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Inverse Function theorem in R".
Our exposition follows that in Rudin’s book.

Theorem 1 (Inverse Function Theorem). Let 2 C R" be an open set, and
let F': Q — R" be continuously differentiable. Let a € Q, let b = F(a), and let
the Jacobian DF'(a) be invertible. Then (a) there exists open sets U,V with a € U
and b € V such that F' is a bijection of U onto V; and (b) its inverse G defined by
G(F(x)) =z, € U is continuously differentiable.
Proof of Theorem 1. Let A = DF(a) be the Jacobian an a. Let € = 1/(4||[A71||,p);
it is finite since A is invertible by assumption. Since x — DF(x) is continuous, we
can choose an open ball U centered at a such that

IDF(x) — Allop < 2e. (1)
Let x € Uz +h € U. Let f(t) = F(x +th) — tAh, where 0 < ¢t < 1. Since U is
convex, x +th € U for all 0 <t < 1. Also,
L O = [1f'(z + th)h — Ah|| < 2¢[|h|.
Since
2¢||hl] = 2¢[| A1 Ah| < 2| A7 |op|| AR = || AR|/2,
by definition of e. It follows that

L O < (1/2)]]AR][.
By the generalization of the Intermediate Value theorem, we find (using the
previous bound) that

ILF(1) = fOO)I < (1/2)]|AR]|,
or
IF(z +h) — F(z) — Ah[| < (1/2)||Ah]|.
It follows that
|F(z+h) = F(z)|| > (1/2)[|AR[| = 2€[|h]]. (2)
It follows that F' is 1-to-1 on U.
Let zg € U, and let r > 0 be such that B(zg,r) C U.
Claim. B(F(zg),er) C F(B(zo,r)).
Proof of the Claim. Let S = B(xg, ), and let ||y — F(x0)|| < er. For z € S, we
define ¢ (x) to be

U(@) = lly — F(a)|.
The function 1 is a continuous function of z, so it attains a minimum at x; € S
(since S is compact). Moreover, 1 is differentiable at x; with derivative equal to
DF(x) - (y — F(z)), therefore by Lemma 132 in Drury we have

DF(xz1) - (y— F(z1)) =0.

But DF(x1) is invertible by (1), so it follows that y — F'(z1) =0 or y = F(x1).
This finishes the proof of the Claim. QED
We have shown that every point in F'(U) is its interior point, so F'(U) is open,
and if we let V' = F(U) we prove part (a) of Theorem 1.
To prove part (b) of Theorem 1, let y € V, and y + k € V. Let G be the inverse
map of F, and let x = G(y),h = G(y + k) — G(y). By the choice of V, we have
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2z €U and z + h € U. Tt then follows from (1) that DF(z) has an inverse map,
that we denote B = B(x).
Consider the identity
k=F(x+h)— F(x) = DF(x)h + r(h),
where ||r(h)||/||R]| — 0 as ||h|] — 0. Apply B to both sides of the previous identity
to get Bk = h + Br(h), or
G(y + k) — G(y) = Bk — Br(h). (3)

It follows from (2) that 2¢||h|| < ||k||. It follows that h — 0 as k — 0, proving that
G is continuous at y. Moreover,

[Br(WI| _ [[Bllop - [Ir(A)]]

k[l = 2|l

Finally, it follows from (3) and (4) that G is differentiable at y and its derivative is
equal to B, i.e.

— 0, as k — 0. (4)

DG(y) = [DF(G(y)] ™",

for y € V. Moreover, DG is continuous, since it is a composition of three continuous
mappings (matrix inverse is continuous in a neighborhood of any invertible matrix,
say by Cramer’s rule). This finishes the proof of (b) and thus of Theorem 1.

QED
Implicit Function theorem in R".

We let = (21,...,z,) € R", and y = (y1,... ,ym) € R™. We will denote by
(z,y) the obvious vector in R"*t™.

