McGill University

Math 354: Honors Analysis 3 Assignment 4 Fall 2012 due Friday, October 19

Problem 1 (extra credit). Let $X = C^{1}[0,1]$ denote the space of continuously differentiable functions on [0,1].

a) Prove that the expression

$$||f||_{2} = \max_{x \in [0,1]} |f(x)| + \max_{x \in [0,1]} |f'(x)|.$$

defines a norm on X

- b) Prove that $(X, || \cdot ||_2)$ is a complete metric space. Is it separable (does it contain a countable dense set)?
- c) Prove that $||f||_2$ does not define the same topology on X as the d_{∞} norm $\max_{x \in [0,1]} |f(x)|$.

Solution:

a) Clearly $\|\cdot\|_2$ satisfies $\|f\|_2 \ge 0$ and $\|\lambda f\|_2 = |\lambda| \|f\|_2$. If $f \equiv 0$ then $f' \equiv 0$ and $\|f\|_2 = 0$. Now, if $\|f\|_2 = 0$, both $\max_{x \in [0,1]} |f(x)| = 0$ and $\max_{x \in [0,1]} |f'(x)| = 0$. This implies $f \equiv 0$, $f' \equiv 0$ so f is the zero function. The triangle inequality holds since

$$\begin{split} \|f+g\|_2 &= \max_{x \in [0,1]} |f+g(x)| + \max_{x \in [0,1]} |(f+g)'(x)| \le \max_{x \in [0,1]} (|f(x)| + |g(x)|) + \max_{x \in [0,1]} (|f'(x)| + |g'(x)|) \\ &\le \max_{x \in [0,1]} |f(x)| + \max_{x \in [0,1]} |g(x)| + \max_{x \in [0,1]} |f'(x)| + \max_{x \in [0,1]} |g'(x)| = \|f\|_2 + \|g\|_2. \end{split}$$

b) Let (f_n) be a Cauchy sequence in $\|\cdot\|_2$. Let $\epsilon > 0$. There exists $n \in N$ such that for all $n, m \ge N$

$$|f_n(x) - f_m(x)| + |f'_n(x) - f'_m(x)| < \epsilon$$

for all $x \in [0,1]$. In particular, $d_{\infty}(f'_n, f'_m) < \epsilon$, so (f'_n) is Cauchy in d_{∞} , and therefore there exists a uniform limit, say g (continuous). Let

$$f(x) = \int_0^x g(t)dt$$

We have that, for $n \ge N' \ge N$ and for all $x \in [0, 1]$,

$$\frac{\epsilon}{2} < f_n'(x) - g(x) < \frac{\epsilon}{2}$$

Integrating over [0,1] we get $-\frac{\epsilon}{2} < f_n(x) - f(x) < \frac{\epsilon}{2}$ and thus

$$\|f_n - f\|_2 < \epsilon.$$

By Stone-Weierstrass theorem we know that polynomials with rational coefficients form a countable dense subset of C([0,1]). Let $f \in C^1([0,1])$ and $\epsilon > 0$. We have that $f' \in C([0,1])$ so there exists a polynomial with rational coefficients, q(x), such that

$$d_{\infty}(f',q) < \frac{\epsilon}{2}$$

Then, for all $x \in [0, 1]$, $-\frac{\epsilon}{2} < f'(x) - q(x) < \frac{\epsilon}{2}$ and therefore $-\frac{\epsilon}{2} < f(x) - Q(x) < \frac{\epsilon}{2}$, where Q(x) is a polynomial with rational coefficients such that Q'(x) = q(x). Then, $||f - Q||_2 < \epsilon$.

c)We will show that any ball about $f \equiv 0$ in d_{∞} contains functions with arbitrarily big derivative and, therefore, such ball cannot be contained in any ball about 0 in $\|\cdot\|_2$. Let $\epsilon > 0$ and consider $B^{\infty}(0, \epsilon)$ the ball about $f \equiv 0$ in d_{∞} . Let

$$f_n(x) = \frac{1}{n}\sin(n^2x)$$

 $x \in [0,1]$. Let $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then for all $n \ge N$, $||f_n||_{\infty} < \epsilon$, so $f_n \in B^{\infty}(0,\epsilon)$. However,

$$f_n'(x) = n\cos(n^2x),$$

so $||f_n||_2 = n + 1$.

Problem 2. Let $f_n: [0,1] \to \mathbf{R}$ be a sequence of continuously differentiable functions satisfying

 $|f_n(x)| \le M, |f'_n(x)| \le M, \quad \forall x \in [0,1], \ \forall n \in \mathbf{N}.$

Prove that $\{f_n\}$ has a uniformly convergent subsequence.

Solution. By Arzela-Ascoli theorem, it suffices to show that $\{f_n\}$ is uniformly bounded (true by assumption), and (uniformly) equicontinuous. Accordingly, given $\epsilon > 0$, let $\delta = \epsilon/M$. Then for any n, and for any $x < y \in [0, 1]$ such that $|y - x| < \delta$, we have by the intermediate value theorem

$$|f_n(y) - f_n(x)| \le \delta \cdot \sup_{z \in [x,y]} |f'_n(z)| < M \cdot \frac{\epsilon}{M} = \epsilon,$$

proving uniform equicontinuity. QED

Problem 3. Determine whether the following sets of functions are sequentially compact in C[0, 1]:

- a) $\{(ax)^n\}, n \in \mathbf{N}, a > 0.$
- b) $\{\sin(x+n)\}, n \in \mathbf{N}.$
- c) $\{e^{x-a}\}, a > 0.$
- d) $\{f \in C^2[0,1] : |f(x)| < B_0, |f'(x)| < B_1, |f''(x)| < B_2\}.$
- e) (extra credit) $\{f \in C^2[0,1] : |f(x)| < B_0, |f''(x)| < B_2\}.$
- f) $\{f \in C^2[0,1] : |f'(x)| < B_1, |f''(x)| < B_2\}.$

Solution:

a) $\{(ax)^n\}, n \in \mathbf{N}, a > 0$. Clearly, for a > 1, the sequence $f_n(1) = a^n$ is not bounded, so the answer is NO. Also, for a < 1, $f_n(x) \to 0$ uniformly on [0, 1], so the answer is YES. If a = 1, then $f_n(x) = x^n$ was considered in class. The answer is NO, since the limit function is discontinuous at x = 1.

- b) $\{\sin(x+n)\}, n \in \mathbb{N}$. The sequence of functions is uniformly bounded, and has uniformly bounded derivatives $f'_n(x) = \cos(x+n)$. The answer is YES by Problem 2.
- c) $\{e^{x-a}\}, a > 0$. The sequence of functions is uniformly bounded, and has uniformly bounded derivatives $f'_a(x) = e^{x-a}$. The answer is YES by Problem 2.
- d) $\{f \in C^2[0,1] : |f(x)| < B_0, |f'(x)| < B_1, |f''(x)| < B_2\}$. YES by Problem 2.
- e) (extra credit) $\{f \in C^2[0,1] : |f(x)| < B_0, |f''(x)| < B_2\}$. The answer is YES. The two conditions imply a uniform bound on the first derivative, then we can use Problem d). The proof will be provided separately.
- f) $\{f \in C^2[0,1] : |f'(x)| < B_1, |f''(x)| < B_2\}$. NO, since the sequence is not necessarily uniformly bounded (e.g. arbitrary constant satisfies both conditions, and $f_n(x) = n$ has no convergent subsequence).