5.

6.

(a) Let $x, y \in \mathbb{R}$, $\varepsilon > 0$. Then, there is a $z \in F$ such that $|y - z| \le \delta(y) + \varepsilon$. Then:

$$\delta(x) \le |x - z| \le |x - y| + |y - z| \le |x - y| + \delta(y) + \varepsilon$$

So $\delta(x) - \delta(y) \le |x - y| + \varepsilon$ for any $\varepsilon > 0$, so $\delta(x) - \delta(y) \le |x - y|$. Symmetrically, we obtain that $|\delta(x) - \delta(y)| \le |x - y|$, and δ satisfies the described Lipschitz condition, so δ is continuous.

(b) Suppose $x \notin F$.

Then I claim that $\delta(x) > 0$. Indeed, since $\delta(x) = \inf\{|x - y| : y \in F\}$, then if $\delta(x) = 0$, we would obtain a sequence of elements of F converging to x. Since F is closed, then $x \in F$, which is a contradiction. So $\delta(x) > 0$. Since δ is continuous, then there is an interval $[x - \varepsilon, x + \varepsilon]$ such that $\delta(x) \ge M$ on this interval. So:

$$I(x) = \int \frac{\delta(y)}{|x-y|^2} dy \geqslant \int_{[x-\varepsilon,x+\varepsilon]} \frac{M}{|x-y|^2} dy \geqslant M \int_x^{x+\varepsilon} \frac{1}{|x-y|^2} dy = \infty$$

(c) First, $\delta(x) = 0$ iff $x \in F$, from above. In addition, $\delta(y) \le |x - y|$ whenever $x \in F$ and $y \in F^c$. By Fubini, we have:

$$\int_{F} I(x)dx = \int_{F} \left(\int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^{2}} dy \right) dx = \int_{\mathbb{R}} \delta(y) \left(\int_{F} \frac{1}{|x-y|^{2}} dx \right) dy$$

$$= \int_{F^{c}} \delta(y) \left(\int_{|x-y| \ge \delta(y)} \frac{1}{|x-y|^{2}} dx \right) dy$$

$$= \int_{F^{c}} \delta(y) \left(\int_{-\infty}^{y-\delta(y)} \frac{1}{|x-y|^{2}} dx + \int_{\delta(y)+y}^{\infty} \frac{1}{|x-y|^{2}} dx \right) dy$$

$$= \int_{F^{c}} \delta(y) \frac{2}{\delta(y)} dy = 2m(F^{c}) < \infty$$

Since this integral is finite, then $I(x) < \infty$ for a.e. $x \in F$.

(a) Let f be defined as follows, where $n \ge 2$:

 $f(x) = \begin{cases} n^4 x + n - n^5 & \text{if } x \in [n - \frac{1}{n^3}, n); \\ n & \text{if } x \in [n, n + \frac{1}{n^3}); \\ -n^4 x + 2n + n^5 & \text{if } x \in [n + \frac{1}{n^3}, n + \frac{2}{n^3}); \\ 0 & \text{otherwise.} \end{cases}$

Such a function is indeed positive, continuous and can be drawn as a sequence of trapezoids of height n and bases of length $\frac{1}{n^3}$ and $\frac{3}{n^3}$ for $n \ge 2$. Then:

$$\int f dx = \sum_{n=2}^{\infty} n \frac{\frac{1}{n^3} + \frac{3}{n^3}}{2} = 2 \sum_{n=2}^{\infty} \frac{1}{n^2} < \infty$$

So f is integrable. In addition, $\limsup_{x\to\infty} f=\infty$ since for any N, $\sup_{x\geqslant N} f(x)\geqslant N$

(b)

Note that $\Gamma^c = U \cup V$, where $U = \{(x,y) \in \mathbb{R}^d : y < f(x)\}$ and $V = \{(x,y) \in \mathbb{R}^d : y > f(x)\}$. Then:

$$U = \bigcup_{a \in Q} f^{-1}(-\infty, a) \times (-\infty, a)$$
$$V = \bigcup_{a \in Q} f^{-1}(-\infty, a) \times (a, \infty)$$

since $\mathbb Q$ is dense in $\mathbb R$. Since f is a measurable function, then U and V are measurable sets, so Γ^c is measurable and Γ is measurable.

