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Math 354: Honors Analysis 3 Fall 2012
Assignment 1 Solutions to selected Exercises

Exercise 1.

(i) Verify the identity for any two sets of complex numbers {a1, ..., an} and {b1, ..., bn}(
n∑

k=1

akbk

)2

=

(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)
− 1

2

n∑
i=1

n∑
j=1

(aibj − biaj)2.

ii) Let f(x) and g(x) be continuous functions on [a, b]. Prove that(∫ b

a

f(x)g(x)dx

)2

=

∫ b

a

f(x)2dx ·
∫ b

a

g(x)2dx− 1

2

∫ b

a

∫ b

a

[f(x)g(y)− g(x)f(y)]
2
dxdy.

Solution (i) : The RHS expands to

n∑
i,j=1

a2i b
2
j −

1

2

n∑
i,j=1

(a2i b
2
j + b2i a

2
j − 2aibiajbj) =

n∑
i,j=1

aibiajbj =

(
n∑

k=1

akbk

)2

Solution (ii) : Because f, g ∈ C([a, b]), we may very safely invoke Fubini’s theorem to change the
order of integration. The RHS expands to

∫ b

a

f(x)2dx ·
∫ b

a

g(x)2dx− 1

2

∫ b

a

∫ b

a

[
f(x)2g(y)2 + g(x)2f(y)2 − 2f(x)g(x)f(y)g(y)

]
dxdy

=

∫ b

a

∫ b

a

(f(x)g(x)f(y)g(y)) dxdy

=

∫ b

a

(∫ b

a

f(x)g(x)f(y)g(y)dx

)
dy

=

∫ b

a

(∫ b

a

f(x)g(x)dx

)
f(y)g(y)dy

=

(∫ b

a

f(x)g(x)dx

)(∫ b

a

f(y)g(y)dy

)



Exercise 2.

(i) Starting from the inequality xy ≤ xp/p+ yq/q, where x, y, p, q > 0 and 1/p+ 1/q = 1, deduce
Hölder’s integral inequality for continuous functions f(t), g(t) on [a, b]:∫ b

a

f(t)g(t)dt ≤

(∫ b

a

|f(t)|pdt

)1/p(∫ b

a

|g(t)|qdt

)1/q

;

(ii) Use (i) to prove Minkowski’s integral inequality for continuous functions f(t), g(t) on [a, b] and
p ≥ 1: (∫ b

a

|f(t) + g(t)|pdt

)1/p

≤

(∫ b

a

|f(t)|pdt

)1/p

+

(∫ b

a

|g(t)|pdt

)1/p

.

Solution (i) : If f or g is identically 0 on [a, b], then the inequality holds. So we may assume that
‖f‖p, ‖g‖q > 0. Take

x =
|f(t)|(∫ b

a
|f(t)|pdt

)1/p =
|f(t)|
‖f‖p

and y =
|g(t)|(∫ b

a
|g(t)|qdt

)1/q =
|g(t)|
‖g‖q

Then ∫ b

a

|f(t)|
‖f‖p

|g(t)|
‖g‖q

dt ≤
∫ b

a

(
|f(t)|p

p‖f‖pp
+
|g(t)|q

q‖g‖qq

)
dt = 1.

Rearrange to get ∫ b

a

f(t)g(t)dt ≤
∫ b

a

|f(t)g(t)|dt ≤ ‖f‖p‖g‖q.

Young’s Inequality (i) : For any x, y, p, q > 0, with p, q conjugate exponents, xy ≤ xp/p+ yq/q.
Proof:

xy = eln xy = e
1
p ln xp+ 1

q ln yq

≤ 1

p
eln xp

+
1

q
eln yq

=
xp

p
+
yq

q

by convexity of the exponential function.

Solution (ii) : Minkowski’s inequality holds for p = 1, so we may assume p > 1.

