1 The Implicit Function Theorem

Suppose that \((a, b)\) is a point on the curve \(F(x, y) = 0\) where and suppose that this equation can be solved for \(y\) as a function of \(x\) for all \((x, y)\) sufficiently near \((a, b)\). Then this part of the curve is the graph of a function \(y = \varphi(x)\) on some interval \(|x - a| < h\) with \(\varphi(a) = b\). If \(\varphi'(x)\) exists, we can compute it by differentiating both sides of the equation \(F(x, \varphi(x)) = 0\) with respect to \(x\) to get

\[
\frac{\partial F}{\partial x}(x, \varphi(x)) + \frac{\partial F}{\partial y}(x, \varphi(x))\varphi'(x) = 0
\]

providing that the partial derivatives exist. If \(\frac{\partial F}{\partial y}(x, \varphi(x)) \neq 0\), we can solve for \(\varphi'(x)\) and obtain the well known formula

\[
\varphi'(x) = -\frac{\frac{\partial F}{\partial x}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))}
\]

or, more classically,

\[
\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}.
\]

The precise conditions under which the existence of \(h\) and \(\varphi\) is assured are furnished by the following theorem, which is the Implicit Function Theorem for functions of two variables.

Theorem 1. If \(F(a, b) = 0\) and \(F(x, y)\) is continuously differentiable on some open disk with center \((a, b)\) then, if \(\frac{\partial F}{\partial y}(a, b) \neq 0\), there exists an \(h > 0\) and a unique function \(\varphi(x)\) defined for \(|x - a| < h\) such that \(\varphi(a) = b\) and \(F(x, \varphi(x)) = 0\) for \(|x - a| < h\). Moreover, on \(|x - a| < h\), the function \(\varphi(x)\) is continuously differentiable and

\[
\varphi'(x) = -\frac{\frac{\partial F}{\partial x}(x, \varphi(x))}{\frac{\partial F}{\partial y}(x, \varphi(x))}
\]

There is a corresponding theorem for the case where \(\frac{\partial F}{\partial y}(a, b) \neq 0\). In this case the curve \(F(x, y)\) is the graph of a function of \(x = \psi(y)\) near the point \((a, b)\).

Example. Except for the two points \((\pm 1, 0)\), the curve \(x^2 + y^2 = 1\) consists of the two continuously differentiable functions \(y = \pm \sqrt{1 - x^2}, -1 < x < 1\). Notice that for \(F(x, y) = x^2 + y^2\) we have \(\frac{\partial F}{\partial y} = 2y\) which is zero when \(y = 0\). The points \((\pm 1, 0)\) lie on the two branches \(x = \pm \sqrt{1 - y^2}, -1 < y < 1\).

The general Implicit Function Theorem gives condition under which a system of equations

\[
F_1(x_1, \ldots , x_m, y_1, \ldots , y_n) = 0 \\
F_2(x_1, \ldots , x_m, y_1, \ldots , y_n) = 0 \\
\vdots \\
F_n(x_1, \ldots , x_m, y_1, \ldots , y_n) = 0
\]

can be solved for \(y_1, \ldots , y_n\) as functions of \(x_1, \ldots , x_m\), say \(y_i = \varphi_i(x_1, \ldots , x_m)\). Differentiating the equation

\[
F_i(x_1, \ldots , x_m, \varphi_1(x_1, \ldots , x_m), \ldots , \varphi_n(x_1, \ldots , x_m)) = 0
\]

with respect to \(x_j\) we get

\[
\frac{\partial F_i}{\partial x_j} = \frac{\partial F_i}{\partial y_1} \frac{\partial \varphi_1}{\partial x_j} + \ldots + \frac{\partial F_i}{\partial y_n} \frac{\partial \varphi_n}{\partial x_j}.
\]

Using the partial Jacobians

\[
D_x F = \begin{bmatrix}
\frac{\partial F_1}{\partial x_1} & \ldots & \frac{\partial F_1}{\partial x_m} \\
\frac{\partial F_2}{\partial x_1} & \ldots & \frac{\partial F_2}{\partial x_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_n}{\partial x_1} & \ldots & \frac{\partial F_n}{\partial x_m}
\end{bmatrix}, \quad
D_y F = \begin{bmatrix}
\frac{\partial F_1}{\partial y_1} & \ldots & \frac{\partial F_1}{\partial y_n} \\
\frac{\partial F_2}{\partial y_1} & \ldots & \frac{\partial F_2}{\partial y_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_n}{\partial y_1} & \ldots & \frac{\partial F_n}{\partial y_n}
\end{bmatrix}.
\]
These equations with $1 \leq i \leq n$ can be written in the matrix form

$$D_x F + D_y F D \varphi = 0.$$

If $D_y F$ is invertible, i.e., if $|D_y F| \neq 0$, we get

$$D \varphi = -D_y F^{-1} D_x F.$$

Let $x = (x_1, \ldots, x_m)$, $y = (y_1, \ldots, y_n)$, $a = (a_1, \ldots, a_m)$, $b = (b_1, \ldots, b_m)$ and let

$$F(x, y) = (F_1(x, y), \ldots, F_n(x, y)).$$

Theorem 2 (Implicit Function Theorem). If $F(a, b) = 0$ and $F(x, y)$ is continuously differentiable on some open disk with center (a, b) then, if $|D_y F(a, b)| \neq 0$, there exists an $h > 0$ and a unique function $\varphi(x) = (\varphi_1(x), \ldots, \varphi_n(x))$ defined for $|x - a| < h$ such that $\varphi(a) = b$ and $F(x, \varphi(x)) = 0$ for $|x - a| < h$. Moreover, on $|x - a| < h$, the function $\varphi(x)$ is continuously differentiable and

$$D\varphi(x) = -D_y F(x, \varphi(x))^{-1} D_x F(x, \varphi(x)).$$

Example. Consider the equation $F(x, y) = 0$ where

$$F_1(x, y) = x_1^2 + 2x_2 + y_1^2 + 2y_2 - 8 = 0,$$

$$F_2(x, y) = x_1 - x_2^2 + y_1 - y_2^2 + 3 = 0.$$

If $a = (1, 1)$, $b = (1, 2)$, we have $F(a, b) = 0$ and

$$|D_y F(a, b)| = \begin{vmatrix} 2 & 2 \\ 1 & -4 \end{vmatrix} = -10 \neq 0.$$

By the Implicit Function Theorem one has, for $x = (x_1, x_2)$ sufficiently close to $(1, 1)$,

$$y = (y_1, y_2) = (\varphi_1(x), \varphi_2(x)) = \varphi(x)$$

with $\varphi(1, 1) = (1, 2)$ and

$$D\varphi(x) = - \begin{bmatrix} 2\varphi_1(x) & 2 \\ 1 & -2\varphi_2(x) \end{bmatrix}^{-1} \begin{bmatrix} 2x_1 & 2 \\ 1 & -2\varphi_2(x) \end{bmatrix}.$$

An immediate consequence of the Implicit Function Theorem is the following theorem, known as the Inverse Function Theorem.

Theorem 3 (Inverse Function Theorem). Let $y = f(x)$, where $y = (y_1, y_2, \ldots, y_n)$ and $x = (x_1, x_2, \ldots, x_n)$. If $DF(a)$ is invertible, then, for y near $b = f(a)$ and x near a, we have $x = g(y)$ and $Dg(b) = Df(a)^{-1}$.