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Inverse Function theorem in Rn.
Our exposition follows that in Rudin’s book.

Theorem 1 (Inverse Function Theorem). Let Ω ⊂ Rn be an open set, and
let F : Ω → Rn be continuously differentiable. Let a ∈ Ω, let b = F (a), and let
the Jacobian DF (a) be invertible. Then (a) there exists open sets U, V with a ∈ U
and b ∈ V such that F is a bijection of U onto V ; and (b) its inverse G defined by
G(F (x)) = x, x ∈ U is continuously differentiable.
Proof of Theorem 1. LetA = DF (a) be the Jacobian an a. Let ε = 1/(4||A−1||op);
it is finite since A is invertible by assumption. Since x→ DF (x) is continuous, we
can choose an open ball U centered at a such that

||DF (x) −A||op < 2ε. (1)

Let x ∈ U, x + h ∈ U . Let f(t) = F (x + th) − tAh, where 0 ≤ t ≤ 1. Since U is
convex, x+ th ∈ U for all 0 ≤ t ≤ 1. Also,

||f ′(t)|| = ||f ′(x+ th)h−Ah|| ≤ 2ε||h||.

Since

2ε||h|| = 2ε||A−1Ah|| ≤ 2ε||A−1||op||Ah|| = ||Ah||/2,

by definition of ε. It follows that

||f ′(t)|| ≤ (1/2)||Ah||.

By the generalization of the Intermediate Value theorem, we find (using the
previous bound) that

||f(1) − f(0)|| ≤ (1/2)||Ah||,

or

||F (x+ h) − F (x) −Ah|| ≤ (1/2)||Ah||.

It follows that

||F (x+ h) − F (x)|| > (1/2)||Ah|| ≥ 2ε||h||. (2)

It follows that F is 1-to-1 on U .
Let x0 ∈ U , and let r > 0 be such that B(x0, r) ⊂ U .

Claim. B(F (x0), εr) ⊂ F (B(x0, r)).

Proof of the Claim. Let S = B(x0, r), and let ||y − F (x0)|| < εr. For x ∈ S, we
define ψ(x) to be

ψ(x) = ||y − F (x)||2.

The function ψ is a continuous function of x, so it attains a minimum at x1 ∈ S
(since S is compact). Moreover, ψ is differentiable at x1 with derivative equal to
DF (x) · (y − F (x)), therefore by Lemma 132 in Drury we have

DF (x1) · (y − F (x1)) = 0.

But DF (x1) is invertible by (1), so it follows that y − F (x1) = 0 or y = F (x1).
This finishes the proof of the Claim. QED

We have shown that every point in F (U) is its interior point, so F (U) is open,
and if we let V = F (U) we prove part (a) of Theorem 1.

To prove part (b) of Theorem 1, let y ∈ V , and y+ k ∈ V . Let G be the inverse
map of F , and let x = G(y), h = G(y + k) − G(y). By the choice of V , we have
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x ∈ U and x + h ∈ U . It then follows from (1) that DF (x) has an inverse map,
that we denote B = B(x).

Consider the identity

k = F (x+ h) − F (x) = DF (x)h+ r(h),

where ||r(h)||/||h|| → 0 as ||h|| → 0. Apply B to both sides of the previous identity
to get Bk = h+Br(h), or

G(y + k) −G(y) = Bk −Br(h). (3)

It follows from (2) that 2ε||h|| ≤ ||k||. It follows that h→ 0 as k → 0, proving that
G is continuous at y. Moreover,

||Br(h)||

||k||
≤

||B||op · ||r(h)||

2ε||h||
→ 0, as k → 0. (4)

Finally, it follows from (3) and (4) that G is differentiable at y and its derivative is
equal to B, i.e.

DG(y) = [DF (G(y))]−1,

for y ∈ V . Moreover,DG is continuous, since it is a composition of three continuous
mappings (matrix inverse is continuous in a neighborhood of any invertible matrix,
say by Cramer’s rule). This finishes the proof of (b) and thus of Theorem 1.

QED
Implicit Function theorem in Rn.

We let x = (x1, . . . , xn) ∈ Rn, and y = (y1, . . . , ym) ∈ Rm. We will denote by
(x, y) the obvious vector in Rn+m.

Let M : Rn+m → Rn be a linear map, represented by an n × (n +m) matrix,
such that

M · (h, 0)t = 0 ⇔ h = 0, (5)

where (h, 0)t is the column vector equal to the transpose of (h, 0). This is equivalent
to the statement that the n× n submatrix of M , consisting of the first n columns
of M , is invertible, or that its rows/columns are linearly independent.