∫ b

a

|f(t)+g(t)|pdt =

∫ b

a

|f(t)+g(t)||f(t)+g(t)|p−1dt ≤
∫ b

a

|f(t)||f(t)+g(t)|p−1dt+
∫ b

a

|g(t)||f(t)+g(t)|p−1dt

≤

(∫ b

a

|f(t)|pdt

) 1
p
(∫ b

a

|f(t) + g(t)|q(p−1)dt

) 1
q

+

(∫ b

a

|g(t)|pdt

) 1
p
(∫ b

a

|f(t) + g(t)|q(p−1)dt

) 1
q

=

(∫ b

a

|f(t)|pdt

) 1
p

+

(∫ b

a

|g(t)|pdt

) 1
p

(∫ b

a

|f(t) + g(t)|q(p−1)dt

) 1
q

Since q(p− 1) = p, rearrange to get

(∫ b

a

|f(t) + g(t)|pdt

) 1
p

=

(∫ b

a

|f(t) + g(t)|pdt

)1− 1
q

≤

(∫ b

a

|f(t)|pdt

) 1
p

+

(∫ b

a

|g(t)|pdt

) 1
p

.



Exercise 3. Prove that the set of all points x = (x1, x2, . . . , xk, . . .) with only finitely many nonzero
coordinates, each of which is a rational number, is dense in the space l2 of sequences.

Solution: Let x = (x1, x2, . . . , xn, . . .) ∈ l2. Then
∑∞

i=1 x
2
i < ∞, so for any ε > 0, there exists

N ∈ N such that
∑

i>N x2i < ε. For each 1 ≤ j ≤ N , choose a rational number yi such that
(xi−yi)2 < ε/N . Let y = (y1, y2, . . . , yN , 0, 0, . . .). Then y has only N nonzero rational coordinates,
and

(d2(x, y))2 =

N∑
j=1

(xi − yi)2 +
∑
i>N

x2i < ε+N(ε/N) = 2ε.

Since ε was arbitrary, we have proved the density.



Exercise 4 (extra credit).

i) Suppose φ ∈ C([a, b]) (which need not be differentiable) satisfies

φ((x+ y)/2) ≤ (φ(x) + φ(y))/2, x, y ∈ [a, b].

Prove that for all x, y ∈ [a, b], and for any t ∈ [0, 1], we have

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y), (1)

i.e. that φ is convex on [a, b].

ii) Assume that a function φ (that is not assumed to be continuous on an open interval (a, b)),
satisfies (1). Prove that φ is then actually continuous on (a, b).

iii) Prove that if φ ∈ C2([a, b]), and φ′′(x) > 0,∀x ∈ [a, b], then φ is convex on [a, b].

iv) Prove that if x1, . . . , xn ∈ [a, b], and t1, . . . , tn > 0 satisfy t1 + . . .+ tn = 1, and if φ is convex
on [a, b], then

φ(t1x1 + . . .+ tnxn) ≤ t1φ(x1) + . . .+ tnφ(xn).

Solution i):
Let x, y ∈ (a, b) and define f(λ) = ϕ((1 − λ)x + λy) for 0 ≤ λ ≤ 1. Note first that f(q) ≤

(1− q)f(0) + qf(1) for all dyadic rationals 0 ≤ q ≤ 1. To see this, suppose that the inequality holds
for dyadic rationals of the form q = k

2n for 1 ≤ n ≤ N ; then if 0 ≤ k < 2N , we have

f

(
2k + 1

2N+1

)
≤ 1

2

(
f

(
k

2N

)
+ f

(
k + 1

2N

))
≤ 1

2

((
1− k

2N

)
f(0) +

k

2N
f(1) +

(
1− k + 1

2N

)
f(0) +

k + 1

2N
f(1)

)
=

(
1− 2k + 1

2N+1

)
f(0) +

2k + 1

2N+1
f(1)