Since Γ is measurable, then χ_{Γ} is measurable and non-negative. By Tonelli:

$$m(\Gamma) = \int_{\mathbb{R}^{d+1}} \chi_{\Gamma} dy dx = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}} \chi_{\Gamma}(x, y) dy \right) dx$$

But for a fixed x, we have:

$$\int_{\mathbb{R}} \chi_{\Gamma}(x, y) dy = m(\{y : (x, y) \in \Gamma\}) = m(\{f(x)\}) = 0$$

So indeed, $m(\Gamma) = 0$.

9. Note the following:

$$\alpha m(E_{\alpha}) = \int \alpha \chi_{E_{\alpha}} dx$$

Since $f(x) > \alpha$ on E_{α} , then:

$$m(E_{\alpha}) = \frac{1}{\alpha} \int \alpha \chi_{E_{\alpha}} dx \leqslant \frac{1}{\alpha} \int f dx$$

14.

(a) The unit ball in \mathbb{R}^2 consists of all points with $(x^2 + y^2)^{1/2} \le 1$, i.e. all points satisfying $y \le (1 - x^2)^{1/2}$ or $y \ge -(1 - x^2)^{1/2}$. By Corollary 3.8, we have:

$$\begin{aligned} v_2 &= m(B_1) \\ &= m(\{(x,y) \in \mathbb{R}^2 : 0 \le y \le (1-x^2)^{1/2}\}) + m(\{(x,y) \in \mathbb{R}^2 : -(1-x^2)^{1/2} \le y \le 0\}) \\ &= 2m(\{(x,y) \in \mathbb{R}^2 : 0 \le y \le (1-x^2)^{1/2}\}) = 2\int_{-1}^{1} (1-x^2)^{1/2} dx \\ &= 0 + \frac{\arcsin(1) - \arcsin(-1)}{2} = \pi \end{aligned}$$

(b)

(c)

15.

Let $s_k(x) = \sum_{n=1}^k 2^{-n} f(x - r_n)$. Since f is measurable, then $2^{-n} f(x - r_n)$ is measurable, so $s_k(x)$ is measurable. Then, by Corollary 1.10:

$$\int F dx = \int \sum_{n=1}^{\infty} 2^{-n} f(x - r_n) dx = \sum_{n=1}^{\infty} \int 2^{-n} f(x) dx = \int_0^1 \frac{1}{\sqrt{x}} dx = 2$$

so F is integrable. If the series describing F diverged on a set of positive measure, then $\int F dx$ would be infinite, so it must be that the series describing F converges for a.e. $x \in \mathbb{R}$.

17.

(a) Drawing the values of f in the plane, some results become evident:

Fixing $y \in [0, 1)$, we have that:

$$\int |f^y| dx = a_0 = b_0 \leqslant s < \infty$$

if $y \in [n, n + 1)$ for $n \ge 1$, then:

$$\int |f^y| dx = a_n + a_{n-1} = \leq 2s < \infty$$

Similarly, fixing $x \in [n, n + 1)$, we have that:

$$\int |f_x| dy = a_n + a_n \leqslant 2s < \infty$$

So that f_x and f^y are integrable. Indeed, for all x:

$$\int f_x dy = a_n - a_n = 0$$

So that:

$$\int \left(\int f(x,y) dy \right) dx = 0$$

(b) Fix $y \in [0, 1)$, we see that:

$$\int f^y dx = a_0$$

If $y \in [n, n + 1)$, with $n \ge 1$, then:

$$\int f^{y} dx = a_n - a_{n-1}$$

Thus:

$$\int \left(\int f(x,y)dx\right)dy = a_0 + \sum_{n=1}^{\infty} (a_n - a_{n-1}) = \lim_{n \to \infty} a_n = s$$

(c) We have that:

$$\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dxdy = 2\sum_{n=0}^{\infty} a_n$$

Since $\{b_k\}$ is a positive sequence, then for any N, the tail of this series has $\sum_{n\geqslant N}a_n\geqslant s$. Since the tail cannot be made arbitrarily small, then the series diverges, so:

$$\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dx dy = \infty$$

21.

- (a) By Proposition 3.9, we know that the function $\tilde{f}(x,y) = f(x-y)$ is measurable on \mathbb{R}^{2d} . In addition, by Corollary 3.7, $\tilde{g}(x,y) = g(y)$ is measurable on \mathbb{R}^{2d} . Since the product of measurable function is measurable, then $\tilde{f}(x,y)\tilde{g}(x,y) = f(x-y)g(y)$ is measurable on \mathbb{R}^{2d} .
- (b) By Tonelli's theorem, we have:

$$\iint |f(x-y)g(y)|dydx = \int |g(y)| \int |f(x-y)|dxdy = \left(\int |f|\right) \left(\int |g|\right) < \infty$$

So
$$f(x-y)g(y)$$
 is integrable.

