path(wise) connected* iff every two points in A can be joined by a path (a continuous mapping from a closed interval into X) in A;
- A is *connected* iff it is not a union of two nonempty, disjoint, relatively open (in A) sets;
- a metric space X is connected if the only subsets of X which are both open and closed are the empty set and X itself;
- definitions of separation, connected components;
- under what conditions a union of connected sets is connected;
- a product of two connected sets is connected;
- (convex) implies (path connected) implies (connected), but not vice versa!
- a subset or **R** is connected iff it's an interval;
- a continuous function into **R** maps connected sets into intervals (i.e. intermediate value theorem holds for connected sets);
- a ball in \mathbf{R}^n is convex.

Two more useful facts about such sets:

- an arbitrary intersection of convex sets is convex;
- an arbitrary union of (path) connected sets whose intersection is nonempty is also (path) connected.
- A uniform limit of continuous (integrable) functions is continuous (integrable).
- Limit of derivatives is equal to the derivative of the limit if the derivatives converge uniformly.
- Infinite series can be differentiated term by term in an interval inside the domain of convergence.

Theorems to know:

- Arzela-Ascoli.
- Dini's theorem.
- Baire's theorem.
- Stone-Weierstrass.
- Implicit and Inverse function theorems.
- Contraction Mapping theorem.
- Bernstein approximation theorem.

TO BE CONTINUED...