Consider now the sequence of dyadic rationals obtained by taking successively accurate approxima-
tions to the binary expansion of λ. Then λn = 2−nbλ2nc is a sequence converging to λ, and since f
is continuous the inequality holds in the limit; that is, f(λ) ≤ (1− λ)f(0) + λf(1) for all 0 ≤ λ ≤ 1,
and hence ϕ is convex.
ii): We find that the definition is convexity is equivalent to requiring that for all a < s < t < u < b,
we have

φ(t)− φ(s)

t− s
≤ φ(u)− φ(t)

u− t
. (2)

Fix t ∈ (a, b); we shall prove that φ is continuous at t. Let r(t, s0) denote the ratio in the left-hand
side of (2) for some fixed a < s0 < t; similarly, denote r(t, u0) denote the ratio in the right-hand
side of (2) for some fixed t < u0 < b.

Suppose now that s ∈ (s0, t). Then it follows from (2) that

φ(t)− r(t, u0)(t− s) ≤ φ(s) ≤ φ(t)− r(s0, t)(t− s),

i.e. the graph of φ lies in between two straight lines that intersect at the point (t, φ(t)). The
continuity as s → t from the left follows. The proof of continuity as u → t from the right follows
similarly from the inequality

φ(t) + r(s0, t)(u− t) ≤ φ(u) ≤ φ(t) + r(t, u0)(u− t),

that holds for u ∈ (t, u0).
iii): By the argument in ii), it suffices to prove (2), which for continuously differentiable functions
is equivalent to saying that φ′ is nondecreasing, and that follows from the assumption φ′′(t) > 0, t ∈
[a, b].



iv): The proof is by induction, starting with n = 2 which is the assumption of continuity. The
induction step is proved as follows:

φ(t1x1+. . .+tnxn+t−n+ 1xn+1) = φ(t1x1+. . .+(tn+tn+1)y) ≤ t1φ(x1)+. . .+(tn+tn+1)φ(y), (3)

where y = (tnxn + tn+1xn+1)/(tn + tn+1) and where we have used induction hypothesis. On the
other hand, by convexity

φ(y) ≤ tnφ(xn)

tn + tn+1
+
tn+1φ(xn+1)

tn + tn+1
.

Substituting into (3), we complete the proof.



Exercise 5. Let X be a metric space, A ⊆ X a subset of X, and x a point in X. The distance from
x to A is denoted by d(x,A) and is defined by

d(x,A) = inf
a∈A

d(x, a).

Prove that

i) If x ∈ A, then d(x,A) = 0, but not conversely;

ii) For a fixed A, d(x,A) is a continuous function of x;

iii) d(x,A) = 0 if and only if x is a contact point of A (i.e. every neighborhood of x contains a
point from A);

iv) The closure A satisfies
A = A ∪ {x : d(x,A) = 0}.

Solution (i) : If x ∈ A, then 0 = d(x, x) = infa∈A d(x, a). Converse is not true, for example if
A = (0, 1], then d(0, A) = 0 while 0 /∈ A.

Solution (ii) : Let x, y ∈ X. Given ε > 0, choose a ∈ A such that d(x, a) ≤ d(x,A) + ε. By
triangle inequality we have d(y, a) ≤ d(x, a) + d(x, y) ≤ d(x, y) + d(x,A) + ε. Since ε was arbitrary,
and since d(y,A) ≤ d(y, a), we get d(y,A) ≤ d(x,A) + d(x, y). Reversing the roles of x and y we get
d(x,A) ≤ d(y,A) + d(x, y). It follows that

|d(x,A)− d(y,A)| ≤ d(x, y).

which implies continuity of d(·, A).

Solution (iii) : If x is a contact point of A, then for every r > 0, B(x, r) contains a point of A,
hence infa∈A d(x, a) < r. Since r was arbitrary, d(x,A) = 0, proving the “if” part. Now, suppose a
ball B(x, r) doesn’t contain points from A for some r > 0. Then d(x,A) ≥ r > 0, finishing the proof
of the “only if” part of the statement.