In that case, by standard results in linear algebra, h → M(h, 0)t : Rn → Rn is
a bijection. Also, for any fixed k ∈ Rn and b ∈ Rn, the equation M · (x, k)t = b
has a unique solution. Indeed, letting d = b−M · (0, k)t, there exists x such that
M · (x, 0)t = d, or M · (x, k)t = b, and uniqueness of x follows easily from (5).
Theorem 2 (Implicit Function Theorem). Let E ⊂ Rn+m be an open set,
and let F : E → Rn be continuously differentiable. Let (a, b) ∈ E,F (a, b) = 0,
let M = DF ((a, b)), and let M satisfy the condition (5). Then there exists a
neighborhood W ⊂ Rm of the point b, and a unique function G : W → Rn such
that G(b) = a and F (G(y), y) = 0 for all y ∈ W . Moreover, G is continuously
differentiable.
Remark. Denote by DxF , the matrix ∂(F1, . . . , Fn)/∂(x1, . . . , xn). Theorem 2
assumes that the matrix DxF , is invertible at a. If we denote by DyF the matrix
∂(F1, . . . , Fn)/∂(y1, . . . , ym), then it follows from Theorem 2 and the Chain rule
that

∂(x1, . . . , xn)

∂(y1, . . . , ym)
= −(DxF )−1(DyF ).

Proof of Theorem 2. Define H : E ⊂ Rn+m → Rn+m, H(x, y) = (z, w) by

z = F (x, y), w = y. (6)



Then F is a continuously differentiable on E. Since F (a, b) = 0, we have

F (a+ h, b+ k) = A · (h, k)t + r(h, k),

where r(h, k) is little o norm at (a, b) and A is a linear operator represented by an
n× (n+m) matrix (DxF |DyF ). Since

H(a+ h, b+ k) −H(a, b) = (F (a+ h, b+ k), k),

we find that

DH(a, b) =

(

DxF (a, b) DyF (a, b)
0 Id

)

,

where 0 and Id denote the m × n zero matrix and the m × m identity matrix
respectively.

Since DxF (a, b) is invertible by assumption, it follows from the standard proper-
ties of matrices that DH(a, b) is invertible, and so we can apply Theorem 1 to the
function H . Thus, there exist two open sets: U containing (a, b) and V containing
(0, b) such that H : U → V is a bijection, and has a continuously differentiable
inverse H−1 : V → U .

It follows from (6) that H−1 : (z, w) → (x, y) has the form

x = Φ(z, w), y = w, (7)

where Φ ∈ C1(V ), or

F (Φ(z, w), w) = z, (z, w) ∈ V. (8)

Now, let W be a neighborhood of b such that (0, w) ∈ V, ∀w ∈ W . We define
G(y) = Φ((0, y)) for y ∈ W . Substituting into (8), we get F (G(y), y) = 0, which
is the formula claimed in Theorem 2. Since Φ(0, b) = a, we have G(b) = a, and
uniqueness follows easily from the fact that H is one-to-one. This finishes the proof
of Theorem 2.

QED
Example. Let (u, v, x, y) satisfy

{

u3 + xv − y = 0;

v3 + yu− x = 0.
(9)

Prove that u, v are continuously differentiable functions of x, y near x = 0, y =
1, u = 1, v = −1, and compute ∂u/∂x and ∂v/∂x.
Solution: We denote by F1(x, y, u, v) the left-hand side of the 1st equation in (9);
and by F2(x, y, u, v) the left-hand side of the 2nd equation in (9). Then

∂(F1, F2)

∂(u, v)

∣

∣

∣

∣

(0,1,1,−1)

=

(

3u2 x
y 3v2

)

(0,1,1,−1)

=

(

3 0
1 3

)

and is thus invertible, so by Implicit Function theorem, (u, v) are C1 functions of
(x, y). To compute the x-derivatives, we differentiate (9) with respect to x and use
the Chain rule; note that ∂F1/∂x = v = −1 at (0, 1, 1,−1), and ∂F2/∂x = −1 at
the same point. We get:

{

(F1)u · ux + (F1)v · vx + (F1)x = 3ux − 1 = 0;

(F2)u · ux + (F2)v · vx + (F2)x = ux + 3vx − 1 = 0.

The solution is ux = 1/3, vx = 2/9.


