A Review pf Determinants

A determinant of an $n \times n$ matrix A is a multilinear function of its rows A_1, \ldots, A_n and of its columns A^1, \ldots, A^n , i.e. for any $1 \le i \le n$

$$\det(A_1, \dots, A_{i-1}, \lambda B_1 + \mu B_2, A_{i+1}, \dots, A_n) = \lambda \cdot \det(A_1, \dots, A_{i-1}, B_1, A_{i+1}, \dots, A_n) + \mu \cdot \det(A_1, \dots, A_{i-1}, B_2, A_{i+1}, \dots, A_n)$$

and a similar identity holds for columns. It is also an alternating function, i.e.

$$\det(\ldots, A_i, \ldots, A_i, \ldots) = -\det(\ldots, A_i, \ldots, A_i, \ldots)$$

or, equivalently, determinant is equal to 0 whenever two rows (or columns) of the matrix are the same. The determinant is a unique such function satisfying $\det(\mathrm{Id}_n) = 1$.

Suppose vectors w_1, \ldots, w_n are linear combinations of v_1, \ldots, v_n with coefficients

$$\begin{cases} w_1 = a_{11}v_1 + \dots + a_{1n}v_n, \\ \dots \\ w_n = a_{n1}v_1 + \dots + a_{nn}v_n. \end{cases}$$

Let the *i*-th row of the matrix A be equal to v_i , and let the *i*-th row of B equal to w_i . Then

$$\det B = \det A \cdot \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1,\sigma(1)} \dots a_{n,\sigma(n)}$$

where $\varepsilon(\sigma)$ is the sign of a permutation σ .

Another useful formula for computing determinats is the Laplace expansion:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

where a_{ij} are the elements fo the *i*-th row of A, and A_{ij} denotes the matrix A with the *i*-th row and the *j*-th column removed. An analogous formula is true for columns.

The determinant satisfies $det(A) = \det({}^tA)$ and $\det(AB) = \det(A) \det(B)$. If C is invertible, then $\det(C^{-1}AC) = \det(A)$ (so the determinant of a matrix corresponding to a linear transformation doesn't depend on a choice of a basis). Suppose that the columns vectors A^1, \ldots, A^n, B satisfy

$$B = \sum_{i=1}^{n} x_i A^i$$

where x_i -s are constants. Then the following identity (called *Cramer's rule*) holds for all $1 \le i \le n$:

$$x_i \det(A^1, \dots, A^i, \dots, A^n) = \det(A^1, \dots, B, \dots, A^n)$$

(the i-th column is replaced by B).

The following elementary operations row are useful when computing determinants:

• Interchanging two rows (det changes sign).

- Multiplying a row by $\lambda \neq 0$ (det gets multiplied by λ).
- Adding to a row of a matrix a linear combination of *other* rows of that matrix (det doesn't change).

Similar operations for columns can be used as well (note, though, that you can only use row operations when solving a system of equations or computing an inverse of a matrix).

The matrix (over a field) is invertible iff its determinant is not equal to zero iff its row/columns are linearly independent iff its rank is equal to its size.

The adjoint (or adjugate) $\tilde{A} = (b_{ij})$ of a matrix A is defined by $b_{ij} = (-1)^{i+j} \det(A_{ji})$. This matrix satisfies

$$\tilde{A}A = A\tilde{A} = \det(A) \cdot \mathrm{Id}.$$