Solution (iv) : The set A is a union of A and the set of all limit points of A. By part (iii),
d(x,A) = 0 for any limit point that doesn’t belong to A.

Remark : To show that the function d : X −→ [0,∞) , d : x −→ d(x,A) was continuous,
some of you came up with intriguing inequalities such as |d(x,A) − d(y,A)| = | inf

a∈A
d(x, a) −

inf
a∈A

d(y, a)| ≤ | inf
a∈A

(d(x, a)− d(y, a)) |. The following counterexample shows that it is wrong in

general even if y can be made arbitrarily close to x. Consider the metric space of bounded se-
quences l∞(N) with entries in R equipped with the metric d(x, y) = sup

i∈N
|xi − yi|. Let x =

(0, 0, ...), y1 = ( 1
3 , 0, 0, ...), y2 = (0, ( 1

3 )2, 0, ...), y3 = (0, 0, ( 1
3 )3, 0, ...), etc . . . and A = {ω ∈

l∞(N) : all components of ω are 0 except exactly one which is equal to 1}. Then yn −→ x and
d(x,A) = 1, d(yn, A) = 1 − ( 1

3 )n so that we have | inf
a∈A

d(x, a) − inf
a∈A

d(y, a)| = ( 1
3 )n > 0 =

| inf
a∈A

(d(x, a)− d(y, a)) |.



Exercise 6. Let (X, d) be a metric space, and f : X → R a continuous function. The nodal set of
f , denoted by Z(f), is the set {x ∈ X : f(x) = 0}.

i) Prove that Z(f) is a closed subset of X.

Next, let A,B be two closed nonempty subsets of X, A ∩ B = ∅. Let d(x,A) (resp. d(x,B))
denote the distance from x ∈ X to A (resp. B), defined in Exercise 5 in Assignment 1. Define a
function F : X → R by the formula

F (x) =
d(x,A)

d(x,A) + d(x,B)
.

Prove that

ii) F is continuous;

iii) F (x) = 0 iff x ∈ A, and F (x) = 1 iff x ∈ B.

Solution (i) : Let xn ∈ Z(f), and let xn → y as n → ∞. By continuity of f , 0 = f(xn) → f(y),
therefore f(y) = 0 and so y ∈ Z(f).

Solution (ii) and (iii) : By the results proved in Exercise 5, Assgmt 1, d(x,A) = 0 iff x ∈
A = A, since A is closed, and similarly for B. It was also shown in Exercise 5, Assgmt 1, that
|d(x,A) − d(y,A)| ≤ d(x, y). These results are used abundantly in the following demonstration.
There are 3 possible different cases:

• x ∈ A: then F (x) = 0. Let b = d(x,B) > 0, and let ε < b. Suppose that y ∈ X is such that
d(x, y) < ε. Then d(y,A) ≤ d(x, y) < ε, and b− ε ≤ d(y,B) ≤ b+ ε. It follows that

F (y) ≤ ε/(b− ε)→ 0 = F (x)

as ε→ 0, so F is continuous at x.

• x ∈ B: then d(x,B) = 0 so F (x) = 1. Let a = d(x,A) > 0. Choose ε < a and suppose
y ∈ X is such that d(x, y) < ε. By an argument similar to the argument above, we find that
d(y,B) < ε and a− ε ≤ d(y,A) ≤ a+ ε. Accordingly,

F (x) = 1 ≥ F (y) =
1

1 + d(y,B)/d(y,A)
≥ 1

1 + ε/(a− ε)
→ 1,

as ε→ 0, proving that F is continuous at x.

• x /∈ A and x /∈ B: Let a = d(x,A) > 0 and let b = d(x,B) > 0. We have 0 < F (x) =
a/(a + b) < 1. Choose ε < min(a, b), and suppose y ∈ X is such that d(x, y) < ε. It follows
that a− ε < d(y,A) < a+ ε, and b− ε < d(y,B) < b+ ε. Then

1

1 + (b+ ε)/(a− ε)
≤ F (y) ≤ 1

1 + (b− ε)/(a+ ε)
.

