Math 320a, Differential Geometry, D. Jakobson, Fall 2003
Finding curvature and torsion for curves not parametrized by arclength

Solution to Problem 12abc, p. 25 in do Carmo’s book.

Let a(t) = (z(t),y(t), 2(t) be our curve parametrized by t, and let o', a", o'
denote its derivatives with respect to t. We denote the arclength by s, the curvature
by &, and the torsion by 7. We denote the unit tangent vector to a by T, the unit
normal vector by N, and the unit binormal vector by B.

Problem 12a. By definition of s = s(t), we have ds/dt = |o/(t)|. By the inverse
function theorem, dt/ds = 1/|c/(t)|. Now,
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This finishes the proof. _
Problem 12b. We have o' = |@/|T. Now,
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We next evaluate
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where we have used Frenet’s formula (d/ds)T = kN, and the calculation of (d/dt)|c|
from Problem 12a. Accordingly,
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Computing norms, we find that
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which finishes the proof. _ o o
Problem 12c. We have o' = (a/ -a"/|a'|)T + |&/|>kN and o' Ao = |o/|°kB. We
want to show that the torsion
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To simplify the calculations, we remark that since o’ A ' is proportional to B,

so we only need to compute the B-component in the expansion of the vector o' in

the orthonormal basis {T, N, B}. Accordingly, we write
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The last expression can rewritten as
U+ (a’-a”) (d/ds)(T) (d/ds)(N) _
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where the vectors Ui, Us, Us are orthogonal to B, and where we have used Frenet’s
formula (d/ds)N = —kT — 7B. Accordingly,

(@ Aa'")-a" = —71(|d'Pk)*B - B = —7|a’|®k%.

This finishes the proof of (1).

+Us + &'’k