- (c) By Fubini's theorem, since f(x-y)g(y) is integrable on \mathbb{R}^{2d} , then the slice f_x is integrable on \mathbb{R}^d for a.e. x, so f * g is well-defined for a.e. x.
- (d) If f, g are integrable, then:

$$\int \left| \int f(x-y)g(y)dy \right| dx \le \int \int |f(x-y)g(y)| dy dx < \infty$$

As shown in (b), we indeed have:

$$||f * g|| = \int \left| \int f(x-y)g(y)dy \right| dx \le \int \int |f(x-y)g(y)|dydx = ||f|| ||g||$$

with equality holding if $|\int f(x-y)g(y)dy| = \int |f(x-y)g(y)|dy$, in particular when f and g are non-negative.

(e) We first show that \hat{f} is bounded:

$$|\hat{f}(\xi)| \le \int |f(x)||e^{-2\pi ix\cdot\xi}|dx \le \int |f| < \infty$$

So it is bounded. Now, let $n \ge 1$. Then:

$$|\hat{f}(\xi + \frac{1}{n}) - \hat{f}(\xi)| = \left| \int f(x) (e^{-2\pi i x \cdot (\xi + \frac{1}{n})} - e^{-2\pi i x \cdot \xi}) dx \right|$$

$$= \left| \int f(x) e^{-2\pi i x \cdot \xi} (e^{-2\pi i x \cdot \frac{1}{n}} - 1) dx \right|$$

$$\leq \int |f(x) e^{-2\pi i x \cdot \frac{1}{n}} - f(x)| dx$$

Since $f(x)e^{-2\pi ix\cdot\frac{1}{n}}\to f(x)$ for a.e. x as $n\to\infty$, and $|f(x)e^{-2\pi ix\cdot\frac{1}{n}}|\leqslant |f(x)|$, which is integrable, then by the Dominated Convergence Theorem, we get that:

$$|\hat{f}(\xi + \frac{1}{n}) - \hat{f}(\xi)| \le \int |f(x)e^{-2\pi i x \cdot \frac{1}{n}} - f(x)| dx \to 0$$

So \hat{f} is continuous. In addition:

$$\widehat{(f * g)}(\xi) = \int \left(\int f(x - y)g(y)dy \right) e^{-2\pi i x \cdot \xi} dx$$

By Fubini:

$$\widehat{(f * g)}(\xi) = \int g(y) \left(\int f(x - y)e^{-2\pi i x \cdot \xi} dx \right) dy$$

$$= \int g(y)e^{-2\pi i y \cdot \xi} \left(\int f(x - y)e^{-2\pi i (x - y) \cdot \xi} dx \right) dy$$

$$= \int g(y)e^{-2\pi i y \cdot \xi} \left(\int f(x)e^{-2\pi i x \cdot \xi} dx \right) dy$$

$$= \left(\int g(x)e^{-2\pi i x \cdot \xi} dx \right) \left(\int f(x)e^{-2\pi i x \cdot \xi} dx \right) = \hat{f}(\xi)\hat{g}(\xi)$$

22.

Note that:

$$\frac{1}{2} \int [f(x) - f(x - \xi')] e^{-2\pi i x \cdot \xi} dx = \frac{1}{2} \hat{f}(\xi) - \frac{1}{2} \int f(x) e^{-2\pi i \left(x + \frac{\xi}{2|\xi|^2}\right) \cdot \xi} dx
= \frac{1}{2} \hat{f}(\xi) - \frac{1}{2} \int f(x) e^{-2\pi i x \cdot \xi} e^{\pi i} dx = \hat{f}(\xi)$$

Suppose $|\xi| \to \infty$. then $|\xi'| = \frac{1}{2|\xi|} \to 0$. By Proposition 2.5, we have:

$$\hat{f}(\xi) = \frac{1}{2} \int [f(x) - f(x - \xi')] e^{-2\pi i x \cdot \xi} dx \le \frac{1}{2} \int |f(x) - f(x - \xi')| dx \to 0$$