Both sides of the inequality converge to a/(a+ b) as ε→ 0, proving the continuity of F at x.



Exercise 7. Let Matn denote the space of n × n real matrices. For A ∈ Matn, define the norms
||A||1 as follows:

||A||1 = sup
06=x∈Rn

||Ax||
||x||

,

where ||x|| is the usual Euclidean norm. Next define another norm ||A||2 by

||A||2 = max
1≤i,j≤n

|Aij |.

Prove that

i) Prove that ||A||1,2 defines a norm on Matn;

ii) Prove that there exists a constant Cn > 1 such that 1/Cn ≤ ||A||1/||A||2 ≤ Cn.

Solution (i) : The only nontrivial property is the triangle inequality, ||A+B||1,2 ≤ ||A||1,2+||B||1,2;
the other properties are very easy. Now,

||(A+B)||1 = sup
||x||=1

||Ax+Bx|| ≤ sup
||x||=1

(||Ax||+||Bx||) ≤ sup
||x||=1

||Ax||+ sup
||x||=1

||Bx|| = ||A||1+||B||1.

||(A+B)||2 = max
i,j
|(A+B)ij | ≤ max

i,j
(|Aij |+ |Bij |) ≤ max

i,j
|Aij |+ max

i,j
|Bij | = ||A||2 + ||B||2.

Solution (ii) : Let x = (x1, x2, . . . , xn) be an arbitrary unit vector in (Rn, || · ||), where || · || stands
for the Euclidean 2 norm. Then by Cauchy-Schwartz (or Hölder’s inequality),

||Ax|| =

√√√√ n∑
i=1

(

n∑
j=1

Aijxj)2 ≤

√√√√√ n∑
i=1

 n∑
j=1

A2
ij

 n∑
j=1

x2j

 =

√ ∑
1≤i,j≤n

A2
ij ≤

√ ∑
1≤i,j≤n

||A||22 = n||A||2.

Denote ej = (0, . . . , 1, 0, . . . , 0) where the 1 occurs in the jth position. ThenAej = (A1j , A2j , . . . , Anj)
and it follows that

||A||1 = sup
||x||=1

||Ax|| ≥ ||Aej || =

√√√√ n∑
i=1

A2
ij ≥ |Aij | ∀1 ≤ i, j ≤ n

So ||A||1 ≥ ||A||2. Therefore

1

n
≤ 1 ≤ ||A||1

||A||2
≤ n.

which shows that || · ||1 and || · ||2 are equivalent norms on Matn.



Exercise 8 (extra credit). Let p be a prime number (a positive integer that is only divisible by
1 and itself, e.g. p = 2, 3, 5, 7, 11 etc). Define p-adic distance dp on the set Q of rational numbers as
follows: given q1, q2 ∈ Q, let |q1 − q2| = q ∈ Q. If q1 = q2, q = 0, then we set dp(q1, q2) = 0. If q 6= 0,
we can write q as

q = pm
a

b
, where m ∈ Z, GCD(a, b) = 1, GCD(a, p) = GCD(b, p) = 1.

Here GCD(a, b) is the greatest common divisor of two natural numbers a and b. Then we define the
p-adic distance by

dp(q1, q2) = p−m.

Please, note the minus sign in the definition.
Examples: d2(5/2, 1/2) = 1/2; d3(17, 8) = 1/9; d5(4/15, 1/15) = 5.
Prove that dp satisfies all the properties of a distance. The only nontrivial part is the triangle

inequality:
dp(q1, q2) + dp(q2, q3) ≥ dp(q1, q3).

You may use without proof all standard properties of the greatest common divisor, prime decompo-
sition etc.