Let M : R*™™ — R™ be a linear map, represented by an n x (n + m) matrix,
such that

M-(h,0)}f=0 & h=0, (5)

where (h,0)? is the column vector equal to the transpose of (h,0). This is equivalent
to the statement that the n x n submatrix of M, consisting of the first n columns
of M, is invertible, or that its rows/columns are linearly independent.
In that case, by standard results in linear algebra, h — M(h,0)" : R* — R™ is

a bijection. Also, for any fixed k € R™ and b € R", the equation M - (x, k)t = b
has a unique solution. Indeed, letting d = b — M - (0, k)?, there exists = such that
M - (2,0)" =d, or M - (z,k)" = b, and uniqueness of x follows easily from (5).
Theorem 2 (Implicit Function Theorem). Let £ C R™"™ be an open set,
and let F' : E — R"™ be continuously differentiable. Let (a,b) € E, F(a,b) = 0,
let M = DF((a,b)), and let M satisfy the condition (5). Then there exists a
neighborhood W C R™ of the point b, and a unique function G : W — R” such
that G(b) = a and F(G(y),y) = 0 for all y € W. Moreover, G is continuously
differentiable.
Remark. Denote by D, F, the matrix d(F1,...,F,)/d(x1,...,2z,). Theorem 2
assumes that the matrix D, F, is invertible at a. If we denote by D, F' the matrix
O(Fi,...,F,) /01, .. ,Ym), then it follows from Theorem 2 and the Chain rule
that

O(z1,...,2p)

(9(y1, e ,ym)
Proof of Theorem 2. Define H : E C R"™™ — R""™ H(xz,y) = (z,w) by

z=F(z,y),w=y. (6)

— —(D.F)"{(D,F).



Then F is a continuously differentiable on E. Since F(a,b) = 0, we have
Fla+hb+k)=A-(h k) +r(hk),

where r(h, k) is little o norm at (a,b) and A is a linear operator represented by an
n x (n+ m) matrix (D, F|DyF). Since

H(a+hb+k) — H(a,b) = (F(a+ h,b+ k), k),

we find that (.h) (.h)
[ DyF(a, D, F(a,
DH(CL, b) - < 0 Id ) ’
where 0 and Id denote the m X n zero matrix and the m x m identity matrix
respectively.

Since D, F'(a,b) is invertible by assumption, it follows from the standard proper-
ties of matrices that DH (a,b) is invertible, and so we can apply Theorem 1 to the
function H. Thus, there exist two open sets: U containing (a,b) and V' containing
(0,b) such that H : U — V is a bijection, and has a continuously differentiable
inverse H=!: V — U.

It follows from (6) that H~! : (2,w) — (z,y) has the form

x=®(z,w),y =w, (7)
where ® € CY(V), or
F(®(z,w),w) = z, (z,w) € V. (8)
Now, let W be a neighborhood of b such that (0,w) € V,Vw € W. We define
G(y) = ®((0,y)) for y € W. Substituting into (8), we get F(G(y),y) = 0, which
is the formula claimed in Theorem 2. Since ®(0,b) = a, we have G(b) = a, and
uniqueness follows easily from the fact that H is one-to-one. This finishes the proof
of Theorem 2.
QED
Example. Let (u,v,z,y) satisfy
ud + xv —y = 0;
5 (9)
v? +yu—zx =0.
Prove that u,v are continuously differentiable functions of z,y near z = 0,y =
l,u=1,v = —1, and compute du/dz and Ov/dz.
Solution: We denote by Fi(z,y,u,v) the left-hand side of the 1st equation in (9);
and by Fy(z,y,u,v) the left-hand side of the 2nd equation in (9). Then

O(Fy, F) _<3u2 x ) _(3 o)
O(u,v) |o1,1,-1) v 30" ) o L3

and is thus invertible, so by Implicit Function theorem, (u,v) are C! functions of
(z,y). To compute the z-derivatives, we differentiate (9) with respect to x and use
the Chain rule; note that 0F;/0x = v = —1 at (0,1,1,—1), and 9F/0x = —1 at
the same point. We get:
(F1)u -tz + (F1)y - 0z + (F1)z = 3u, — 1 = 0;
(F2)y - ug + (F2)y - 0z + (F2)y = ugp + 3v, — 1 =0.

The solution is u, = 1/3,v, = 2/9.




