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Various things about metric spaces

I. Application of Stone-Weierstrass theorem.
Let T = R(mod2π) be the unit circle (or 1-dimensional torus). Consider the set C(T) of contin-

uous functions on T (they may be identified with continuous 2π-periodic functions on R). Among
such functions you have sin(nx) and cos(nx), n ∈ N; when n = 0 we get constants.
Theorem 1. The set P consisting of linear combinations of the form

c +

n
∑

k=1

ak cos(kx) + bk sin(kx)

is dense in C(T) (where ak, bk, c ∈ R).
Theorem 1 is an important result in the theory of Fourier series which you will study in Math

355. Theorem 1 is proved by an application of Stone-Weierstrass approximation theorem. Since T

is compact, it suffices to show the following
Lemma 2. P is a unital separating subalgebra of C(T).
Proof of Lemma 2. Clearly, P is unital (constants belong to P). We leave the proof of the
separating property as an exercise (to brush up your trigonometric skills!) Also, all functions in P
are continuous, so P ⊂ C(T). It remains to show that P is an algebra. This would follow if we
show that products sin(mx) sin(nx), sin(mx) cos(nx), cos(mx) sin(nx), cos(mx) cos(nx) all belong to
P for arbitrary m, n ∈ N. The statement follows immediately from the so-called product formulas
for sin and cos:

cos(a) cos(b) =
1

2
(cos(a + b) + cos(a − b));

sin(a) sin(b) =
1

2
(cos(a − b) − cos(a + b));

sin(a) cos(b) =
1

2
(sin(a + b) + sin(a − b));

cos(a) sin(b) =
1

2
(sin(a + b) − sin(a − b)).

Remark. All these formulas can be easily derived by considering C-valued functions eint :=
cos(nt) + i sin(nt), where i =

√
−1, but we gave a “real-variable” proof instead.

II. Second countable spaces.
Proposition 3. In a separable metric space, any open set can be written as a countable union of
open balls. Also, every separable metric space X is second countable, i.e. in such a space there exists
a countable family of open subsets Un (called a countable base), such that every open set V in X
satisfies V = ∪Un⊂V Un.
Proof. (S. Drury, Theorem 27, p. 38). Recall that a space is called separable if it has a countable
dense subset {xn}∞n=1

. It suffices to show that every open set in X can be written as a countable
union of open balls centered at xn-s with rational radii (the set of such balls is countable).

Let V be an open subset of X . For every xn ∈ V , let tn = dist(xn, X \ V ); tn is positive since
X \V is closed and xn /∈ X \V . Let qn be a rational number in the interval [tn/2, 2tn/3]. It suffices
to show that

V ⊆ ∪nU(xn, qn), (1)



since obviously U(xn, qn) ⊂ U(xn, 2tn/3) ⊂ V .
To prove (1), we remark that ∪nU(xn, qn) contains the set ∪nU(xn, tn/2). Accordingly, it suffices

to show that
V ⊆ ∪nU(xn, tn/2). (2)

Let y ∈ V , and let t := dist(y, X \ V ) > 0. Since xn-s are dense, there exists n such that d(y, xn) <
t/3. By the solution of Problem 5 in Assignment 1, we have

|dist(y, X \ V ) − dist(xn, X \ V )| ≤ d(y, xn) < t/3,

hence tn = dist(xn, X \ V ) > 2t/3. Therefore,

d(y, xn) <
t

3
=

1

2

(

2t

3

)

<
tn
2

,

and thus y ∈ U(xn, tn/2). This finishes the proof of (2).

III. Countable compactness.
The following material can be found in S. Drury’s Math 354 notes (Theorem 74, p. 100).

Definition 4. A metric space X is called countably compact if every countable open cover contains
a finite subcover.

Note that in the usual definition, arbitrary covers are allowed. The new definition may in principle
be easier to check than the old one. We want to show that for separable metric spaces, the two
definitions are equivalent:
Proposition 5. If X is separable and countably compact, then it is compact.

The proof is an application of Proposition 3. Indeed, let Un be a countable set of open balls
(centered at xn-s with rational radii) s.t. every open set in X is a union of a subset of Un-s. Then
Vα = ∪Un⊂Vα

Un, and it is easy to see that X = ∪kUnk
. Note that each of Unk

-s is contained in
some Vα. By countable compactness, we can chose a finite subcover, so

X ⊆ ∪m

k=1
Unk

⊆ ∪m

k=1
Vαk

,

where Umk
⊂ Vαk

. We have thus found a finite subcover, finishing the proof.

IV. Normal and Hausdorff spaces.
A topological space X is a set, together with collections of open and closed sets that satisfy

the usual properties (A is open iff X \ A is closed; countable union of open sets is open; finite
intersection of open sets is open; ∅ and X are both open and closed, etc). Metric spaces are
examples of topological spaces, but there exists topological spaces that are not metric spaces.
Definition 6. A topological space X is called Hausdorff iff for every two points x 6= y ∈ X , there
exists an open set U, x ∈ U , and another open set V, y ∈ V such that U ∩ V = ∅.
Definition 7. A topological space X is called normal iff for any two closed sets A, B such that
A ∩B = ∅, there exists an open set U, A ⊂ U , and another open set V, B ⊂ V such that U ∩ V = ∅.

Clearly, a normal topological space is Hausdorff if one-point sets {x} are closed. We shall prove
the following
Proposition 8. Metric spaces are Hausdorff and normal.
Proof. Let x 6= y ∈ X , and let r = d(x, y) > 0. To verify the property of Definition 6, we can take
U = U(x, r/3) and V = U(y, r/3).

Next, let A, B be disjoint closed subsets of X . Consider the continuous function F : X → R
defined in exercise 8, Assignment 2. Then A = F−1({0}) and B = F−1({1}). We can take

U = F−1((−∞, 1/3)), V = F−1((2/3, +∞)).



Then U and V are open since F is continuous; A ⊂ U , B ⊂ V ; and U and V are clearly disjoint.
This shows that the property of the Definition 7 holds, QED.

The following theorem clarifies relationship between topological spaces and metric spaces:
Theorem 9 (Urysohn’s metrization theorem). Let X be topological space that is second
countable (has a countable base, cf. Proposition 3), and normal (cf. Definition 7). Then X is
metrizable, i.e. one can define a distance d on X such that open and closed sets in X will coincide
with the open and closed sets for the distance d.

Proofs of this theorem can be found in textbooks of point-set topology.