Solution : Let us introduce the p-adic norm on the vector space Q over itself defined by ||x||p = p−m,
for x = pm · (a/b), where GCD(a, b) = GCD(a, p) = GCD(b, p) = 1 and ||0||p = 0.

• ||x||p = 0 iff x = 0.

• For x, y ∈ Q, x = pma
b , y = pk c

d , then ||x · y||p = ||pm+k ac
bd ||p = p−m−k = p−mp−k = ||x||p||y||p

• For the triangle inequality we will show that ||x + y||p ≤ max{||x||p, ||y||p}. Assume without
loss of generality that

max{||x||p, ||y||p} = ||x||p := p−m,

i.e. that x = pm(a/b), y = pm+k(c/d), where GCD(a, p) = 1 = GCD(b, p) = GCD(c, p) =
GCD(d, p), and where k ≥ 0. Then

x+ y = pm
(pk · ad+ bc)

bd

SinceGCD(p, bd) = 1, we see that ||x+y||p ≤ p−m. The norm could be smaller, ifGCD(p, pkad+
bc) = p.

Hence || · ||p defines a norm on Q over Q. Now if q1, q2 ∈ Q are distinct, let |q1 − q2| = pma
b be

the unique decomposition. Then dp(q1, q2) = p−m = ||pma
b ||p = |||q1− q2|||p = ||q1− q2||p. If q1 = q2

then dp(q1, q2) = 0 = ||0||p = ||q1 − q2||p. So the p-adic norm induces the p-adic distance dp.



Exercise 9 (extra credit). Denote by P the set of polygons in R2, not necessarily convex. A
polygon P with vertices x1,x2, . . . ,xn is the set of points in R2 bounded by a simple closed curve
that is a union of line segments

[x1,x2], [x2,x3], . . . , [xn−1,xn], [xn,x1].

The boundary curve is denoted ∂P and is sometimes called a polyline or a broken line. We require
that different line segments do not intersect except at common endpoints.

A symmetric difference of two sets A,B is denoted by A∆B and is defined by

A∆B = (A\B) ∪ (B\A),

where A\B = A ∩Bc is the set of points {x ∈ A, x /∈ B}.
Given two polygons P1, P2 ∈ R2, define the distance between them by

d(P1, P2) = Area(P1∆P2).

Prove that d satisfies all the properties of a distance. Hint: if X ⊂ Y , then Area(X) ≤ Area(Y ).

Solution:

• d(P1, P2) ≥ 0 and d(P1, P1) = 0 ∀P1, P2 ∈ P.

• d(P1, P2) = Area(P1∆P2) = Area(P2∆P1) = d(P1, P2).

• As shown in the lemma below, for any sets P1, P2, P3 we have

(P1∆P2) ⊂ (P1∆P3) ∪ (P2∆P3).

In particular the relation holds for polygons in R2. Taking areas, we find that

Area(P1∆P2) ≤ Area((P1∆P3) ∪ (P2∆P3)) ≤ Area(P1∆P3) + Area(P2∆P3).

Lemma: For arbitrary sets P1, P2, P3, (P1∆P2) ⊂ (P1∆P3) ∪ (P2∆P3).

Proof: P1 ∩ P c
2 = (P1 ∩ P c

2 ∩ P3) ∪ (P1 ∩ P c
2 ∩ P c

3 ). The first set in parenthesis is contained
in P c

2 ∩ P3 ⊂ (P2∆P3), while the second set in parenthesis is contained in P1 ∩ P c
3 ⊂ (P1∆P3).

So, P1 ∩ P c
2 ⊂ (P1∆P3) ∪ (P2∆P3). Reversing the roles of P1 and P2, we see that P2 ∩ P c

1 ⊂
(P1∆P3) ∪ (P2∆P3). Therefore (P1∆P2) = (P1 ∩ P c

2 ) ∪ (P2 ∩ P c
1 ) ⊂ (P1∆P3) ∪ (P2∆P3).


